4 Homework 4 (Basis and dimension)

1. Let \mathcal{V} denote vector space of all matrices of form 2×2 over the field of real numbers. Let \mathcal{W}_{1} be the set of all matrices of form $\left(\begin{array}{cc}x & -x \\ y & z\end{array}\right)$ and let \mathcal{W}_{2} be the set of all matrices of the form $\left(\begin{array}{cc}a & b \\ -a & c\end{array}\right)$. Find a basis and the dimensions of the four subspaces $\mathcal{W}_{1}, \mathcal{W}_{2}, \mathcal{W}_{1}+\mathcal{W}_{2}$ and $\mathcal{W}_{1} \cap \mathcal{W}_{2}$.
2. Let

$$
\mathcal{V}=\left\{\left.\left[\begin{array}{ll}
z_{1} & z_{2} \\
z_{3} & z_{4}
\end{array}\right] \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) \right\rvert\, z_{1}-2 \overline{z_{2}}+z_{3}=0, z_{1}+\overline{z_{2}+z_{3}}+z_{4}=0\right\}
$$

be a given subspace of a vector space $\operatorname{Mat}_{2 \times 2}(\mathbb{C})$. Find a basis and the dimension of \mathcal{V}.
3. Let \mathcal{M} and \mathcal{L} denote subspaces of vector space \mathbb{R}^{5}, where \mathcal{M} is spanned by vectors $(0,0,1,0,0)^{\top}$ and $(0,1,0,1,0)^{\top}$ and \mathcal{L} is

$$
\mathcal{L}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \in \mathbb{R}^{5} \mid x_{1}-x_{2}+x_{3}=0,2 x_{1}-2 x_{2}+x_{3}+x_{4}=0\right\}
$$

(a) Find a basis and the dimension of \mathcal{M} and \mathcal{L}. (b) Find a basis and the dimension of $\mathcal{M} \cap \mathcal{L}$ and $\mathcal{M}+\mathcal{L}$.
4. Let \mathcal{V} be vector space \mathbb{R}^{3} spanned by vectors $x_{1}, x_{2}, x_{3}\left(x_{1}, x_{2}\right.$ and x_{3} are linearly independent)

$$
\mathcal{V}=\operatorname{span}\left\{x_{1}=\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right), x_{2}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), x_{3}=\left(\begin{array}{c}
0 \\
3 \\
-2
\end{array}\right)\right\}
$$

Recall that this means that $\forall v \in \mathcal{V} \exists$ unique $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ s.t. $v=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}$. Let \mathcal{V}^{*} denote the set of all linear mapping from \mathcal{V} to \mathbb{R} that is

$$
\mathcal{V}^{*}=\mathcal{L}(\mathcal{V}, \mathbb{R})=\{T: \mathcal{V} \rightarrow \mathbb{R} \mid T \text { is linear }\} .
$$

Now for every $j \in\{1,2,3\}$ lets defined $T_{j} \in \mathcal{V}^{*}$ on the following way

$$
T_{j}\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)=a_{j}
$$

(a) Show that $\mathcal{B}^{*}=\left\{T_{1}, T_{2}, T_{3}\right\}$ is a basis for \mathcal{V}^{*}.
(b) Compute T_{1}, T_{2} and T_{3}.

Remark: Solutions for (a) and (b) are independent between themselves. Space \mathcal{V}^{*} is called dual space of \mathcal{V}, and a basis \mathcal{B}^{*} is called dual basis of \mathcal{B}.
5. Show that $\mathcal{V}=\left\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \mid \operatorname{trace}(A)=0\right\}$ is subspace of a vector space $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ (where $\operatorname{trace}(A)=$ sum of diagonal entries of $A)$. Find a basis and the dimension. Basis that you get extend to full basis of $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$.
6. In space of all real sequences $\mathbb{R}^{\mathbb{N}}\left(\mathbb{R}^{\mathbb{N}}=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, a_{n+1}, \ldots\right) \mid a_{n} \in \mathbb{R}, n \in \mathbb{N}\right\}\right)$ let \mathcal{L} be a given set

$$
\mathcal{L}=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid a_{n+2}-2 a_{n}=0, n \in \mathbb{N}\right\} .
$$

Show that \mathcal{L} is subspace of $\mathbb{R}^{\mathbb{N}}$ and find its basis and the dimension.
Lemma If $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and $B \in \operatorname{Mat}_{n \times p}$ then

$$
\begin{gathered}
\operatorname{rank}(A B) \leq \operatorname{rank}(B)-\operatorname{dim}(\operatorname{ker}(A) \cap \operatorname{rank}(B)) \quad \text { and } \\
\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\} .
\end{gathered}
$$

7. (IMC 2012.) Let $n \geq 3$ be a fixed positive integer, and let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ denote a matrix that has zeros along the main diagonal and strictly positive real numbers off the main diagonal. Determine the smallest possible number r such that

$$
\operatorname{dim}(\operatorname{im}(A))=r .
$$

For r that you get, give an example of matrix.

