## 12 Homework 12 (Orthogonal Projection)

**1.** Let  $\mathcal{P}_2$  denote a vector space of all polynomial of degree  $\leq 2$ ,

$$\mathcal{P}_2 = \{ax^2 + bx + c \,|\, a, b, c \in \mathbb{R}\}.$$

(a) Is the following product  $\langle p,q\rangle = p(1)q(1) + 2p(0)q(0) + p(-1)q(-1)$  inner product for  $\mathcal{P}_2$ ?

(b) For subspace  $\mathcal{L} \subseteq \mathcal{P}_2$  generated by  $p_1(x) = 1$  and  $p_2(x) = x$  find an orthogonal complement.

(c) Find the orthogonal projection of  $p(x) = -2x^2 + x + 2$  on  $\mathcal{L}$ .

**2.** In inner product space  $\mathbb{R}^4$ , with standard inner product, let  $\mathcal{M}$  denote subspace spanned by vectors  $(2, 1, 0, 0)^{\top}$  and  $(1, 1, 1, 1)^{\top}$ . Find a basis for orthogonal complement of  $\mathcal{M}$  and find the orthogonal projection of  $\boldsymbol{a} = (3, -4, 5, -5)^{\top}$  onto  $\mathcal{M}$ .

**3.** Let  $\mathcal{M} = \operatorname{span}\{a, b\}$  denote subspace of inner product space  $\mathbb{R}^n$  (with standard inner product) spaned by vectors  $\boldsymbol{a} = (0, 1, 2, ..., n - 1)^\top$  and  $\boldsymbol{b} = (1, 1, 1, ..., 1)^\top$ . Find orthogonal complement  $\mathcal{M}^\perp$  and find the orthogonal projection of  $\boldsymbol{z}$  onto  $\mathcal{M}$  where

$$\boldsymbol{z} = \left(\frac{1}{2}n(3-n), \frac{1}{2}n(n-1), 0, 0, ..., 0\right)^{\top} \in \mathbb{R}^{n}.$$

**4.** Find the orthogonal projection of  $\boldsymbol{x} = (-12, -13, 5, 2)^{\top}$  onto  $\mathcal{M}$  if we have that

$$\mathcal{M} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -2 \\ 2 \\ -3 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 2 \\ 4 \end{pmatrix} \right\} \subseteq \mathbb{R}^4$$

(with respect to standard inner product).

**5.** In inner product space  $\mathcal{P}_3 = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}\}$  of all polynomials of degree  $\leq 3$  with an inner product

$$\langle p,q \rangle = \int_{-1}^{1} p(t)q(t) \,\mathrm{d}t$$

let  $\mathcal{M} = \text{span}\{t, 1+t\}$  be a given subspace. Find the orthogonal projection of  $r(t) = -5t^3 - 12t^2 + 6t + 6$  onto  $\mathcal{M}$ .

**6.** Space  $\mathcal{L}$  is defined as set of solutions for the following system

$$2x_1 + x_2 + x_3 + 3x_4 = 0$$
  

$$3x_1 + 2x_2 + 2x_3 + x_4 = 0$$
  

$$x_1 + 2x_2 + 2x_3 - 9x_4 = 0$$

Find the orthogonal projection of  $x = (7, -4, -1, 2)^{\top}$  onto  $\mathcal{L}$  in  $\mathbb{R}^4$ .

7. (challenge) (Volume, Gram-Schmidt, and QR). A solid in  $\mathbb{R}^m$  with parallel opposing faces whose adjacent sides are defined by vectors from a linearly independent set  $\{x_1, x_2, ..., x_n\}$  is called an *n*-dimensional parallelepiped. As shown in the shaded portions of figure below, a two-dimensional parallelepiped is a parallelogram, and a three-dimensional parallelepiped is a skewed rectangular box.

**Problem:** Determine the volumes of a two-dimensional and a three-dimensional parallelepiped, and then make the natural extension to define the volume of an *n*-dimensional parallelepiped.



8. Affine Projections. If  $v \neq 0$  is a vector in a space  $\mathcal{V}$ , and if  $\mathcal{M}$  is a subspace of  $\mathcal{V}$ , then the set of points  $\mathbf{A} = \mathbf{v} + \mathcal{M}$  is called an affine space in  $\mathcal{V}$ . Strictly speaking,  $\mathbf{A}$  is not a subspace (e.g., it doesn't contain 0), but, as depicted in figure below,  $\mathbf{A}$  is the translate of a subspace - i.e.,  $\mathbf{A}$  is just a copy of  $\mathcal{M}$  that has been translated away from the origin through  $\mathbf{v}$ . Consequently, notions such as projection onto  $\mathbf{A}$  and points closest to  $\mathbf{A}$  are analogous to the corresponding concepts for subspaces.



**Problem:** For  $b \in \mathcal{V}$ , determine the point p in  $A = v + \mathcal{M}$  that is closest to b. In other words, explain how to project b orthogonally onto A.