## 6 Homework 6 (Change of basis and similarity)

**1.** Let  $R_{90}$  denote rotation of 90° with centre of rotation in origin (0,0), so that point  $v \in \mathbb{R}^2$  is mapped to point  $v' \in \mathbb{R}^2$  (as is illustrated at figure right).

(a) Find coordinates of  $R_{90}$  with respect to standard basis.

(b) Determine what is rotation of point  $v = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$  for 90° about origin.

c) Find coordinates of  $R_{90}$  with respect to basis  $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ .





**2.** Let T denote linear operator on  $\mathbb{R}^2$  which is reflection symmetry about line y = x (for illustration what is reflection symmetry about line y = x see  $T(\Box ABCD) = \Box A'B'C'D'$  on figure left).

(a) Find coordinate matrix of T with respect to the standard basis.

(b) Compute T(v), if we have that  $v = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ . (c) Find coordinate matrix representation of T with respect to basis  $\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}.$ 

**3.** Let T denote linear operator defined on space  $\mathbb{R}^2$  which first rotate vector for angle  $\pi/3$  around origin in positive direction, and after that do reflection symmetry about line y = x. Find coordinate matrix representation of T with respect to basis  $\mathcal{B} = \{(1,1)^{\top}, (1,-1)^{\top}\}$  (in another words find  $[T]_{\mathcal{B}}$ ). Find coordinates of vector T(v) with respect to same basis  $\mathcal{B}$ , where v is arbitrary element from  $\mathbb{R}^2$ .

4. Let T denote linear operator defined on space  $\mathbb{R}^2$  which do three things: first make reflection symmetry about line y = -x, then do rotation for angle  $\frac{\pi}{4}$  around origin in negative direction, and finally make reflection symmetry about line y = x. Find coordinate matrix representation of T with respect to the basis  $\mathcal{B} = \left\{ 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix}, - \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$ 

**5.** Let

 $\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$ 

be coordinate matrix representation of  $T: \mathcal{V}^2(0) \to \mathcal{V}^2(0)$  with respect to the canonical basis  $\left\{ \vec{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ . Find coordinate matrix representation of T with respect to the basis  $\{\vec{i}+2\vec{j},\vec{i}+3\vec{j}\}$ . Does there exists a vector  $\vec{v} \in \mathcal{V}^2(0)$  such that  $T(\vec{v}) = 3\vec{i}+5\vec{j}?$ 

**6.** (Challenge) For  $A \in Mat_{3\times 3}(\mathbb{R})$  let  $\lambda_1, \lambda_2$  and  $\lambda_3$  denote three different real numbers such that

$$p(x) = \det(A - xI) = (x - \lambda_1)(x - \lambda_2)(x - \lambda_3).$$

(i) Show that there exist nonzero real numbers  $c_1$ ,  $c_2$  and  $c_3$  such that

$$c_1(x - \lambda_2)(x - \lambda_3) + c_2(x - \lambda_1)(x - \lambda_3) + c_3(x - \lambda_1)(x - \lambda_2) = 1$$
(1)

holds.

(ii) Let  $c_1$ ,  $c_2$  and  $c_3$  be nonzero real numbers for which (1) holds. Define matrices  $S_1$ ,  $S_2$  and  $S_3$  on the following way

$$S_1 = c_1(A - \lambda_2 I)(A - \lambda_3 I),$$
  $S_2 = c_2(A - \lambda_1 I)(A - \lambda_3 I),$   $S_3 = c_3(A - \lambda_1 I)(A - \lambda_2 I).$ 

Show that

- (a)  $\dim \operatorname{im}(S_i) = 1$  for all  $i \ (1 \le i \le 3)$ .
- (b)  $\mathbb{R}^3 = \operatorname{im}(S_1) + \operatorname{im}(S_2) + \operatorname{im}(S_3).$
- (c)  $\forall w \in im(S_i)$  we have  $Aw = \lambda_i w$   $(1 \le i \le 3)$ .