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Abstract

Given a connected graph X and a group G of its automorphisms we first
introduce an approach for constructing all pairwise nonequivalent connected
solvable regular coverings ℘ : X̃ → X (that is, with a solvable group of covering
transformations CT(℘)) along which G lifts, up to a prescribed order n of X̃ .

Next, given a connected solvable regular covering ℘ : X̃ → X by means
of voltages and a group G ≤ Aut(X) that lifts along ℘, we consider algo-
rithms for testing whether the lifted group G̃ is a split extension of CT(℘).
In computational group theory, methods for testing whether a given exten-
sion of permutation groups splits are known. However, in order to apply the
existing algorithms, X̃ together with CT(℘) and G̃ need to be constructed
in the first place, which is far from optimal. Recently, an algorithm avoiding
such explicit constructions has been proposed by Malnič and the author (On
the Split Structure of Lifted Groups, submitted). We here provide additional
details about this algorithm and investigate its performance compared to the
one using explicit constructions. To this end, a concrete dataset of solvable
regular covers of graphs has been generated by the algorithm mentioned in
the first paragraph.
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1 Introduction

Covering graph techniques have proven successful as effective tools to investigate
structural properties of mathematical objects. In particular, these techniques enable
certain constructions of regular coverings out of graphs we already have in hand.
Such constructions have been applied to a number of symmetric graphs with the
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aim to classify particular classes of graphs and maps on surfaces, count the number
of graphs in certain families, construct infinite families or to produce catalogues
of graphs with prescribed degree of symmetry up to a certain reasonable size. For
instance, Djoković [8] used regular coverings to construct the first examples of infinite
families of 5-arc-transitive cubic graphs, while a method for constructing certain 5-
arc-transitive cubic graphs as regular covers of cubic graphs that are 4- but not
5-arc-transitive was developed by Biggs [1]. Further, the above ideas were applied
in constructing the census of semisymmetric cubic graphs on up to 768 vertices [7].

Also, one would like to find algorithms to provide answers to certain natural
questions regarding symmetry issues of graphs and their regular coverings. For ex-
ample, a basic question in this respect is whether a given group G ≤ Aut(X) of
automorphisms lifts along a regular covering projection ℘ : X̃ → X of connected
graphs to a group G̃ ≤ Aut(X̃) (see Preliminaries for the definition). The observa-
tion that the covering graph X̃ inherits certain symmetries of the base graph X –
subject to the condition that G lifts and satisfies certain structural properties ac-
cording to its action on X – exhibits the essence of lifting groups of automorphisms.
Moreover, the existence of G̃ implies that G̃ is an extension of the group of cover-
ing transformations CT(℘) by G. It is therefore reasonable to ask, before all else,
whether the extension splits. This gives further advantage to reveal additional sym-
metry properties of X̃. In this context, some algorithmic questions were addressed
in [16, 22, 24].

The fact that the structure of X̃ can be conveniently encoded on X in terms
of voltages has led to a purely combinatorial description of graph coverings, which,
among other things, allows one to study graphs from an algorithmic and computa-
tional point of view. The theory of combinatorial graph coverings was developed
by Gross and Tucker [11] in the seventies. Malnič, Nedela and Škoviera extended
these ideas to a systematic combinatorial treatment of lifting automorphisms along
covering projections [15, 17]. Along these lines, a method for constructing admis-
sible cyclic regular covers of connected graphs was proposed by Širáň [25], while
elementary abelian regular covers were considered by Malnič, Marušič and Potočnik
in [19]. A similar approach was proposed by Du, Kwak and Xu [9] in order to find
cyclic or elementary abelian regular coverings of connected graphs. Most recently
Conder and Ma employed methods from representation theory in order to classify
certain arc-transitive cubic abelian regular covers [5].

The purpose of this paper is twofold. Firstly, given a connected graph X and a
group G of its automorphisms, we introduce an approach for constructing connected
solvable regular coverings ℘ : X̃ → X along which G lifts, up to a prescribed order n
of the respective graphs X̃. The idea behind our approach is to exploit methods for
finding elementary abelian regular covers. And secondly, given a connected solvable
regular covering ℘ : X̃ → X combinatorially by means of voltages and a group
G ≤ Aut(X) that lifts along ℘, we consider algorithms for testing whether G̃ is split
extension of CT(℘). It is well known that efficient methods for testing whether an
extension of permutation groups splits already exist, see for instance [4] and [12,
Chapters 7 and 8]. In the above combinatorial setting of graph covers, however,
X̃ together with CT(℘) and G̃ have to be explicitly constructed – as permutation
groups acting on X̃ – before the existing algorithms can be applied. Since these
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constructions are time and space consuming, the obvious naive algorithm seems to
be inappropriate. In [22], an algorithm that avoids such explicit constructions has
been briefly described. We continue this line of research: we provide additional
details about this algorithm and explore its behaviour in order to demonstrate its
superior performance in comparison with the naive one.

The rest of the paper is organized as follows. In Section 2 we give some back-
ground material on regular covering projections of graphs and lifting automorphisms,
including some details that we require later on. In Section 3 we devise an approach
for generating connected solvable regular graph covers. A detailed description of the
algorithm from [22] is presented in Section 4. In Section 5 we describe the concrete
dataset that we have generated in order to exhibit the capabilities of the proposed
algorithm from [22], along with the evaluation results.

