3 Homework 3 (Linear independence)

1. Without doing any computation, determine whether the following matrix $A \in Mat_{n \times n}(\mathbb{R})$ is singular or nonsingular

$$\begin{pmatrix} n & 1 & 1 & \dots & 1 \\ 1 & n & 1 & \dots & 1 \\ 1 & 1 & n & \dots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \dots & n \end{pmatrix}$$

2. Let $\mathcal{L} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + x_2 = 0, -x_1 + 2x_2 + x_3 = 0\}$. Find a linearly independent spanning set for a vector space \mathcal{L} .

3. Let $\mathcal{V} = \mathbb{R}^n$ and let $(a_1, a_2, ..., a_n)^\top$ be some fixed vector from \mathcal{V} and let

$$\mathcal{M} = \{ (x_1, x_2, ..., x_n)^\top \in \mathcal{V} \, | \, a_1 x_1 + ... + a_n x_n = 0 \}$$

be subspace of \mathcal{V} . Find a maximal linearly independent subset of \mathcal{M} .

4. Let \mathbb{R}^+ denote given vector space (set of all positive real numbers) over field \mathbb{R} , in which operations vector addition and scalar multiplication are defined on the following way

vector addition: $\forall u, v \in \mathbb{R}^+$ u + v = uv;

scalar multiplication: $\forall u \in \mathbb{R}^+, \ \forall \alpha \in \mathbb{R} \ \alpha u = u^{\alpha}.$

Find minimal spanning set for \mathcal{V} . Explain your answer.

5. Let \mathcal{M} and \mathcal{N} denote subspaces of $\operatorname{Mat}_{2\times 2}(\mathbb{R})$, where

$$\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a - 2b = 0, \ a + c + d = 0 \right\} \text{ and}$$
$$\mathcal{N} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + c = 0, \ a - 2b + d = 0 \right\}.$$

Find a linearly independent spanning set for $\mathcal{M}, \mathcal{N}, \mathcal{M} + \mathcal{N}$ and $\mathcal{M} \cap \mathcal{N}$.

6. (IMC 2016.) Let k and n be positive integers. A sequence $(A_1, ..., A_k)$ of $n \times n$ real matrices is preferred by Ivan the Confessor if $A_i^2 \neq 0$ for $1 \leq i \leq k$, but $A_iA_j = 0$ for $1 \leq i, j \leq k$ with $i \neq j$. Show that $k \leq n$ in all preferred sequences, and give an example of a preferred sequence with k = n for each n.