8 Homework 8 (Vector norms \& Inner-product spaces)

1. Show that Euclidean norm satisfy the following properties
(i) $\|x\| \geq 0 \quad$ and $\quad\|x\|=0 \Longleftrightarrow \boldsymbol{x}=0$.
(ii) $\|\alpha \boldsymbol{x}\|=|\alpha|\|\boldsymbol{x}\| \quad$ for all scalars α.
(iii) $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$.
2. For a general inner-product space \mathcal{V}, explain why each of the following statements must be true.
(a) If $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0$ for all $\boldsymbol{x} \in \mathcal{V}$, then $\boldsymbol{y}=\mathbf{0}$.
(b) If $\langle\alpha \boldsymbol{x}, \boldsymbol{y}\rangle=\bar{\alpha}\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ for all $x, y \in \mathcal{V}$ and for all scalars α.
(c) $\langle\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{z}\rangle=\langle\boldsymbol{x}, \boldsymbol{z}\rangle+\langle\boldsymbol{y}, \boldsymbol{z}\rangle$ for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{V}$.
3. Let \mathcal{V} be an inner-product space with an inner product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$. Explain why the function defined by $\|\star\|=\sqrt{\langle\star, \star\rangle}$ satisfies the first two norm properties from Problem 1. That is
(i) $\|x\| \geq 0 \quad$ and $\quad\|x\|=0 \Longleftrightarrow \boldsymbol{x}=0$.
(ii) $\|\alpha \boldsymbol{x}\|=|\alpha|\|\boldsymbol{x}\| \quad$ for all scalars α.
4. For a real inner-product space with $\|\star\|^{2}=\langle\star, \star\rangle$, derive the inequality

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle \leq \frac{\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}}{2} .
$$

5. Let $\operatorname{Mat}_{m \times n}(\mathbb{R})$ denote given vector space, the set of all $m \times n$ matrices. Show that function defined with

$$
\langle A, B\rangle=\operatorname{trag}\left(A^{\top} B\right)
$$

is an inner product on a vector space $\operatorname{Mat}_{m \times n}(\mathbb{R})$.
6. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ denote a given matrix. In space \mathbb{R}^{n} lets define product with

$$
\langle x, y\rangle=(A x)^{\top} A y
$$

Discuss and carefully explain for what kind of matrices A
(a) given product will be inner product on $\operatorname{Mat}_{n \times n}(\mathbb{R})$;
(b) given product will yield that equality $\langle x, y\rangle=x^{\top} y$ hold.
7. (challenge) Equivalent Norms. Vector norms are basic tools for defining and analyzing limiting behavior in vector spaces \mathcal{V}. A sequence $\left\{\boldsymbol{x}_{k}\right\} \subset \mathcal{V}$ is said to converge to x (write $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$) if $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}\right\| \rightarrow 0$. This depends on the choice of the norm, so, ostensibly, we might have $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ with one norm but not with another. Fortunately, this is impossible in finite-dimensional spaces because all norms are equivalent in the following sense.

Problem: For each pair of norms, $\|\star\|_{a},\|\star\|_{b}$ on a n-dimensional space \mathcal{V}, exhibit positive constants α and β (depending only on the norms) such that

$$
\alpha \leq \frac{\|\boldsymbol{x}\|_{a}}{\|\boldsymbol{x}\|_{b}} \leq \beta \quad \text { for all nonzero vectors in } \mathcal{V} .
$$