2 Preliminaries

2.1 Regular covers of graphs

A graph is an ordered quadruple X = (D, V ; beg,−1 ), where D(X) = D and V (X) =
V are disjoint sets of darts and vertices, respectively, beg is the function assigning
to each dart its initial vertex, and −1 is an arbitrary involution on D that creates
edges arising as orbits of −1. For a dart x, its terminal vertex is the vertex end(x) =
beg(x−1). An edge e = {x, x−1} is called a link whenever beg(x) �= end(x). If
beg(x) = end(x), then the respective edge is either a loop or a semi-edge, depending
on whether x �= x−1 or x = x−1, respectively.

A graph homomorphism f : Y → X is an adjacency preserving mapping taking
darts to darts and vertices to vertices, or more precisely, f(beg(x)) = beg(f(x)) and
f(x−1) = f(x)−1. An isomorphism is a bijective homomorphism. An isomorphism
of a graph onto itself is an automorphism. All automorphisms of a graph X together
with composition of automorphisms constitute the automorphism group Aut(X).

A surjective homomorphism ℘ : X̃ → X is called a regular covering projection
(or a regular cover) if there exists a semiregular subgroup C ≤ Aut(X̃) such that its
orbits on vertices and on darts coincide with vertex fibres ℘−1(v), v ∈ V (X), and dart
fibres ℘−1(x), x ∈ D(X), respectively. Two regular covering projections ℘ : X̃ → X
and ℘′ : X̃ ′ → X are isomorphic if there exists an automorphism g ∈ Aut(X) and
an isomorphism g̃ : X̃ → X̃ ′ such that the following diagram

X̃
g̃� X̃ ′

X

℘
� g� X

℘′
�

is commutative. If in the above diagram one can choose g = id, then the projections
are equivalent.

Regular covering projections can be grasped combinatorially as follows. Let X
be a graph and let S be an (abstract) group, called the voltage group. Assign to
each dart x in X a voltage ξ(x) ∈ S such that ξ(x−1) = (ξ(x))−1. Further, let
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Cov(ξ;S) be the derived graph with vertex-set V × S and dart set D × S, where
beg(x, s) = (beg(x), s) and (x, s)−1 = (x−1, s ξ(x)). Then the projection onto the
first coordinate is a derived regular covering projection ℘ : Cov(ξ;S) → X , where
the required semiregular subgroup C of Aut(Cov(ξ;S)) arises from the action of S
via left multiplication on itself. Conversely, it can be shown that with any regular
covering projection ℘ : X̃ → X we can associate a voltage assignment ξ on X such
that the projection derived from ξ is equivalent to ℘. Two assignments ξ and ξ′ on
X are equivalent whenever the respective derived regular covering projections are
equivalent. For an extensive treatment of graph coverings we refer the reader to
[11, 15, 17].

Let ξ : X → S be a voltage assignment and ℘ : Cov(ξ;S)→ X the derived regular
covering projection of connected graphs. Suppose that the group S has a normal
subgroup N . We explain how to combinatorially reconstruct a decomposition of
℘ : Cov(ξ;S)→ X arising, up to equivalence, from N . If q : S → S/N is the natural
quotient projection, then

℘q : Cov(ξq;S/N)→ X

is a regular covering projection, where the respective voltage assignment is given by
ξq = q ◦ ξ : X → S/N , see [19]. Moreover, there exists a regular covering projection

℘̄q : Cov(ξ̄q;N)→ Cov(ξq;S/N)

derived from a voltage assignment ξ̄q : Cov(ξq;S/N)→ N , such that the projection ℘
is equivalent to the composition ℘̄q ◦℘q. In other words, there exists an isomorphism
α : Cov(ξ;S)→ Cov(ξ̄q;N) such that the diagram

Cov(ξ;S)
α� Cov(ξ̄q;N)

X

℘
�
�

℘q
Cov(ξq;S/N)

℘̄q
�

is commutative. We describe a general recipe for constructing a voltage assignment
ξ̄q, to be repeatedly used in Section 4.

Let T be a complete set of representatives of the right cosets of N in S. First
note that each a ∈ S can be uniquely written as a = nt, for some n ∈ N and t ∈ T .
For each t ∈ T and x ∈ D(X) choose the representative st,ξ(x) ∈ T of the right coset
Ntξ(x), that is, Ntξ(x) = Nst,ξ(x).

Theorem 2.1. With the above notation, the assignment ξ̄q : Cov(ξq;S/N) → N is
given by

ξ̄q((x,Nt)) = t ξ(x) s−1
t,ξ(x),

where (x,Nt) is an arbitrary dart in Cov(ξq;S/N).

