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Abstract. This paper will look at the binomial coefficients di-
visible by the prime number 2. The paper will seek to understand
and explain a case when each entry in a row of Pascal’s triangle
will be divisible by one of two primes, 2 and r.

1. Introduction

This paper was first and foremost inspired by the work of John
Shareshian and Russ Woodroofe. In their paper [2], they considered
the following condition that a natural number nmay or may not satisfy.

Condition 1. There exist primes p and r (depending on n) such that
for every k with 1 ≤ k ≤ n− 1, the binomial coefficient

(
n
k

)
is divisible

by at least one of p and r.

They asked when the condition would hold for given values of p
and r. They developed a sieve that would help them answer the ques-
tion. From several properties and theorems outlined in the paper, the
case where p = 2 should garner special attention. Indeed, from com-
putational work done with the help of a program, it was discovered
that 2 satisfied the conditions in roughly 86.7% of the cases where
n ≤ 1000000. This discovery is what led me to work on this project.
I wanted to further explore where p = 2 holds and, perhaps more im-
portantly, where it fails.

In this paper, I will be attempting to show where 2 satisfies the con-
ditions in all cases. In Section 2, I will prove a lemma that will be
important to the argument of the later proof. In Section 3, I will give a
brief explanation of the computer programming and results that moti-
vated this paper and some tables that show interesting values returned
by the program. In Section 4, I will be giving a short bit of background
into the mathematics that will help to prove the theorem in the paper,
as well as proving the theorem of the paper.

2. Preliminaries

We are interested in satisfying Condition 1 from [2]. Recall:
1
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Lemma 2 (Shareshian and Woodroofe [2, Lemma 1.8]). Let n, a, and
b be positive integers and p and r be primes. Suppose n is not a prime
power. If pa | n and rb < n < rb+ pa, then n satisfies Condition 1 with
p and r. In particular, if 2a | n and rb < n < rb + 2a, then n satisfies
Condition 1 with 2 and r.

From here on in, we will be referring to Lemma 2 as the sieve. We
noticed that if n satisfies Lemma 2 with 2 and r, then frequently 2n
satisfies Condition 1 with 2 and r. The following theorem gives some
circumstances in which this phenomena occurs.

Our main theorem relies heavily on combinatorial theorems and al-
gebra involving primes. A well-known lemma from [1] is particularly
useful. The following is a statement and proof of the lemma.

Lemma 3. Let p be a prime and a be a natural number. Then

(1 + x)p
a ≡ (1 + xpa) mod p.

Proof. Let x be an integer, p be a prime, and a be a natural number.
By the Binomial Theorem,

(1 + x)p
a

= 1p
a

+

(
pa

1

)
1p

a

xpa−1 + . . .+

(
pa

pa − 1

)
11xpa−1 + xpa .

We must prove that p divides every term on the right-hand side except
1p

a and xpa . Recall for 1 ≤ k < pa − 1(
pa

k

)
=

(pa)!

k!(pa − k)!
.

We will prove this using induction. The first case to consider is when
a = 1. Hence, we have (1 + x)p and the Binomial Theorem says(

p

k

)
=

p!

k!(p− k)!
.

Notice in the above expression that there is a factor of p in the nu-
merator, but there is not one in the denominator since p is a prime
number. Thus, the coefficients of the expanded polynomial will all be
divisible by p except the trivial cases where the coefficients are 1. So,
we have (1+x)p ≡p (1+xp). Now, since we have proved the base case,
we may assume that (1 + x)p

a ≡p (1 + xpa) is true. It is our goal to
prove the case where we have (1+x)p

a+1 . Notice that (1+x)p
a+1 is the

same as ((1+ x)p
a
)p. We may begin with (1+ x)p

a and remember that
(1 + x)p

a ≡p (1 + xpa). Therefore, we have ((1 + x)p
a
)p ≡p (1 + xpa)p.

From the base case, we know that (1 + x)p ≡p (1 + xp). By reducing
again mod p, we have (1 + xpa)p ≡p (1 + xpa·p) = (1 + xpa+1

). �
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3. Computer algorithms

In the very beginning of this project, I used the GAP code Sgdiv-
PartnersLucas [3] developed by Shareshian and Woodroofe to generate
values of r that satisfy the sieve and Condition 1 with 2 for the values
input for n. I began with 3927 because 3927 · 23 was the first number
that fails to satisfy Condition 1 with its largest prime-power divisor. I
took 3927 and continued to multiply it by powers of 2 while pairing it
with p = 2 in the function. For the first four iterations, the program
would only return a single number, 7853. However, after this, the num-
bers returned by the program increased greatly from one iteration to
the next. Not all of these numbers satisfied the sieve. In each list of
numbers, there was a small range, sometimes as small as one number,
where the values of r could be found. I, manually, examined those that
satisfied the sieve to see how many generations r “survives”. For my
purposes, I am defining a generation to be the number of subsequent
values of 2a that are multiplied by 3927 to get a value for the prime r
that satisfies Condition 1. The first time a prime r appears is gener-
ation 1. I prove in Section 3 that for values of r satisfying the sieve,
these numbers will survive at least one generation.

