13 Homework 13 (Elementary Properties of Eigensystems \& Generalized Eigenvectors and Nilpotnent Operators)

1. Find eigenvalues, eigenspaces and algebraic and geometrical multiplicities of all eigenvalues of A, if matrix A is given by

$$
A=\left[\begin{array}{cccc}
3 & -4 & 0 & 2 \\
4 & -5 & -2 & 4 \\
0 & 0 & 3 & -2 \\
0 & 0 & 2 & -1
\end{array}\right] .
$$

2. Let

$$
A=\left(\begin{array}{cccc}
1 & a & 1 & 0 \\
1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & b & 0 & 1
\end{array}\right)
$$

be a given matrix. Find parameters a and b if it is known that A is singular matrix which all eigenvalues have algebraic multiplicity 2 .
3. Let a denote some real number. Find all eigenvalues and corresponding eigenspaces for a given matrix of n-th order

$$
\left[\begin{array}{cccccc}
1+a & 1 & 1 & \ldots & 1 & 1 \\
1 & 1+a & 1 & \ldots & 1 & 1 \\
1 & 1 & 1+a & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & 1 & 1 & \ldots & 1+a & 1 \\
1 & 1 & 1 & \ldots & 1 & 1+a
\end{array}\right]
$$

4. It is given a matrix $A=\left(\begin{array}{lll}7 & -4 & 0 \\ a & -7 & b \\ 3 & -2 & 0\end{array}\right)$ which eigenvalues are -1 and 1 . Find a parameters $a, b \in \mathbb{R}$ and find algebraic and geometrical multiplicities of all eigenvalues of A.
5. Find a real number λ such that $A=\left(\begin{array}{cc}i & 1 \\ 2 i & \lambda\end{array}\right)$ has eigenvector $\left[\begin{array}{l}i \\ 1\end{array}\right]$. Is it possible to diagonalize A ?
6. Define $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(4 z_{2}, 0,5 z_{3}\right)
$$

(a) Find all eigenvalues of T, the corresponding eigenspaces, and the corresponding generalized eigenspaces.
(b) Show that \mathbb{C}^{3} is the direct sum of generalized eigenspaces corresponding to the distinct eigenvalues of T.
7. Define $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ by

$$
T(w, z)=(z, 0) .
$$

Find all generalized eigenvectors of T.