Proof. Let (x,Nt) be an arbitrary dart in the derived graph Cov(ξq;S/N), where
x ∈ D(X) and t ∈ T . Then its inverse dart is

(x,Nt)−1 = (x−1, Ntξq(x)) = (x−1, NtNξ(x)) = (x−1, Ntξ(x)) = (x−1, Nst,ξ(x)).
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Suppose now that ξ̄q((x,Nt)) = n, for some n ∈ N . Consider the dart ((x,Nt), n′) in
Cov(ξ̄q;N), where n′ ∈ N is an arbitrary voltage. Then ((x,Nt), n′) can be uniquely
identified via the isomorphism α with the dart (x, n′t) in Cov(ξ;S). Furthermore,
the inverse dart of ((x,Nt), n′) is

((x,Nt), n′)−1 = ((x,Nt)−1, n′ ξ̄q((x,Nt))) = ((x−1, Nst,ξ(x)), n
′n),

while (x, n′t)−1 = (x−1, n′tξ(x)) is the inverse dart of (x, n′t). Identifying the inverse
darts ((x−1, Nst,ξ(x)), n

′n) and (x−1, n′tξ(x)) via α, we have n′nst,ξ(x) = n′tξ(x). It
follows that

n = tξ(x)s−1
t,ξ(x).

The latter expression does not depend on the choice of n′ ∈ N , so we can define
ξ̄q((x,Nt)) = tξ(x)s−1

t,ξ(x), as stated.

2.2 Lifting automorphisms

An automorphism g ∈ Aut(X) lifts along a regular covering projection ℘ : X̃ → X
if there exists an automorphism g̃ ∈ Aut(X̃) such that the diagram

X̃
g̃� X̃

X

℘
� g� X

℘
�

is commutative. The automorphism g̃ then projects to g along ℘. A group G ≤
Aut(X) lifts if all g ∈ G lift. We call such a covering projection G-admissible or
admissible for short. The collection of all lifts of all elements in G form a subgroup
G̃ ≤ Aut(X̃), the lift of G. We also say that G is a projection of G̃ along ℘ (although
there may exist a proper subgroup of G̃ which projects to G). In particular, the
lift of the trivial group is known as the group of covering transformations and is
denoted by CT(℘). If CT(℘) is an elementary abelian or a solvable group, the
covering projection ℘ is called elementary abelian or solvable, respectively. Observe
that CT(℘) is a normal subgroup of G̃ and G̃/CT(℘) ∼= G – in other words, G̃ is
isomorphic to an extension of CT(℘) by G. Furthermore, if G lifts along a given
projection ℘, then it lifts along any covering projection equivalent to ℘. This allows
us to study lifts of automorphisms combinatorially in terms of voltage assignments.

Consider now a regular covering projection ℘ : X̃ → X of connected graphs.
Then we say that ℘ is connected. Further, the semiregular group C from the defini-
tion of a regular covering ℘ is C = CT(℘), and the voltage assignment ξ : X → S
that reconstructs the projection is essentially valued in S ∼= CT(℘) (viewed as an
abstract group).

The problem of finding admissible regular covers of a given connected graph
X is very difficult in general. On the other hand, there are efficient methods for
finding admissible elementary abelian regular covers. We briefly summarize the one
introduced in [19], to be used later on.

For a given prime p, the first homology group H1(X ;Zp) is generated by the
(directed) cycles of X and is isomorphic to the elementary abelian group Z

r
p, where
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r is the Betti number of X. The group H1(X ;Zp) is usually viewed as r-dimensional
vector space over Zp. Given an automorphism α ∈ Aut(X), there is a natural
action of α on H1(X;Zp), since α maps a cycle in X to a cycle in X. This action
induces a linear transformation α# of H1(X;Zp). Choose a spanning tree T of X
and exactly one dart from each edge {x, x−1} that is not contained in T . Then the
sequence x1, x2, . . . , xr ∈ D(X)\D(T ) of all such darts naturally defines an (ordered)
basis BT = {C1, C2, . . . , Cr} of H1(X ;Zp), where Ci is the cycle determined by the
spanning tree T and the dart xi. Further, denote the matrix representation of α#

with respect to the basis BT by Mα ∈ Z
r,r
p . Hence a subgroup G ≤ Aut(X) induces

a subgroup MG = {Mg | g ∈ G} ≤ GL(r,Zp). By M t
G we denote the dual group

consisting of all transposes of matrices in MG.

Theorem 2.2. ([19, Proposition 6.3, Corollary 6.5]) With the notation and as-
sumptions above, let ξ : X → Z

d,1
p be a voltage assignment on X which is trivial on

T , and let Z ∈ Z
d,r
p be the matrix with columns

ξ(x1), ξ(x2), . . . , ξ(xr).

If Z has rank d, then the derived graph Cov(ξ;Zd,1
p ) is connected and the following

hold:

(i) A group G ≤ Aut(X) lifts along ℘ : Cov(ξ;Zd,1
p )→ X if and only if the columns

of Zt form a basis of a M t
G-invariant d-dimensional subspace S(ξ) of Zr,1

p
∼=

H1(X;Zp).

(ii) If ξ′ : X → Z
d,1
p is another voltage assignment on X satisfying the above condi-

tions, then ℘′ : Cov(ξ′;Zd,1
p )→ X is equivalent to ℘ if and only if S(ξ′) = S(ξ).

