12 Homework 12 (Orthogonal Projection)

1. Let \mathcal{P}_{2} denote a vector space of all polynomial of degree ≤ 2,

$$
\mathcal{P}_{2}=\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\} .
$$

(a) Is the following product $\langle p, q\rangle=p(1) q(1)+2 p(0) q(0)+p(-1) q(-1)$ inner product for \mathcal{P}_{2} ?
(b) For subspace $\mathcal{L} \subseteq \mathcal{P}_{2}$ generated by $p_{1}(x)=1$ and $p_{2}(x)=x$ find an orthogonal complement.
(c) Find the orthogonal projection of $p(x)=-2 x^{2}+x+2$ on \mathcal{L}.
2. In inner product space \mathbb{R}^{4}, with standard inner product, let \mathcal{M} denote subspace spanned by vectors $(2,1,0,0)^{\top}$ and $(1,1,1,1)^{\top}$. Find a basis for orthogonal complement of \mathcal{M} and find the orthogonal projection of $\boldsymbol{a}=(3,-4,5,-5)^{\top}$ onto \mathcal{M}.
3. Let $\mathcal{M}=\operatorname{span}\{\boldsymbol{a}, \boldsymbol{b}\}$ denote subspace of inner product space \mathbb{R}^{n} (with standard inner product) spaned by vectors $\boldsymbol{a}=(0,1,2, \ldots, n-1)^{\top}$ and $\boldsymbol{b}=(1,1,1, \ldots, 1)^{\top}$. Find orthogonal complement \mathcal{M}^{\perp} and find the orthogonal projection of \boldsymbol{z} onto \mathcal{M} where

$$
\boldsymbol{z}=\left(\frac{1}{2} n(3-n), \frac{1}{2} n(n-1), 0,0, \ldots, 0\right)^{\top} \in \mathbb{R}^{n} .
$$

4. Find the orthogonal projection of $\boldsymbol{x}=(-12,-13,5,2)^{\top}$ onto \mathcal{M} if we have that

$$
\mathcal{M}=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
-2 \\
2 \\
-3
\end{array}\right),\left(\begin{array}{c}
2 \\
-3 \\
2 \\
4
\end{array}\right)\right\} \subseteq \mathbb{R}^{4}
$$

(with respect to standard inner product).
5. In inner product space $\mathcal{P}_{3}=\left\{a t^{3}+b t^{2}+c t+d \mid a, b, c, d \in \mathbb{R}\right\}$ of all polynomials of degree ≤ 3 with an inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(t) q(t) \mathrm{d} t
$$

let $\mathcal{M}=\operatorname{span}\{t, 1+t\}$ be a given subspace. Find the orthogonal projection of $r(t)=-5 t^{3}-12 t^{2}+6 t+6$ onto \mathcal{M}.
6. Space \mathcal{L} is defined as set of solutions for the following system

$$
\begin{array}{rlr}
2 x_{1}+ & x_{2}+x_{3}+3 x_{4} & =0 \\
3 x_{1}+2 x_{2}+2 x_{3}+ & x_{4} & =0 \\
x_{1}+ & 2 x_{2}+2 x_{3}-\quad 9 x_{4} & =0
\end{array}
$$

Find the orthogonal projection of $x=(7,-4,-1,2)^{\top}$ onto \mathcal{L} in \mathbb{R}^{4}.
7. (challenge) (Volume, Gram-Schmidt, and QR). A solid in \mathbb{R}^{m} with parallel opposing faces whose adjacent sides are defined by vectors from a linearly independent set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is called an n-dimensional parallelepiped. As shown in the shaded portions of figure below, a two-dimensional parallelepiped is a parallelogram, and a three-dimensional parallelepiped is a skewed rectangular box.

Problem: Determine the volumes of a two-dimensional and a three-dimensional parallelepiped, and then make the natural extension to define the volume of an n-dimensional parallelepiped.

8. Affine Projections. If $\boldsymbol{v} \neq \mathbf{0}$ is a vector in a space \mathcal{V}, and if \mathcal{M} is a subspace of \mathcal{V}, then the set of points $\boldsymbol{A}=\boldsymbol{v}+\mathcal{M}$ is called an affine space in \mathcal{V}. Strictly speaking, \boldsymbol{A} is not a subspace (e.g., it doesn't contain 0), but, as depicted in figure below, \boldsymbol{A} is the translate of a subspace - i.e., \boldsymbol{A} is just a copy of \mathcal{M} that has been translated away from the origin through \boldsymbol{v}. Consequently, notions such as projection onto \boldsymbol{A} and points closest to \boldsymbol{A} are analogous to the corresponding concepts for subspaces.

Problem: For $\boldsymbol{b} \in \mathcal{V}$, determine the point \boldsymbol{p} in $\boldsymbol{A}=\boldsymbol{v}+\mathcal{M}$ that is closest to \boldsymbol{b}. In other words, explain how to project \boldsymbol{b} orthogonally onto \boldsymbol{A}.

