10 Homework 10 (Complementary Subspaces)

1. Let \mathcal{M} be subspace of \mathbb{R}^{4} defined with

$$
\mathcal{M}=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{\top} \in \mathbb{R}^{4} \mid z_{1}+2 z_{2}+z_{3}=0,2 z_{1}+z_{2}-z_{3}=0, z_{1}+5 z_{2}+4 z_{3}=0\right\} .
$$

Find \mathcal{N} such that \mathcal{M} and \mathcal{N} are complementary subspaces of a space \mathbb{R}^{4}.
2. In vector space \mathbb{R}^{5}, let \mathcal{M} be subspace spanned by $(0,0,1,0,0)^{\top}$ and $(0,1,0,1,0)^{\top}$ and let

$$
\mathcal{L}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \in \mathbb{R}^{5} \mid x_{1}-x_{2}+x_{3}=0,2 x_{1}-2 x_{2}+x_{3}+x_{4}=0\right\} .
$$

(a) Find a basis and dimensions for \mathcal{M} and \mathcal{L}.
(b) Find a dimension of subspace $\mathcal{M} \cap \mathcal{L}$.
(c) Find a basis for complementary subspace \mathcal{K} of the space \mathcal{L} (i.e. find a basis for subspace \mathcal{K} where \mathcal{L} and \mathcal{K} are complementary subspaces of a space \mathbb{R}^{5}).
3. Let $Q: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}\left(\mathcal{P}_{3}\right.$ is a vector space of all polynomials of degree $\left.\leq 3\right)$ denote a given linear operator defined with

$$
\begin{aligned}
& Q(p)=\text { all polynomials of degree } 2 \text { which graph pass through the } \\
& \qquad \text { points }(-1 ; p(-1)),(0 ; p(0)) \text { and }(1 ; p(1)) .
\end{aligned}
$$

(a) Find coordinate matrix of Q with the respect to the standard basis.
(b) Find complementary subspace \mathcal{N} of the space $\mathcal{M}=\operatorname{ker}(Q)$ in \mathcal{P}_{3}.
4. Let

$$
\begin{gathered}
\mathcal{L}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \in \mathbb{R}^{4} \mid-x_{1}+x_{2}+x_{3}+x_{4}=0, x_{1}-x_{2}+x_{3}+x_{4}=0,\right. \\
\left.x_{1}+x_{2}-x_{3}+x_{4}=0, x_{1}+x_{2}+x_{3}-x_{4}=0\right\}
\end{gathered}
$$

denote a given set. Show that \mathcal{L} is a subspace of \mathbb{R}^{4}, find a basis, dimension and find complementary subspace of \mathcal{L} in \mathbb{R}^{4}.
5. In a vector space \mathcal{P}_{4} of all real polynomials of degree ≤ 4 it is given a set

$$
\mathcal{M}=\left\{p \in \mathcal{P}_{4} \mid p^{\prime}(0)=p(1), p^{\prime \prime}(0)=2 p(-1)\right\} .
$$

Show that \mathcal{M} is a vector subspace of \mathcal{P}_{4}, find a basis and dimension, and find complementary subspace of \mathcal{M} in \mathcal{P}_{4}.
6. (challenge) Angle between Complementary Subspaces. The angle between nonzero vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^{n} was defined to be the number $0 \leq \theta \leq \pi / 2$ such that $\cos \theta=\frac{\boldsymbol{v}^{\top} \boldsymbol{u}}{\|\boldsymbol{v}\|_{2}\|\boldsymbol{u}\|_{2}}$. It's natural to try to extend this idea to somehow make sense of angles between subspaces of \mathbb{R}^{n}. Here we introduce angle between a pair of complementary subspaces.

When $\mathbb{R}^{n}=\mathcal{M} \oplus \mathcal{N}$, the angle (also known as the minimal angle) between \mathcal{M} and \mathcal{N} is defined to be the number $0 \leq \theta \leq \pi / 2$ that satisfies

$$
\cos \theta=\max \left\{\frac{\boldsymbol{v}^{\top} \boldsymbol{u}}{\|\boldsymbol{v}\|_{2}\|\boldsymbol{u}\|_{2}}: \boldsymbol{u} \in \mathcal{M}, \boldsymbol{v} \in \mathcal{N}\right\}=\max \left\{\boldsymbol{v}^{\top} \boldsymbol{u}: \boldsymbol{u} \in \mathcal{M}, \boldsymbol{v} \in \mathcal{N},\|\boldsymbol{v}\|_{2}=1,\|\boldsymbol{u}\|_{2}=1\right\} .
$$

While this is a good definition, it's not easy to use - especially if one wants to compute the numerical value of $\cos \theta$. Can you explain what would be easiest way to compute numerical value of $\cos \theta$? Justify your answer!