In view of Theorem 2.2, we can find all pairwise nonequivalent G-admissible
connected elementary abelian regular covers of X in terms of voltages as follows.
First, for eachM t

G-invariant subspace U of Zr,1
p we find a basis {u1, u2, . . . , ud}. Next,

for each basis {u1, u2, . . . , ud} consider a matrix Z with rows ut
1, u

t
2, . . . , u

t
d, and then

define the voltage assignment ξ : X → Z
d,1
p , mapping dart xi to the i-th column of

Z, i = 1, 2, . . . , r, and mapping all darts of T to the trivial voltage. Observe that the
choice of a spanning tree together with a sequence x1, x2, . . . , xr as well as choosing a
basis for an invariant subspace is irrelevant as long as we consider regular coverings
up to equivalence. Thus, the problem of finding admissible connected elementary
abelian regular covers translates to a purely algebraic question of finding invariant
subspaces of finite linear groups.

3 Constructing solvable regular covers of graphs

As mentioned earlier, methods for finding connected elementary abelian regular
covers of a given connected graph along which a given group of automorphisms lifts
are known. We now describe an approach for generating such admissible covers with
the group of covering transformations being solvable up to a prescribed order n of
the respective covering graphs. The resulting graph covers are explicitly described
in terms of voltage assignments. Our approach towards this aim is based on the
following observations.
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Let ℘ : Cov(ξ;S)→ X be a regular covering projection of finite connected graphs
derived from a voltage assignment ξ : X → S, where S is a solvable group. Further,
let G ≤ Aut(X) be a group of automorphisms that lifts along the projection ℘.
Since S is solvable, there exists a series of characteristic subgroups S = K0 � K1 �
· · · � Kn = 1 with elementary abelian factors Kj−1/Kj. In light of the discussion
at the end of Subsection 2.1, such a series gives rise to the decomposition

Cov(ξ;S) ∼= Xn
℘n→ Xn−1 → . . .→ X1

℘1→ X0 = X

of the covering projection ℘ into a series of elementary abelian regular covering
projections ℘j : Xj → Xj−1 derived from voltage assignments ξj : Xj−1 → Kj−1/Kj,
1 ≤ i ≤ n. In view of the fact that efficient methods for finding admissible elemen-
tary abelian regular covers are known, we would like to turn the story around and
find admissible solvable regular covers as compositions of elementary abelian regular
covers. This can always be achieved as the following lemma shows.

Lemma 3.1. Let ℘ : X̃ → X be a G-admissible solvable regular cover of connected
graphs, and let G̃ be the lift of G ≤ Aut(X) along ℘. Further, let ℘′ : X̃ ′ → X̃
be a G̃-admissible elementary abelian regular cover of connected graphs. Then the
composition ℘ ◦ ℘′ : X̃ ′ → X is a G-admissible solvable regular cover of connected
graphs.

Proof. First, since ℘′ is G̃-admissible, it is also CT(℘)-admissible. By a result in
[26] (c.f. also [27]) that the composition ℘ ◦ ℘′ is regular if and only if ℘′ is CT(℘)-
admissible, it follows that ℘◦℘′ is indeed regular. Second, since the group CT(℘◦℘′)
is equal to the lift of CT(℘) along ℘′, it is isomorphic to an extension of an elemen-
tary abelian group CT(℘′) by a solvable group CT(℘). Hence, by the definition
of solvability, CT(℘ ◦ ℘′) is solvable. Finally, the fact that the lift of G̃ along ℘′

projects to G along ℘ ◦ ℘′ implies that ℘ ◦ ℘′ is also G-admissible. This completes
the proof.

In what follows, let X be a finite connected graph and let G be a group of
its automorphisms. We start by constructing the set S1 of all voltage assignments
ξ(1) : X → E giving rise to pairwise nonequivalent G-admissible connected elemen-
tary abelian regular covers ℘(1) : Cov(ξ(1);E) → X, up to order n. To achieve
this, we can use one of the known methods mentioned above. Then for each as-
signment ξ(1) in S1 we do the following. First we explicitly construct the derived
covering graph Cov(ξ(1);E) together with the lifted group G̃. With Cov(ξ(1);E)
and G̃ in hand we find all voltage assignments ξ̄(1) : Cov(ξ(1);E) → Ē giving rise
to pairwise nonequivalent G̃-admissible connected elementary abelian regular covers
℘̄(1) : Cov(ξ̄(1); Ē) → Cov(ξ(1);E), up to order �n/|E|	. Then we reconstruct each
composition ℘(1)◦ ℘̄(1) in terms of an appropriate voltage assignment. To be specific,
we construct ξ(2) : X → S associated with the projection ℘(2) : Cov(ξ(2);S) → X
such that the diagram

Cov(ξ(2);S)
α� Cov(ξ̄(1); Ē)

X

℘(2)

�
� ℘(1)

Cov(ξ(1);E)

℘̄(1)

�
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commutes for some isomorphism α : Cov(ξ(2);S) → Cov(ξ̄(1); Ē). Note that ξ(2)

might be equivalent to some assignment already constructed either on the present
step or on the previous step. If ξ(2) is not equivalent to any of the other assignments,
then we add it to the set S2.

