11 Homework 11 (Orthogonal Decomposition)

1. Compute a $U R V$ factorization for the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & -3 \\ 2 & 4 & 5\end{array}\right]$.
2. Basis for a vector space

$$
\mathcal{L}=\left\{\left(x_{1}, x_{2}, x_{3}\right)^{\top} \in \mathbb{R}^{3} \mid x_{1}+x_{2}=0,-x_{1}+2 x_{2}+x_{3}=0\right\}
$$

is $\mathcal{B}=\left\{\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)\right\}$. Find orthogonal complement of \mathcal{L} (with respect to standard inner product $\left.\langle x, y\rangle=x^{\top} y\right)$.
3. In inner product space $\mathcal{P}_{2}=\left\{p(x)=a x^{2}+b x+c: a, b, c \in \mathbb{R}\right\}$ of all polynomials of degree less or equal 2 with inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) \mathrm{d} x$ let \mathcal{M} be a given subspace defined with

$$
\mathcal{M}=\operatorname{span}\left\{x^{2}-1, x+1\right\} .
$$

Find a basis for \mathcal{M}^{\perp}, and write a polynomial $p(x)=2 x^{2}+x+5$ in form $p=p_{1}+p_{2}$, where $p_{1} \in \mathcal{M}$, $p_{2} \in \mathcal{M}^{\perp}$.
4. In inner product space \mathbb{R}^{4}, with inner product defined with

$$
\langle x, y\rangle=x_{1} y_{1}+2 x_{2} y_{2}+x_{3} y_{3}+2 x_{4} y_{4}
$$

let \mathcal{V} be a given subspace spanned with vectors $v_{1}=(1,0,1,0)^{\top}$ and $v_{2}=(1,0,1,1)^{\top}$. Write vector $x=(4,2,2,4)^{\top}$ in form $x=v+w$, where $v \in \mathcal{V}, w \in \mathcal{V}^{\perp}$.
5. Let \mathcal{M} denote subspace of inner product space $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ spanned with matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right]$. Find a basis for orthogonal complement of \mathcal{M}, and write the matrix $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ in the form $X=Y_{1}+Y_{2}$, where $Y_{1} \in \mathcal{M}$, and $Y_{2} \in \mathcal{M}^{\perp}$. (Standard inner product in $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is defined with $\langle A, B\rangle=\operatorname{trag}\left(A B^{\top}\right)$).
6. In inner product space $\mathcal{P}_{3}=\left\{a t^{3}+b t^{2}+c t+d \mid a, b, c, d \in \mathbb{R}\right\}$ of all polynomials of degree ≤ 3 with inner product defined with

$$
\langle p, q\rangle=\int_{-1}^{1} p(t) q(t) \mathrm{d} t
$$

Let $\mathcal{M}=\operatorname{span}\{1+t, 1\}$ be a given subspace. Find a basis for \mathcal{M}^{\perp}.
7. (challenge) (Singular Value Decomposition) For each $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ of rank r, show that there are orthogonal matrices $U \in \operatorname{Mat}_{m \times m}(\mathbb{R}), V \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ and a diagonal matrix $D_{r \times r}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right)$ such that

$$
A=U\left(\begin{array}{cc}
D & \mathbf{0} \tag{2}\\
\mathbf{0} & \mathbf{0}
\end{array}\right)_{m \times n} V^{\top} \quad \text { with } \quad \sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0
$$

Remark. The σ_{i} 's are called the nonzero singular values of A. When $r<p=\min \{m, n\}, A$ is said to have $p-r$ additional zero singular values. The factorization (2) is called a singular value decomposition of A, and the columns in U and V are called left-hand and right-hand singular vectors for A, respectively.

