8 Homework 8 (Vector norms & Inner-product spaces)

1. Show that Euclidean norm satisfy the following properties

- (i) $\|\boldsymbol{x}\| \ge 0$ and $\|\boldsymbol{x}\| = 0 \iff \boldsymbol{x} = 0$.
- (ii) $\|\alpha \boldsymbol{x}\| = |\alpha| \|\boldsymbol{x}\|$ for all scalars α .
- (iii) $\|x + y\| \le \|x\| + \|y\|$.
- 2. For a general inner-product space \mathcal{V} , explain why each of the following statements must be true.
- (a) If $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$ for all $\boldsymbol{x} \in \mathcal{V}$, then $\boldsymbol{y} = \boldsymbol{0}$.
- (b) If $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \overline{\alpha} \langle \boldsymbol{x}, \boldsymbol{y} \rangle$ for all $x, y \in \mathcal{V}$ and for all scalars α .
- (c) $\langle \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{z} \rangle + \langle \boldsymbol{y}, \boldsymbol{z} \rangle$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{V}$.

3. Let \mathcal{V} be an inner-product space with an inner product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$. Explain why the function defined by $\| \star \| = \sqrt{\langle \star, \star \rangle}$ satisfies the first two norm properties from Problem 1. That is

- (i) $\|\boldsymbol{x}\| \ge 0$ and $\|\boldsymbol{x}\| = 0 \iff \boldsymbol{x} = 0$.
- (ii) $\|\alpha \boldsymbol{x}\| = |\alpha| \|\boldsymbol{x}\|$ for all scalars α .
- 4. For a real inner-product space with $\|\star\|^2 = \langle\star,\star\rangle$, derive the inequality

$$\langle \boldsymbol{x}, \boldsymbol{y}
angle \leq rac{\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2}{2}$$

5. Let $\operatorname{Mat}_{m \times n}(\mathbb{R})$ denote given vector space, the set of all $m \times n$ matrices. Show that function defined with

$$\langle A, B \rangle = \operatorname{trag}(A^{\top}B)$$

is an inner product on a vector space $\operatorname{Mat}_{m \times n}(\mathbb{R})$.

6. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ denote a given matrix. In space \mathbb{R}^n lets define product with

$$\langle x, y \rangle = (Ax)^{\top} Ay$$

Discuss and carefully explain for what kind of matrices A

- (a) given product will be inner product on $Mat_{n \times n}(\mathbb{R})$;
- (b) given product will yield that equality $\langle x, y \rangle = x^{\top} y$ hold.

7. (challenge) Equivalent Norms. Vector norms are basic tools for defining and analyzing limiting behavior in vector spaces \mathcal{V} . A sequence $\{x_k\} \subset \mathcal{V}$ is said to converge to x (write $x_k \to x$) if $||x_k - x|| \to 0$. This depends on the choice of the norm, so, ostensibly, we might have $x_k \to x$ with one norm but not with another. Fortunately, this is impossible in finite-dimensional spaces because all norms are equivalent in the following sense.

Problem: For each pair of norms, $\|\star\|_a$, $\|\star\|_b$ on a *n*-dimensional space \mathcal{V} , exhibit positive constants α and β (depending only on the norms) such that

$$\alpha \leq \frac{\|\boldsymbol{x}\|_a}{\|\boldsymbol{x}\|_b} \leq \beta$$
 for all nonzero vectors in \mathcal{V} .