## 6 Homework 6 (Change of basis and similarity)

1. Let $R_{90}$ denote rotation of $90^{\circ}$ with centre of rotation in origin $(0,0)$, so that point $v \in \mathbb{R}^{2}$ is mapped to point $v^{\prime} \in \mathbb{R}^{2}$ (as is illustrated at figure right).
(a) Find coordinates of $R_{90}$ with respect to standard basis.
(b) Determine what is rotation of point $v=\binom{\alpha}{\beta}$ for $90^{\circ}$ about origin.
c) Find coordinates of $R_{90}$ with respect to basis $\left\{\binom{1}{1},\binom{1}{-1}\right\}$.


2. Let $T$ denote linear operator on $\mathbb{R}^{2}$ which is reflection symmetry about line $y=x$ (for illustration what is reflection symmetry about line $y=x$ see $T(\square A B C D)=\square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ on figure left).
(a) Find coordinate matrix of $T$ with respect to the standard basis.
(b) Compute $T(v)$, if we have that $v=\binom{\alpha}{\beta}$.
(c) Find coordinate matrix representation of $T$ with respect to basis $\left\{\binom{1}{1},\binom{1}{-1}\right\}$.
3. Let $T$ denote linear operator defined on space $\mathbb{R}^{2}$ which first rotate vector for angle $\pi / 3$ around origin in positive direction, and after that do reflection symmetry about line $y=x$. Find coordinate matrix representation of $T$ with respect to basis $\mathcal{B}=\left\{(1,1)^{\top},(1,-1)^{\top}\right\}$ (in another words find $\left.[T]_{\mathcal{B}}\right)$. Find coordinates of vector $T(v)$ with respect to same basis $\mathcal{B}$, where $v$ is arbitrary element from $\mathbb{R}^{2}$.
4. Let $T$ denote linear operator defined on space $\mathbb{R}^{2}$ which do three things: first make reflection symmetry about line $y=-x$, then do rotation for angle $\frac{\pi}{4}$ around origin in negative direction, and finally make reflection symmetry about line $y=x$. Find coordinate matrix representation of $T$ with respect to the basis $\mathcal{B}=\left\{2\binom{1}{0}-\binom{0}{1},-\binom{1}{0}+2\binom{0}{1}\right\}$.

## 5. Let

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

be coordinate matrix representation of $T: \mathcal{V}^{2}(0) \rightarrow \mathcal{V}^{2}(0)$ with respect to the canonical basis $\left\{\vec{i}=\binom{1}{0}, \vec{j}=\binom{0}{1}\right\}$. Find coordinate matrix representation of $T$ with respect to the basis $\{\vec{i}+2 \vec{j}, \vec{i}+3 \vec{j}\}$. Does there exists a vector $\vec{v} \in \mathcal{V}^{2}(0)$ such that $T(\vec{v})=3 \vec{i}+5 \vec{j}$ ?
6. (Challenge) For $A \in \operatorname{Mat}_{3 \times 3}(\mathbb{R})$ let $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$ denote three different real numbers such that

$$
p(x)=\operatorname{det}(A-x I)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) .
$$

(i) Show that there exist nonzero real numbers $c_{1}, c_{2}$ and $c_{3}$ such that

$$
\begin{equation*}
c_{1}\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)+c_{2}\left(x-\lambda_{1}\right)\left(x-\lambda_{3}\right)+c_{3}\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)=1 \tag{1}
\end{equation*}
$$

holds.
(ii) Let $c_{1}, c_{2}$ and $c_{3}$ be nonzero real numbers for which (1) holds. Define matrices $S_{1}, S_{2}$ and $S_{3}$ on the following way

$$
S_{1}=c_{1}\left(A-\lambda_{2} I\right)\left(A-\lambda_{3} I\right), \quad S_{2}=c_{2}\left(A-\lambda_{1} I\right)\left(A-\lambda_{3} I\right), \quad S_{3}=c_{3}\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right)
$$

Show that
(a) $\operatorname{dimim}\left(S_{i}\right)=1$ for all $i(1 \leq i \leq 3)$.
(b) $\mathbb{R}^{3}=\operatorname{im}\left(S_{1}\right)+\operatorname{im}\left(S_{2}\right)+\operatorname{im}\left(S_{3}\right)$.
(c) $\forall w \in \operatorname{im}\left(S_{i}\right)$ we have $A w=\lambda_{i} w(1 \leq i \leq 3)$.