We proceed recursively by applying the same strategy to the set S2. Since the
order of the covering graphs is bounded, we have SN+1 = ∅ for some N , meaning
that no new covers are found after N -steps. The process eventually terminates with
the set

S1 ∪ S2 ∪ · · · ∪ SN
of voltage assignments associated with pairwise nonequivalent G-admissible con-
nected solvable regular covers of X , up to order n. The code for generating admis-
sible solvable regular covers is given in Algorithm 1.

Input: a finite connected graph X, a group G ≤ Aut(X), a natural number n
Output: a list C of all voltage assignments on X giving rise to pairwise

nonequivalent G-admissible connected solvable regular covers up to order n
1: find a list C of all voltage assignments on X giving rise to pairwise

nonequivalent G-admissible connected elementary abelian regular covers
up to order n;

2: i← 1;
3: while i ≤ |C| do
4: (ξ : X → S)← C[i];
5: construct the graph Cov(ξ;S) together with the group G̃ along the

projection ℘ξ;
6: find a list L of all voltage assignments on Cov(ξ;S) giving rise to

pairwise nonequivalent G̃-admissible connected elementary abelian
regular covers up to �n/|S|	;

7: for ξ̄ ∈ L do
8: find an assignment ξ′ that reconstructs the composition ℘ξ ◦ ℘ξ̄;
9: if ξ′ is not equivalent to any of assignments in C then
10: append ξ′ to C;
11: end if
12: end for
13: i← i+ 1;
14: end while
15: return C

Theorem 3.2. Given a natural number n, a finite connected graph X and a group
G of its automorphisms Algorithm 1 generates all voltage assignments on X giving
rise to pairwise nonequivalent G-admissible connected solvable regular covers up to
order n.

Proof. It is clear that at the end of the algorithm covers are pairwise nonequiv-
alent, however, it remains to prove that all representatives of equivalence classes
are constructed. Let ℘ : X̃ → X be a regular cover of connected graphs, and let
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℘′ : X̃ ′ → X̃ and ℘′′ : X̃ ′′ → X̃ be equivalent regular covers of connected graphs.
Suppose that compositions ℘ ◦ ℘′ and ℘ ◦ ℘′′ are also regular. Since ℘′ and ℘′′ are
equivalent, there exists an isomorphism g̃ : X̃ ′ → X̃ ′′ such that ℘′ = ℘′′ ◦ g̃. Conse-
quently, we have ℘◦℘′ = (℘◦℘′′)◦ g̃, meaning that compositions ℘◦℘′ and ℘◦℘′′ are
equivalent. It is therefore enough to take representatives of equivalence classes in
lines 1 and 6. Further, observe that for given isomorphism g̃ : X̃ ′ → X̃ ′′ and regular
cover r : Y → X̃ ′ of connected graphs, there exist a regular cover r′ : Y ′ → X̃ ′′ of
connected graphs and an isomorphism g̃′ : Y → Y ′ such that α ◦ r = r′ ◦ g̃′. Hence
it is enough to consider only nonequivalent covers in line 9, and the result follows
from Lemma 3.1 and its preceding discussion.

4 Testing split extensions

Let ℘ : Cov(ξ;S) → X be a regular covering projection of finite connected graphs
derived from a voltage assignment ξ : X → S, where S is a solvable group. Further,
let G ≤ Aut(X) be a group of automorphisms that lifts along the projection ℘.
We describe in detail the main features of the algorithm, given in [22], for testing
whether G lifts as a split extension of CT(℘) by G.

The idea is to decompose a given covering projection ℘ into a series of elementary
abelian regular covering projections

Cov(ξ;S) ∼= Xn
℘n→ Xn−1 → . . .→ X1

℘1→ X0 = X, (1)

arising from a series of characteristic subgroups S = K0 � K1 � · · · � Kn = 1 with
elementary abelian factors Kj−1/Kj. To be specific, each projection ℘j : Xj → Xj−1

is derived from a voltage assignment ξj : Xj−1 → Kj−1/Kj , 1 ≤ i ≤ n. In what
follows, testing whether ℘ is split-admissible for G is done inductively: starting
from the bottom up we test whether each intermediate ℘i is split-admissible for
some appropriate group (see below). We now provide technical details (that are
omitted in [22]) related to combinatorial reconstruction of all intermediate covering
projections.

Initial step. To start with, construct the above series of characteristic subgroups.
The method is known, see for instance [12, Chapter 8]. Further, construct a voltage
assignment ξ1 : X → S/K1, where ξ1 = q1 ◦ ξ and q1 : S → S/K1 is the natural quo-
tient projection. Then apply the elementary abelian version for testing whether ℘1

is G-split-admissible – that is to say, whether there exists a complement of CT(℘1)
within the lift G1 of G along the projection ℘1, see [22]. If the test is positive, con-
struct the derived covering graph X1 = Cov(ξ1;S/K1) together with representatives
of the conjugacy classes of complements within G1, then construct a voltage assign-
ment ξ̄1 : X1 → K1 as described in Theorem 2.1, and continue inductively down the
characteristic series.

