4 Homework 4 (Basis and dimension)

1. Let \mathcal{V} denote vector space of all matrices of form 2×2 over the field of real numbers. Let \mathcal{W}_1 be the set of all matrices of form $\begin{pmatrix} x & -x \\ y & z \end{pmatrix}$ and let \mathcal{W}_2 be the set of all matrices of the form $\begin{pmatrix} a & b \\ -a & c \end{pmatrix}$. Find a basis and the dimensions of the four subspaces \mathcal{W}_1 , \mathcal{W}_2 , $\mathcal{W}_1 + \mathcal{W}_2$ and $\mathcal{W}_1 \cap \mathcal{W}_2$.

2. Let

$$\mathcal{V} = \left\{ \begin{bmatrix} z_1 & z_2 \\ z_3 & z_4 \end{bmatrix} \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) \, | \, z_1 - 2\overline{z_2} + z_3 = 0, \, z_1 + \overline{z_2 + z_3} + z_4 = 0 \right\}$$

be a given subspace of a vector space $Mat_{2\times 2}(\mathbb{C})$. Find a basis and the dimension of \mathcal{V} .

3. Let \mathcal{M} and \mathcal{L} denote subspaces of vector space \mathbb{R}^5 , where \mathcal{M} is spanned by vectors $(0, 0, 1, 0, 0)^{\top}$ and $(0, 1, 0, 1, 0)^{\top}$ and \mathcal{L} is

$$\mathcal{L} = \{ (x_1, x_2, x_3, x_4, x_5)^\top \in \mathbb{R}^5 \, | \, x_1 - x_2 + x_3 = 0, \, 2x_1 - 2x_2 + x_3 + x_4 = 0 \}$$

(a) Find a basis and the dimension of \mathcal{M} and \mathcal{L} . (b) Find a basis and the dimension of $\mathcal{M} \cap \mathcal{L}$ and $\mathcal{M} + \mathcal{L}$.

4. Let \mathcal{V} be vector space \mathbb{R}^3 spanned by vectors x_1, x_2, x_3 (x_1, x_2 and x_3 are linearly independent)

$$\mathcal{V} = \operatorname{span} \left\{ x_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, x_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, x_3 = \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix} \right\}$$

Recall that this means that $\forall v \in \mathcal{V} \exists$ unique $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ s.t. $v = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3$. Let \mathcal{V}^* denote the set of all linear mapping from \mathcal{V} to \mathbb{R} that is

$$\mathcal{V}^* = \mathcal{L}(\mathcal{V}, \mathbb{R}) = \{T : \mathcal{V} \to \mathbb{R} \mid T \text{ is linear}\}.$$

Now for every $j \in \{1, 2, 3\}$ lets defined $T_j \in \mathcal{V}^*$ on the following way

$$T_i(a_1x_1 + a_2x_2 + a_3x_3) = a_i$$

- (a) Show that $\mathcal{B}^* = \{T_1, T_2, T_3\}$ is a basis for \mathcal{V}^* .
- (b) Compute T_1 , T_2 and T_3 .

Remark: Solutions for (a) and (b) are independent between themselves. Space \mathcal{V}^* is called dual space of \mathcal{V} , and a basis \mathcal{B}^* is called dual basis of \mathcal{B} .

5. Show that $\mathcal{V} = \{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) | \operatorname{trace}(A) = 0\}$ is subspace of a vector space $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ (where $\operatorname{trace}(A) = \operatorname{sum}$ of diagonal entries of A). Find a basis and the dimension. Basis that you get extend to full basis of $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$.

6. In space of all real sequences $\mathbb{R}^{\mathbb{N}}$ ($\mathbb{R}^{\mathbb{N}} = \{(a_1, a_2, a_3, ..., a_n, a_{n+1}, ...) | a_n \in \mathbb{R}, n \in \mathbb{N}\}$) let \mathcal{L} be a given set

$$\mathcal{L} = \{ (a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid a_{n+2} - 2a_n = 0, n \in \mathbb{N} \}.$$

Show that \mathcal{L} is subspace of $\mathbb{R}^{\mathbb{N}}$ and find its basis and the dimension.

Lemma If
$$A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$$
 and $B \in \operatorname{Mat}_{n \times p}$ then
 $\operatorname{rank}(AB) \leq \operatorname{rank}(B) - \dim(\ker(A) \cap \operatorname{rank}(B))$ and
 $\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}.$

7. (IMC 2012.) Let $n \ge 3$ be a fixed positive integer, and let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ denote a matrix that has zeros along the main diagonal and strictly positive real numbers off the main diagonal. Determine the smallest possible number r such that

$$\dim(\operatorname{im}(A)) = r.$$

For r that you get, give an example of matrix.