7 Homework 7 (Invariant Subspaces)

1. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be a given operator defined with

$$
T\left(a+b t+c t^{2}\right)=a+b+c+(a+3 b) t+(a-b+2 c) t^{2} .
$$

Find all one-dimensional subspaces of \mathcal{P}_{2} that are invariant under T.
2. Let $T: \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a given linear operator defined with

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left(\begin{array}{cc}
a-b & 4 a-4 b \\
-a+2 b+c & b+c
\end{array}\right)
$$

Find all one-dimensional subspaces that are invariant under T.
3. Let T be a linear operator on a finite-dimensional vector space \mathcal{V}, and let \mathcal{B} and \mathcal{B}^{\prime} be any two bases for \mathcal{V}. Show that $\operatorname{det}\left([T]_{\mathcal{B}}\right)=\operatorname{det}\left([T]_{\mathcal{B}^{\prime}}\right)$.
4. Let \mathcal{V} and \mathcal{W} denote given vector spaces and let $T: \mathcal{V} \rightarrow \mathcal{W}$ be a given linear transformation. Show that T is one-on-one (injective) if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$.

Recall: eigenvectors and eigenvalues. Let A be a given matrix. Scalars λ for which $(A-\lambda I)$ is singular are called the eigenvalues of A, and the nonzero vectors in $\operatorname{ker}(A-\lambda I)$ are known as the associated eigenvectors for A.
Let T be a linear operator on a vector space \mathcal{V}. A nonzero element $x \in \mathcal{V}$ is called an eigenvector of T if there exists a scalar λ such that $T(x)=\lambda x$. The scalar λ is called the eigenvalue corresponding to the eigenvector x.
5. Let T be a linear operator on a finite-dimensional vector $\hat{\mathrm{A}}$-space \mathcal{V} over a field \mathbb{F} and let \mathcal{B} be a basis of \mathcal{V}. Show that a scalar λ is an eigenvalue of T if and only if $\operatorname{det}\left([T]_{\mathcal{B}}-\lambda I\right)=0$. With another words show that there exists nonzero vector $x \in \mathcal{V}$ such that $T(x)=\lambda x$ if and only if $\operatorname{det}\left([T]_{\mathcal{B}}-\lambda I\right)=0$.
6. Let T be a linear operator on a finite-dimensional vector space \mathcal{V}, and let x denote nonzero element of \mathcal{V}. The subspace

$$
\mathcal{W}=\operatorname{span}\left(\left\{x, T(x), T^{2}(x), \ldots\right\}\right)
$$

is called the T-cyclic subspace of \mathcal{V} generated by x.
(a) Show that \mathcal{W} is T-invariant.
(b) If $\operatorname{dim}(\mathcal{W})=k \geq 1$ show that then

$$
\left\{x, T(x), T^{2}(x), \ldots, T^{k-1}(x)\right\}
$$

is a basis of \mathcal{W}.
7. Let T be a linear operator on a finite-dimensional vector space \mathcal{V}, and let \mathcal{W} be a T-invariant subspace of \mathcal{V}. Assume that \mathcal{B} and \mathcal{B}^{\prime} are basis for \mathcal{V} and \mathcal{W}, respectively. Show that the polynomial $g(x)=\operatorname{det}\left(\left[T_{\mathcal{W}}\right]_{\mathcal{B}^{\prime}}-x I\right)$ divides the polynomial $p(x)=\operatorname{det}\left([T]_{\mathcal{B}}-x I\right)$.
8. (The Cayley-Hamilton Theorem) Let T be a linear operator on finite dimensional vector space \mathcal{V}, let \mathcal{B} denote a basis of \mathcal{V} and let $f(x)=\operatorname{det}\left([T]_{\mathcal{B}}-x I\right)$ be the given polynomial. Show that then

$$
f(T)=T_{0} \quad \text { (the zero transformation) }
$$

(i.e. $T_{0}(\boldsymbol{x})=\mathbf{0}$ for all $\boldsymbol{x} \in \mathcal{V}$).