Inductive step. Let Gj denote the lift of G along the projection ℘1◦℘2◦· · ·◦℘j , and
let Mj denote its group of covering transformations CT(℘1 ◦ ℘2 ◦ · · · ◦ ℘j). Assume
that at the j-th step we have determined the derived graph Xj together with a
voltage assignment ξ̄j : Xj → Kj , and a set {Uij | 1 ≤ i ≤ kj} of representatives of
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conjugacy classes of complements of Mj in Gj . At the next step, first construct a
voltage assignment

ξj+1 : Xj → Kj/Kj+1,

where ξj+1 = qj+1 ◦ ξ̄j and qj+1 : Kj → Kj/Kj+1. For each Uij , 1 ≤ i ≤ kj , then do
the following:

(a) test whether ℘j+1 is Uij-split-admissible, in other words, check whether there
exists a complement of CT(℘j+1) in Ũij , where Ũij is the lift of Uij along ℘j+1;

(b) if a complement exists, construct the graph Xj+1 = Cov(ξj+1;Kj/Kj+1) (only
if it has not yet been constructed for some previous index i) together with
the set Kij of complements of CT(℘j+1) in Ũij , and then find a set Cij =
{Cijk | 1 ≤ k ≤ sij} of representatives of the orbits of ÑMj

(Uij) acting on Kij

by conjugation, where ÑMj
(Uij) is the lift of the normalizer NMj

(Uij) along
℘j+1 (see Figure 1).

Gj+1

Mj+1

ÑMj
(Uij)

CT(℘j+1)

Ũij Cijk

Mj

NMj
(Uij)

Uij

Gj

Figure 1: Lifting of complements.

If for all indices i = 1, 2, . . . , kj the test in (a) is negative, then the projection ℘
is not G-split-admissible, and the algorithm stops. Otherwise, construct a voltage
assignment ξ̄j+1 : Xj+1 → Kj+1, and continue with the process. Note that at the
(n− 1)-th step, as soon as the test in (a) is positive for some index i, the projection
℘ is G-split-admissible, and the algorithm stops.

Remark 4.1. In order to decide whether there exists a complement as in (a) above,
we use the elemetary abelian version of the algorithm given in [22]. The problem
reduces to testing solvability of a certain system of linear equations over prime fields.
The set Kij of complements is then in bijective correspondence with all solutions of
that system.

Observe that each complement of CT(℘j+1) in Ũij is also a complement of Mj+1

in Gj+1. Moreover, the set C1j ∪ C2j ∪ · · · ∪ Ckjj is a complete and irredundant set
of representatives of conjugacy classes of complements of Mj+1 in Gj+1. For a more
detailed discussion about this topic we refer the reader to [4] and [12, Chapter 8].
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5 Experiments

In order to evaluate the algorithm described in the previous section as a method for
testing whether a given G-admissible solvable regular cover ℘ : Cov(ξ;S)→ X is G-
split-admissible, we compare its performance with the naive algorithm that consists
of the following two steps:

(i) explicitly construct the covering graph Cov(ξ;S) together with the group of
covering transformations CT(℘) and the lifted group G̃ of G along ℘ – as
permutation groups acting on the covering graph, and

(ii) apply the known method for testing whether a given extension of permutation
groups splits.

5.1 Test environment

We have implemented both algorithms in the Magma language [2] as commands
IsSplitAdmissible and IsSplitAdmissibleNaive. In this paper, we call them
ISA and ISAN for short. A built–in command HasComplement has been used in
step (ii) of ISAN algorithm. Both algorithms were run on an 2.93 GHz Quad-
Core Intel� Xeon� processor X7350 at the Faculty of Mathematics and Physics,
University of Ljubljana. The source code of ISA and ISAN is available online at
http://osebje.famnit.upr.si/~ rok.pozar.

5.2 Dataset

Tools for constructing connected elementary abelian regular graph covers admitting
various types of subgroups of automorphism group have been successfully used for
a number of small graphs, for instance, the complete graphs K4 [20] and K5 [13],
the Möbius-Kantor graph G(8, 3) [18], the complete bipartite graph K3,3 [10, 20],
the Petersen graph G(5, 2) [21], and the Heawood graph [19, 23].

For experimental purposes, however, our aim is to construct a dataset consisting
not only of elementary abelian regular covers, but also of solvable ones. There-
fore, we have implemented Algorithm 1 in Magma. The reader should be aware
that we are omitting the details of the implementation. We only mention here
the following. First, recall that finding admissible elementary abelian regular cov-
ers is equivalent to finding invariant subspaces of finite linear groups. Further,
the latter translates into the problem of finding submodules over a matrix alge-
bra, for which the method is known [14] and is already implemented in Magma.
The performance and range of Algorithm 1 depends greatly on finding submodules.
Called SolvableCovers, our implementation of Algorithm 1 is available online at
http://osebje.famnit.upr.si/~ rok.pozar.

Running SolvableCovers, we prepared a dataset of admissible connected solv-
able regular covering projections combinatorially in terms of voltages for four small
graphs K5, K3,3, G(5, 2) and G(8, 3) as well as for two larger graphs, namely, for
the Ljubljana graph L [6] and the graph F258A from the Foster census [3]. The
following theorem summarizes properties of the dataset.

