5 Homework 5 (Linear transformations)

1. Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a given linear operator with coordinate matrix $T=\left[\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right]$ with respect to canonical basis $\{\vec{i}, \vec{j}\}$. Let $\vec{a}=\vec{i}+\vec{j}$ and $\vec{b}=\vec{i}-2 \vec{j}$.
(a) Find $T(\vec{a}), T(\vec{b})$.
(b) For which $\alpha \in \mathbb{R}$ are vectors $T(\vec{a}), T(\vec{a}+\alpha \vec{b})$ collinear?
2. Let $\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$ be coordinate matrix of T in canonical basis \mathcal{S} (with another words
$[T]_{\mathcal{S}}=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$ where $\left.\mathcal{S}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}\right)$. coordinate matrix of T with respect to the basis $\mathcal{S}^{\prime}=\left\{\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right)\right\}$ (with another words find $[T]_{\mathcal{S}^{\prime}}$.
3. Let φ denote a linear transformation $\varphi: \mathbb{R}^{4} \longrightarrow \mathbb{R} \operatorname{such} \operatorname{taht} \varphi\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=1, \varphi\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right)=1, \varphi\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right)=0$, $\varphi\left(\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right)=0$. Find $\varphi\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$.
4. Let $T: \mathcal{P}_{2} \longrightarrow \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a given linear transformation defined by:

$$
T(p)=\left(\begin{array}{cc}
p(0) & p(-1) \\
p(1) & p(2)
\end{array}\right) .
$$

Find coordinate matrix of $T \in \mathcal{L}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$ with respect to the pair $\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$, where \mathcal{S} and \mathcal{S}^{\prime} are standard basis for \mathcal{P}_{2} and $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$, respectively. Find also one basis for both image $\operatorname{im}(T)$ and null space $\operatorname{ker}(T)$.
Discus and give an answer, is there some polynomial $q \in \mathcal{P}_{2}$ such that $T(q)=\left(\begin{array}{ll}2 & 1 \\ 5 & 4\end{array}\right)$? $\left(\mathcal{P}_{2}\right.$ is space of all polynomials of degree ≤ 2).
5. Let $T: \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \longrightarrow \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a given operator defined with

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a-b & -a+b+2 c \\
a-c-d & -a+2 c+d
\end{array}\right] .
$$

(a) Find some basis for $\operatorname{ker}(T)$ and $\operatorname{im}(T)$.
(b) Find coordinate matrix of T with respect to the standard basis of $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$.
6. Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ denote a given linear operator on space \mathcal{P}_{3} of all polynomials with real coefficients or degree at most 3 , where for any $p(x) \in \mathcal{P}_{3}, T$ is defined on the following way

$$
T(p(x))=x p^{\prime}(x)
$$

that is product of x with derivative $p^{\prime}(x)$ of polynomial $p(x)$. Show that T is linear operator. Find coordinate matrix representation A for T with respect to $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$ and find $A[q(x)]_{\mathcal{B}}$ where $q(x)=q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}$.
7. Let $T: \mathcal{P}_{2} \longrightarrow \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a given linear transformation given by

$$
T\left(a+b t+c t^{2}\right)=\left(\begin{array}{cc}
a-2 b & b+c \\
-2 a-4 c & -2 a+4 b
\end{array}\right)
$$

Find coordinate matrix representation of T with respect to pair or standard basis (that is find $[T]_{\mathcal{S S}^{\prime}}$ where \mathcal{S} and \mathcal{S}^{\prime} are standard basis for \mathcal{P}_{2} and $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ respectively). Find some basis for rang and null space of T (that is find basis for $\operatorname{im}(T)$ and $\operatorname{ker}(T)$) (\mathcal{P}_{2} is space of all real polynomials of degree ≤ 2).
8. Let $A: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be a given linear operator defined on the following way

$$
A\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x+y \\
0 \\
y-z
\end{array}\right]
$$

(a) Find $\operatorname{im}(T), \operatorname{ker}(T)$ and their basis.
(b) If $\mathcal{L}=\left\{(x, y, z)^{\top} \in \mathbb{R}^{3} \mid x=y\right\}$ and

$$
\mathcal{M}=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, A\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right) \in \mathcal{L}\right\}
$$

explain what is \mathcal{M} and find its basis.
9. Let $T: V^{3}(0) \longrightarrow V^{3}(0)$ be a given map defined with

$$
T(a \vec{i}+b \vec{j}+c \vec{k})=(a-2 b+c) \vec{i}+3 a \vec{j}-(2 a-4 c) \vec{k} .
$$

Show that T is a linear operator and find coordinate matrix representation of T with respect to $\mathcal{B}=\{\vec{i}-\vec{j}, 2 \vec{i}+\vec{j}, \vec{i}+\vec{k}\}$ (with another words find $[T]_{\mathcal{B}}$).
10. In space of all real arrays $\mathbb{R}^{\mathbb{N}}\left(\mathbb{R}^{\mathbb{N}}=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, a_{n+1}, \ldots\right) \mid a_{n} \in \mathbb{R}, n \in \mathbb{N}\right\}\right)$ it is given a set

$$
\mathcal{L}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid a_{n+2}-2 a_{n}=0, n \in \mathbb{N}\right\} .
$$

Show that the map $T: \mathcal{L} \rightarrow \mathcal{L}$ which $\left(a_{n}\right)_{n \in \mathbb{N}}$ map to $\left(a_{n+2}\right)_{n \in \mathbb{N}}$ is a linear operator. Find the coordinate matrix of T with respect to basis $\mathcal{B}=\{(1,0,2,0,4,0,8, \ldots),(0,1,0,2,0,4,0,8, \ldots)\}$.
11. Let $T: \mathcal{P}_{3} \rightarrow \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be a given linear transformation defined with

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}\right)=\left[\begin{array}{cc}
a_{0}+a_{3}-a_{2} & a_{0}+2 a_{1}-a_{2} \\
a_{3} & a_{0}-a_{2}
\end{array}\right]
$$

Find the coordinate matrix of T with respect to the pair of standard basis, and find $\operatorname{ker}(T), \operatorname{im}(T)$, $\operatorname{dim} \operatorname{im}(T)$ and $\operatorname{dim} \operatorname{ker}(T)$. (\mathcal{P}_{3} is a space of all polynomials of degree ≤ 3).
12. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be a given linear operator defined with

$$
T\left(a+b t+c t^{2}\right)=a+b+c+(a+3 b) t+(a-b+2 c) t^{2} .
$$

Find the coordinate matrix of $T \in \mathcal{L}\left(\mathcal{P}_{2}, \mathcal{P}_{2}\right)$ with respect to $\mathcal{B}=\left\{1-t, t-t^{2}, 1+t^{2}\right\}$. Moreover, find a basis for $\operatorname{ker}(T)$ and $\operatorname{im}(T)$.
13. (IMC 2011.) For some $A \in \operatorname{Mat}_{3 \times 3}(\mathbb{R})$ let λ_{1}, λ_{2} and λ_{3} denote three different real numbers such that

$$
p(x)=\operatorname{det}(A-x I)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) .
$$

For $i=1,2,3$ denote by V_{i} spaces $V_{i}:=\operatorname{ker}\left(A-\lambda_{i} I\right)$. Show that
(a) $\operatorname{dim}\left(V_{i}\right)=1$.
(b) $\mathbb{R}^{3}=V_{1}+V_{2}+V_{3}$.
(c) $\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}$.
(d) Discuss and carefully explain is it possible that for A we have

$$
A^{2}+A^{\top}=I \quad \text { and } \quad \operatorname{trace}(A)=0 .
$$