The following table contains some of the numbers satisfying Lemma
2 along with the number of generations r survives computation.

n r # generations
(3927 ∗ 2) 7853 5
(3927 ∗ 24) 62819 5
(3927 ∗ 25) 125639 5
(3927 ∗ 28) 1005312 6
Next, I have included a table displaying primes r that appear during

computations, but where 2 and r do not satisfy the sieve. These are
found in the same way as in the first table, using SgdivPartnersLucas.
It is notable that these numbers show a greater variation of generations
survived, with 41887 surviving the longest of numbers studied.

n r # generations
(3927 ∗ 25) 20939 3
(3927 ∗ 25) 41887 8
(3927 ∗ 29) 1005217 4
(3927 ∗ 24) 20939 4
The final table exhibits the number of primes r such that the given

n satisfies Condition 1 of the SgdivPartnersLucas program. The values
for the size are found by simply calling the size function in GAP after
each subsequent iteration of the SgdivPartnersLucas function. It is of
interest that the values of the size appear to grow very quickly.
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n size
(3927 ∗ 22) 1
(3927 ∗ 24) 8
(3927 ∗ 26) 28
(3927 ∗ 28) 90
(3927 ∗ 210) 331

4. Main theorem

Theorem 4. Let n be a positive integer. Let 2a be the highest power
that divides n. Suppose rb < n < rb + 2a where r is a prime. Then 2n
also satisfies Condition 1 with 2 and r.

Proof. From Lemma 2, we know if n is not a prime power and rb <
n < rb+pa, then n satisfies Condition 1. We are interested in studying
the case where p = 2. Thus, we have

rb < n < rb + 2a

where 2a|n. Therefore, by multiplying through by 2, we have

2rb < 2n < 2rb + 2a+1.

Next, we can subtract through by 2rb and get

0 < 2n− 2rb < 2a+1.

The simplest way to prove the idea is using the Binomial Theorem and
Lemma 3 to check divisibility of coefficients.

If n = 2a, then
(
2n
k

)
is divisible by 2 for all 1 ≤ k ≤ 2n− 1, because

we have
(1 + x)2

a ≡2 (1 + x2a).

We are left with the trivial cases where the coefficients are 1.
If n 6= 2a, then there exists an integer m 6= 1 such that n = 2am.

Thus,
(1 + x)n = (1 + x)2

am

(1 + x)2n = (1 + x)2
a+1m.

By reducing modulo 2, we have

(1 + x)2n ≡2 (1 + x2a+1

)m.

Thus,
(
2n
k

)
fails to be divisible by 2 only when k is a multiple of 2a+1.

Further,
(1 + x)2n = (1 + x)2n−2rb(1 + x)2r

b

,

and this time, we can reduce modulo r to get

(1 + x)2n ≡r (1 + x)2n−2rb(1 + xrb)2.
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Therefore,
(
2n
k

)
fails to be divisible by r only when

(1) k ≤ 2n− 2rb ,
(2) k ≥ 2rb, or
(3) 0 ≤ k − rb ≤ 2n− 2rb, i.e. rb ≤ k ≤ 2n− rb.

It suffices to show that k is not a multiple of 2a+1 (and hence, that 2
divides k) in the above cases. By the hypotheses on n and r, we have
0 < n − rb < 2a. Thus, in case 1, we have 0 < k ≤ 2n − 2rb < 2a+1.
Case 2 follows by symmetry between k and 2n − k. Since 2a is the
highest power dividing n, n is not a multiple of 2a+1. However, n− 2a

and n+ 2a are multiples of 2a+1. Thus, we have
n− 2a < rb < n < n+ (n− rb) = 2n− rb < n+ 2a.

We know that in Case 3 that k is contained in the interval rb ≤ k ≤
2n− rb. Therefore, k cannot be a multiple of 2a+1, as n−2a and n+2a

are the adjacent multiples of 2a+1. �
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