Theorem 5.1. Up to equivalence of covering projections there are exactly
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(a) 18 connected Aut(K5)-admissible solvable regular covers of K5 up to order
1500;

(b) 14 connected Aut(K3,3)-admissible solvable regular covers of K3,3 up to order
2000;

(c) 17 connected Aut(G(5, 2))-admissible solvable regular covers of G(5, 2) up to
order 3000;

(d) 45 connected Aut(G(8, 3))-admissible solvable regular covers of G(8, 3) up to
order 1500;

(e) 29 connected Aut(L)-admissible regular covers of L up to order 3000;

(f) 18 connected Aut(F258A)-admissible regular covers of F258A up to order 5000.

Note that in (e) and (f) of Theorem 5.1 we have actually computed all regular
covers, since the orders of voltage groups are smaller than the order of the alternating
group Alt(5) – the smallest non-solvable group. Times (CPU times) required for the
construction of covers are given in Table 1.

Table 1: Computational times for all solvable covers
Base graph t(s)

K5 357
K3,3 43

G(5, 2) 242
G(8, 3) 107
L 304

F258A 622

5.3 Evaluation results

Both algorithms have been compared with respect to execution time (CPU time).
In cases where more than one covering graph of the same order exists in the dataset,
only one has been chosen among them. Experimental results are gathered in Ta-
bles 2-7. The first column shows the order of the covering graph, while the second
one describes the three possible types of voltage groups: solvable, but not abelian;
abelian, but not elementary abelian; elementary abelian. In addition, the third
column identifies the voltage group by its library number in the database of small
groups in Magma. Execution times given in seconds are displayed in the fourth
and the fifth column (for ISA and ISAN, respectively). The last column indicates
whether the corresponding covering projection is split-admissible for the full auto-
morphism group. The performance of both algorithms is also shown graphically in
Figure 2.

As can be seen from Tables 2-7 and Figure 2, it is clear that ISA algorithm
outperforms ISAN algorithm. We point out that this is due to step (i) of ISAN,
since the explicit construction of the derived graph Cov(ξ;S) together with groups
CT(℘) and G̃ is time consuming. On the other hand, ISA never explicitly constructs
neither Xn

∼= Cov(ξ;S) nor Mn
∼= CT(℘) or Gn

∼= G̃, but only constructs derived
graphs Xj , j = 1, 2, . . . , n−1, in decomposition (1) from Section 4, if needed. These
graphs are usually much smaller.
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Table 2: Performance comparison for the Möbius-Kantor graph
Order of covering

graph
Type of voltage

group
Library number of

voltage group tISA(s) tISAN(s) Split?

48 Elementary abelian 〈3, 1〉 0.010 0.010 true
64 Elementary abelian 〈4, 2〉 0.010 0.050 false
128 Elementary abelian 〈8, 5〉 0.010 0.070 false
144 Elementary abelian 〈9, 2〉 0.010 0.070 true
192 Solvable 〈12, 3〉 0.040 0.110 true
256 Abelian 〈16, 2〉 0.010 0.170 false
384 Solvable 〈24, 3〉 0.290 0.440 true
400 Elementary abelian 〈25, 2〉 0.000 0.340 true
432 Solvable 〈27, 3〉 0.130 0.500 false
512 Solvable 〈32, 47〉 0.010 0.830 false
576 Solvable 〈36, 11〉 0.120 0.790 true
768 Solvable 〈48, 49〉 0.000 1.530 false
784 Elementary abelian 〈49, 2〉 0.000 1.170 true
1024 Solvable 〈64, 262〉 0.010 3.160 false
1152 Solvable 〈72, 25〉 1.550 3.240 true
1200 Solvable 〈75, 2〉 0.020 2.350 true
1296 Solvable 〈81, 3〉 0.140 3.960 false

Table 3: Performance comparison for the complete graph K5

Order of covering
graph

Type of voltage
group

Library number of
voltage group tISA(s) tISAN(s) Split?

10 Elementary abelian 〈2, 1〉 0.000 0.000 true
30 Solvable 〈6, 1〉 0.010 0.030 true
120 Solvable 〈24, 12〉 0.050 0.160 true
160 Elementary abelian 〈32, 51〉 0.010 0.210 true
240 Solvable 〈48, 28〉 0.520 0.580 false
320 Elementary abelian 〈64, 267〉 0.010 0.690 true
480 Solvable 〈96, 230〉 0.350 1.760 true
625 Elementary abelian 〈125, 5〉 0.000 1.600 false
640 Solvable 〈128, 2326〉 1.530 2.690 true
960 Solvable 〈192, 1542〉 1.530 6.050 true
1250 Abelian 〈250, 15〉 0.020 6.170 false
1280 Solvable 〈256, 55642〉 1.670 9.800 true

In the case of elementary abelian voltage groups, ISA even never explicitly con-
structs any of the derived graphs Xj , and hence it does not depend on the order
of the voltage group. Consequently, with the base graph fixed, the execution times
are rather constant for ISA, while the execution times for ISAN grow together with
the order of the voltage group. Therefore, in the case of elementary abelian voltage
groups the difference between the compared algorithms is most pronounced. On the
other hand, in the case when voltage groups are not elementary abelian and ISA has
to construct all graphs Xj up to j = n − 1, together with the corresponding volt-
age assignments and complements – for instance, when the covering projection ℘ is
G-split-admissible – the difference between execution times is a bit less pronounced.
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Table 4: Performance comparison for the complete bipartite graph K3,3

Order of covering
graph

Type of voltage
group

Library number of
voltage group tISA(s) tISAN(s) Split?

