10 Homework 10 (Complementary Subspaces)

1. Let \mathcal{M} be subspace of \mathbb{R}^4 defined with

$$\mathcal{M} = \{ (z_1, z_2, z_3, z_4)^\top \in \mathbb{R}^4 \mid z_1 + 2z_2 + z_3 = 0, \ 2z_1 + z_2 - z_3 = 0, \ z_1 + 5z_2 + 4z_3 = 0 \}.$$

Find \mathcal{N} such that \mathcal{M} and \mathcal{N} are complementary subspaces of a space \mathbb{R}^4 .

2. In vector space \mathbb{R}^5 , let \mathcal{M} be subspace spanned by $(0,0,1,0,0)^{\top}$ and $(0,1,0,1,0)^{\top}$ and let

$$\mathcal{L} = \{ (x_1, x_2, x_3, x_4, x_5)^{\top} \in \mathbb{R}^5 \, | \, x_1 - x_2 + x_3 = 0, \, 2x_1 - 2x_2 + x_3 + x_4 = 0 \}$$

- (a) Find a basis and dimensions for \mathcal{M} and \mathcal{L} .
- (b) Find a dimension of subspace $\mathcal{M} \cap \mathcal{L}$.
- (c) Find a basis for complementary subspace \mathcal{K} of the space \mathcal{L} (i.e. find a basis for subspace \mathcal{K} where \mathcal{L} and \mathcal{K} are complementary subspaces of a space \mathbb{R}^5).

3. Let $Q: \mathcal{P}_3 \to \mathcal{P}_3$ (\mathcal{P}_3 is a vector space of all polynomials of degree ≤ 3) denote a given linear operator defined with

Q(p) = all polynomials of degree 2 which graph pass through the

points (-1; p(-1)), (0; p(0)) and (1; p(1)).

- (a) Find coordinate matrix of Q with the respect to the standard basis.
- (b) Find complementary subspace \mathcal{N} of the space $\mathcal{M} = \ker(Q)$ in \mathcal{P}_3 .
- 4. Let

$$\mathcal{L} = \{ (x_1, x_2, x_3, x_4)^\top \in \mathbb{R}^4 \mid -x_1 + x_2 + x_3 + x_4 = 0, \ x_1 - x_2 + x_3 + x_4 = 0, \\ x_1 + x_2 - x_3 + x_4 = 0, \ x_1 + x_2 + x_3 - x_4 = 0 \}$$

denote a given set. Show that \mathcal{L} is a subspace of \mathbb{R}^4 , find a basis, dimension and find complementary subspace of \mathcal{L} in \mathbb{R}^4 .

5. In a vector space \mathcal{P}_4 of all real polynomials of degree ≤ 4 it is given a set

$$\mathcal{M} = \{ p \in \mathcal{P}_4 \, | \, p'(0) = p(1), \, p''(0) = 2p(-1) \}.$$

Show that \mathcal{M} is a vector subspace of \mathcal{P}_4 , find a basis and dimension, and find complementary subspace of \mathcal{M} in \mathcal{P}_4 .

6. (challenge) Angle between Complementary Subspaces. The angle between nonzero vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^n was defined to be the number $0 \le \theta \le \pi/2$ such that $\cos \theta = \frac{\boldsymbol{v}^\top \boldsymbol{u}}{\|\boldsymbol{v}\|_2 \|\boldsymbol{u}\|_2}$. It's natural to try to extend this idea to somehow make sense of angles between subspaces of \mathbb{R}^n . Here we introduce angle between a pair of complementary subspaces.

When $\mathbb{R}^n = \mathcal{M} \oplus \mathcal{N}$, the angle (also known as the minimal angle) between \mathcal{M} and \mathcal{N} is defined to be the number $0 \le \theta \le \pi/2$ that satisfies

$$\cos\theta = \max\left\{\frac{\boldsymbol{v}^{\top}\boldsymbol{u}}{\|\boldsymbol{v}\|_{2}\|\boldsymbol{u}\|_{2}}: \boldsymbol{u} \in \mathcal{M}, \boldsymbol{v} \in \mathcal{N}\right\} = \max\left\{\boldsymbol{v}^{\top}\boldsymbol{u}: \boldsymbol{u} \in \mathcal{M}, \boldsymbol{v} \in \mathcal{N}, \|\boldsymbol{v}\|_{2} = 1, \|\boldsymbol{u}\|_{2} = 1\right\}.$$

While this is a good definition, it's not easy to use - especially if one wants to compute the numerical value of $\cos \theta$. Can you explain what would be easiest way to compute numerical value of $\cos \theta$? Justify your answer!