
10 Homework 10 (Complementary Subspaces)

1. Let M be subspace of R4 defined with

M = {(z1, z2, z3, z4)> ∈ R4 | z1 + 2z2 + z3 = 0, 2z1 + z2 − z3 = 0, z1 + 5z2 + 4z3 = 0}.

Find N such that M and N are complementary subspaces of a space R4.

2. In vector space R5, let M be subspace spanned by (0, 0, 1, 0, 0)> and (0, 1, 0, 1, 0)> and let

L = {(x1, x2, x3, x4, x5)> ∈ R5 |x1 − x2 + x3 = 0, 2x1 − 2x2 + x3 + x4 = 0}.

(a) Find a basis and dimensions for M and L.

(b) Find a dimension of subspace M∩L.

(c) Find a basis for complementary subspace K of the space L (i.e. find a basis for subspace K where L
and K are complementary subspaces of a space R5).

3. Let Q : P3 → P3 (P3 is a vector space of all polynomials of degree ≤ 3) denote a given linear operator
defined with

Q(p) = all polynomials of degree 2 which graph pass through the

points (−1; p(−1)), (0; p(0)) and (1; p(1)).

(a) Find coordinate matrix of Q with the respect to the standard basis.

(b) Find complementary subspace N of the space M = ker(Q) in P3.

4. Let
L = {(x1, x2, x3, x4)> ∈ R4 | − x1 + x2 + x3 + x4 = 0, x1 − x2 + x3 + x4 = 0,

x1 + x2 − x3 + x4 = 0, x1 + x2 + x3 − x4 = 0}

denote a given set. Show that L is a subspace of R4, find a basis, dimension and find complementary
subspace of L in R4.

5. In a vector space P4 of all real polynomials of degree ≤ 4 it is given a set

M = {p ∈ P4 | p′(0) = p(1), p′′(0) = 2p(−1)}.

Show that M is a vector subspace of P4, find a basis and dimension, and find complementary subspace of
M in P4.

6. (challenge) Angle between Complementary Subspaces. The angle between nonzero vectors u

and v in Rn was defined to be the number 0 ≤ θ ≤ π/2 such that cos θ = v>u
‖v‖2‖u‖2 . It’s natural to try to

extend this idea to somehow make sense of angles between subspaces of Rn. Here we introduce angle
between a pair of complementary subspaces.

When Rn =M⊕N , the angle (also known as the minimal angle) between M and N is defined to be
the number 0 ≤ θ ≤ π/2 that satisfies

cos θ = max

{
v>u

‖v‖2‖u‖2
: u ∈M,v ∈ N

}
= max

{
v>u : u ∈M,v ∈ N , ‖v‖2 = 1, ‖u‖2 = 1

}
.

While this is a good definition, it’s not easy to use - especially if one wants to compute the numerical value
of cos θ. Can you explain what would be easiest way to compute numerical value of cos θ? Justify your
answer!
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