7 Homework 7 (Invariant Subspaces)

1. Let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be a given operator defined with

$$T(a + bt + ct2) = a + b + c + (a + 3b)t + (a - b + 2c)t2.$$

Find all one-dimensional subspaces of \mathcal{P}_2 that are invariant under T.

2. Let $T : \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \to \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a given linear operator defined with

$$T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{pmatrix} a-b & 4a-4b \\ -a+2b+c & b+c \end{pmatrix}$$

Find all one-dimensional subspaces that are invariant under T.

3. Let T be a linear operator on a finite-dimensional vector space \mathcal{V} , and let \mathcal{B} and \mathcal{B}' be any two bases for \mathcal{V} . Show that $\det([T]_{\mathcal{B}}) = \det([T]_{\mathcal{B}'})$.

4. Let \mathcal{V} and \mathcal{W} denote given vector spaces and let $T : \mathcal{V} \to \mathcal{W}$ be a given linear transformation. Show that T is one-on-one (injective) if and only if ker $(T) = \{\mathbf{0}\}$.

Recall: eigenvectors and eigenvalues. Let A be a given matrix. Scalars λ for which $(A - \lambda I)$ is singular are called the <u>eigenvalues</u> of A, and the nonzero vectors in ker $(A - \lambda I)$ are known as the associated eigenvectors for A.

Let T be a linear operator on a vector space \mathcal{V} . A nonzero element $x \in \mathcal{V}$ is called an eigenvector of T if there exists a scalar λ such that $T(x) = \lambda x$. The scalar λ is called the eigenvalue corresponding to the eigenvector x.

5. Let *T* be a linear operator on a finite-dimensional vector \hat{A} -space \mathcal{V} over a field \mathbb{F} and let \mathcal{B} be a basis of \mathcal{V} . Show that a scalar λ is an eigenvalue of *T* if and only if $\det([T]_{\mathcal{B}} - \lambda I) = 0$. With another words show that there exists nonzero vector $x \in \mathcal{V}$ such that $T(x) = \lambda x$ if and only if $\det([T]_{\mathcal{B}} - \lambda I) = 0$.

6. Let T be a linear operator on a finite-dimensional vector space \mathcal{V} , and let x denote nonzero element of \mathcal{V} . The subspace

 $\mathcal{W} = \operatorname{span}(\{x, T(x), T^2(x), \dots\})$

is called the *T*-cyclic subspace of \mathcal{V} generated by x.

- (a) Show that \mathcal{W} is T-invariant.
- (b) If $\dim(\mathcal{W}) = k \ge 1$ show that then

$$\{x, T(x), T^2(x), ..., T^{k-1}(x)\}$$

is a basis of \mathcal{W} .

7. Let *T* be a linear operator on a finite-dimensional vector space \mathcal{V} , and let \mathcal{W} be a *T*-invariant subspace of \mathcal{V} . Assume that \mathcal{B} and \mathcal{B}' are basis for \mathcal{V} and \mathcal{W} , respectively. Show that the polynomial $g(x) = \det([T_{/\mathcal{W}}]_{\mathcal{B}'} - xI)$ divides the polynomial $p(x) = \det([T]_{\mathcal{B}} - xI)$.

8. (The Cayley-Hamilton Theorem) Let T be a linear operator on finite dimensional vector space \mathcal{V} , let \mathcal{B} denote a basis of \mathcal{V} and let $f(x) = \det([T]_{\mathcal{B}} - xI)$ be the given polynomial. Show that then

 $f(T) = T_0$ (the zero transformation)

(i.e. $T_0(\boldsymbol{x}) = \boldsymbol{0}$ for all $\boldsymbol{x} \in \mathcal{V}$).