18 Elementary abelian 〈3, 1〉 0.000 0.000 false
96 Elementary abelian 〈16, 14〉 0.000 0.060 true
162 Elementary abelian 〈27, 5〉 0.000 0.100 false
192 Solvable 〈32, 49〉 0.070 0.170 false
288 Abelian 〈48, 52〉 0.080 0.260 false
384 Solvable 〈64, 239〉 0.080 0.540 false
486 Abelian 〈81, 11〉 0.000 0.570 false
576 Solvable 〈96, 224〉 0.080 1.070 false
1152 Solvable 〈192, 1541〉 0.010 2.980 false
1458 Abelian 〈243, 61〉 0.010 4.780 false
1536 Solvable 〈256, 8935〉 0.090 7.930 true

Table 5: Performance comparison for the Petersen graph
Order of covering

graph
Type of voltage

group
Library number of

voltage group tISA(s) tISAN(s) Split?

20 Elementary abelian 〈2, 1〉 0.000 0.010 true
40 Elementaryabelian 〈4, 2〉 0.010 0.010 true
80 Solvable 〈8, 4〉 0.020 0.040 false
360 Solvable 〈36, 10〉 0.020 0.330 true
640 Elementary abelian 〈64, 267〉 0.000 1.400 true
720 Solvable 〈72, 24〉 0.020 1.300 false
1080 Solvable 〈108, 17〉 0.610 2.310 true
1250 Elementary abelian 〈125, 5〉 0.000 3.310 false
1280 Solvable 〈128, 2321〉 1.770 5.560 false
1620 Solvable 〈162, 54〉 0.020 6.850 true
2160 Solvable 〈216, 33〉 0.030 9.390 false
2500 Abelian 〈250, 15〉 0.030 12.680 false
2560 Solvable 〈256, 55628〉 1.810 22.190 false

Table 6: Performance comparison for the Ljubljana graph L
Order of covering

graph
Type of voltage

group
Library number of

voltage group tISA(s) tISAN(s) Split?

336 Elementary abelian 〈3, 1〉 0.010 0.220 true
448 Elementary abelian 〈4, 2〉 0.010 0.460 true
784 Elementary abelian 〈7, 1〉 0.020 0.940 true
896 Solvable 〈8, 4〉 0.650 1.730 true
1008 Elementary abelian 〈9, 2〉 0.010 1.850 true
1344 Solvable 〈12, 3〉 0.560 3.190 true
1456 Elementary abelian 〈13, 1〉 0.010 3.080 true
1792 Abelian 〈16, 2〉 0.630 5.510 true
2128 Elementary abelian 〈19, 1〉 0.020 6.420 true
2352 Solvable 〈21, 1〉 0.600 9.270 true
2688 Solvable 〈24, 11〉 3.090 14.110 true
2800 Elementary abelian 〈25, 2〉 0.010 13.320 true
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Table 7: Performance comparison for the graph F258A
Order of covering

graph
Type of voltage

group
Library number of

voltage group tISA(s) tISAN(s) Split?

774 Elementary abelian 〈3, 1〉 0.050 0.870 false
1032 Elementary abelian 〈4, 2〉 0.040 1.880 true
1806 Elementary abelian 〈7, 1〉 0.040 4.380 true
2064 Solvable 〈8, 4〉 2.660 7.990 true
2322 Elementary abelian 〈9, 2〉 0.090 8.240 false
3096 Abelian 〈12, 5〉 2.720 16.750 false
3354 Elementary abelian 〈13, 1〉 0.040 15.230 true
4128 Abelian 〈16, 2〉 2.670 25.470 true
4902 Elementary abelian 〈19, 1〉 0.040 32.310 true
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Figure 2: Behavior of the two methods.

Acknowledgements. The author would like to thank Marston Conder and Primož
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[8] Djoković, D. Ž., 1974. Automorphisms of graphs and coverings. J. Combin. Theory
Ser. B 16, 243–247.

[9] Du, S. F., Kwak, J. H., Xu, M. Y., 2003. Lifting of automorphisms on the elementary
abelian regular coverings. Lin. Alg. Appl. 373, 101–119.

[10] Feng, Y. Q., Kwak, J. H., 2004. s-regular cubic graphs as coverings of the complete
bipartite graph K3,3. J. Graph Theory 45, 101–112.

[11] Gross, J. L., Tucker, T. W., 1987. Topological Graph Theory. Wiley - Interscience,
New York.

[12] Holt, D., Eick, B., O’Brien, E. A., 2005. Handbook of Computational Group Theory.
Chapman and Hall/CRC, Boca Raton London New York Washington D.C.

[13] Kuzman, B., 2010. Arc-transitive elementary abelian covers of the complete graph
K5. Linear Algebra Appl. 433, 1909–1921.

[14] Lux, K., Müller, J., Ringe, M., 1994. Peakword condensation and submodule lattices:
an application of the MEAT-AXE. J. Symbolic Comput. 17, 529–544.
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