9 Homework 9 (Orthogonal Vectors \& Gram-Schmidt Procedure)

1. With respect to the inner product for matrices given by $\langle A, B\rangle=\operatorname{trace}\left(A^{\top} B\right)$, verify that the set

$$
\mathcal{B}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right),\right\}
$$

is an orthonormal basis for $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$, and then compute the Fourier expansion of $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ with respect to \mathcal{B}.
2. Using the trace inner product described with $\langle A, B\rangle=\operatorname{trace}\left(A^{\top} B\right)$, determine the angle between the following pairs of matrices.
(a) $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
(b) $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & -2 \\ 2 & 0\end{array}\right)$.
3. If $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ is an orthonormal basis for an inner-product space \mathcal{V}, explain why

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\sum_{i}\left\langle\boldsymbol{x}, \boldsymbol{u}_{i}\right\rangle\left\langle\boldsymbol{u}_{i}, \boldsymbol{y}\right\rangle
$$

holds for every $x, y \in \mathcal{V}$.
4. Let \mathcal{L} denote vector subspace of space $\operatorname{Mat}_{n \times n}(\mathbb{R})$ defined with

$$
\mathcal{L}=\left\{A \in \operatorname{Mat}_{n \times n}(\mathbb{R}) \mid A X-X A=0, X=\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]\right\} .
$$

Considering standard inner product for matrices $\langle A, B\rangle=\operatorname{trace}\left(A^{\top} B\right)$ find orthonormal basis for \mathcal{L}.
5. Let $\mathcal{V}=\operatorname{Mat}_{n \times n}(\mathbb{R})$ be given inner product space with $\langle A, B\rangle=\operatorname{trace}\left(A^{\top} B\right)$ and let \mathcal{L} denote subspace of \mathcal{V} given with

$$
\mathcal{L}=\left\{\left(\begin{array}{cc}
0 & 3 \\
3 & -3
\end{array}\right),\left(\begin{array}{cc}
-2 & -2 \\
6 & -2
\end{array}\right),\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)\right\}
$$

Find orthonormal basis for \mathcal{L}.
6. Let \mathcal{P}_{3} denote inner product space of all polynomials with degree ≤ 3, with inner product

$$
\langle p, q\rangle=\frac{1}{4} \sum_{i=0}^{3} p\left(\lambda_{i}\right) q\left(\lambda_{i}\right)
$$

where $\lambda_{0}=3, \lambda_{1}=1, \lambda_{2}=-1, \lambda_{3}=-3$. Use Gram-Schmidt procedure on set of polynomials $\left\{-1, x,-x^{2}, x^{3}\right\}$ and find orthonormal basis $\left\{p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right\}$ for \mathcal{P}_{3} which have additional property that

$$
\left\|p_{i}\right\|^{2}=p_{i}\left(\lambda_{0}\right) \quad \text { for } i=1,2,3,4 .
$$

7. Consider real inner product space \mathcal{P}_{2}, where for two given polynoimals

$$
p=p(x)=p_{0}+p_{1} x+p_{2} x^{2} \quad \text { and } \quad q=q(x)=q_{0}+q_{1} x+q_{2} x^{2}
$$

inner product is defined on the following way

$$
\langle p, q\rangle=p_{0} q_{0}+p_{1} q_{1}+p_{2} q_{2}
$$

Check are the following polynomials linearly independent in \mathcal{P}_{2}

$$
u_{1}=3+4 x+5 x^{2}, \quad u_{2}=9+12 x+5 x^{2}, \quad u_{3}=1-7 x+25 x^{2}
$$

and use them to find orthonormal basis for \mathcal{P}_{2}.
8. (challenge) Linear Correlation. Suppose that an experiment is conducted, and the resulting observations are recorded in two data vectors

$$
\boldsymbol{x}_{1}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad \boldsymbol{y}_{1}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right), \quad \text { and let } \quad \boldsymbol{e}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) .
$$

Problem. Determine to what extent the y_{i} 's are linearly related to the x_{i} 's. That is, measure how close \boldsymbol{y} is to being a linear combination $\beta_{0} \boldsymbol{e}+\beta_{1} \boldsymbol{x}$.
9. (challenge) Fourier Series. Let \mathcal{V} be the inner-product space of real-valued functions that are integrable on the interval $(-\pi, \pi)$ and where the inner product and norm are given by

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) g(t) \mathrm{d} t \quad \text { and } \quad\|f\|=\left(\int_{-\pi}^{\pi} f^{2}(t) \mathrm{d} t\right)^{1 / 2}
$$

(a) Verity that the set of trigonometric functions

$$
\mathcal{B}^{\prime}=\{1, \cos t, \cos 2 t, \ldots, \sin t, \sin 2 t, \sin 3 t, \ldots\}
$$

is a set of mutually orthogonal vectors, and normalize each vector.
(b) Given and arbitrary $f \in \mathcal{V}$, construct its Fourier expansion.
(c) The infinite series $F(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)$, that you will get in part (b), where

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t \mathrm{~d} t \quad \text { and } \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t \mathrm{~d} t
$$

is called the Fourier series expansion for $f(t)$. Find the Fourier series expansion for square wave function f defined by

$$
f(t)=\left\{\begin{aligned}
-1 & \text { when }-\pi<t<0 \\
1 & \text { when } 0<t<\pi
\end{aligned}\right.
$$

