3 Homework 3 (Linear independence)

1. Without doing any computation, determine whether the following matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is singular or nonsingular

$$
\left(\begin{array}{ccccc}
n & 1 & 1 & \ldots & 1 \\
1 & n & 1 & \ldots & 1 \\
1 & 1 & n & \ldots & 1 \\
\vdots & \vdots & \vdots & & \vdots \\
1 & 1 & 1 & \ldots & n
\end{array}\right)
$$

2. Let $\mathcal{L}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}=0,-x_{1}+2 x_{2}+x_{3}=0\right\}$. Find a linearly independent spanning set for a vector space \mathcal{L}.
3. Let $\mathcal{V}=\mathbb{R}^{n}$ and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{\top}$ be some fixed vector from \mathcal{V} and let

$$
\mathcal{M}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top} \in \mathcal{V} \mid a_{1} x_{1}+\ldots+a_{n} x_{n}=0\right\}
$$

be subspace of \mathcal{V}. Find a maximal linearly independent subset of \mathcal{M}.
4. Let \mathbb{R}^{+}denote given vector space (set of all positive real numbers) over field \mathbb{R}, in which operations vector addition and scalar multiplication are defined on the following way

$$
\begin{gathered}
\text { vector addition: } \forall u, v \in \mathbb{R}^{+} \quad u+v=u v ; \\
\text { scalar multiplication: } \forall u \in \mathbb{R}^{+}, \quad \forall \alpha \in \mathbb{R} \quad \alpha u=u^{\alpha} .
\end{gathered}
$$

Find minimal spanning set for \mathcal{V}. Explain your answer.
5. Let \mathcal{M} and \mathcal{N} denote subspaces of $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$, where

$$
\begin{gathered}
\mathcal{M}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a-2 b=0, a+c+d=0\right\} \text { and } \\
\mathcal{N}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a+c=0, a-2 b+d=0\right\} .
\end{gathered}
$$

Find a linearly independent spanning set for $\mathcal{M}, \mathcal{N}, \mathcal{M}+\mathcal{N}$ and $\mathcal{M} \cap \mathcal{N}$.
6. (IMC 2016.) Let k and n be positive integers. A sequence $\left(A_{1}, \ldots, A_{k}\right)$ of $n \times n$ real matrices is preferred by Ivan the Confessor if $A_{i}^{2} \neq 0$ for $1 \leq i \leq k$, but $A_{i} A_{j}=0$ for $1 \leq i, j \leq k$ with $i \neq j$. Show that $k \leq n$ in all preferred sequences, and give an example of a preferred sequence with $k=n$ for each n.

