1 Homework 1 (Spaces and subspaces)

1. Let

$$
\mathcal{L}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}=0,-x_{1}+2 x_{2}+x_{3}=0\right\} .
$$

Show that \mathcal{L} is subspace of vector space \mathbb{R}^{3}.
2. Let $\mathcal{V}=\mathbb{R}^{n}$ and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{\top}$ be some fixed vector from \mathcal{V}. Show that the family of all elements $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$ from \mathcal{V} with the property $a_{1} x_{1}+\ldots+a_{n} x_{n}=0$ is subspace of vector space \mathcal{V}. In another words, show that

$$
\mathcal{M}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top} \in \mathcal{V} \mid a_{1} x_{1}+\ldots+a_{n} x_{n}=0\right\}
$$

is subspace of \mathcal{V}.
3. Let \mathcal{V} denote vector space of all matrices of form 2×2 over the field of real numbers. Let \mathcal{W}_{1} be the set of all matrices of form

$$
\left(\begin{array}{cc}
x & -x \\
y & z
\end{array}\right)
$$

and let \mathcal{W}_{2} be the set of all matrices of the form

$$
\left(\begin{array}{cc}
a & b \\
-a & c
\end{array}\right)
$$

Show that \mathcal{W}_{1} and \mathcal{W}_{2} are subspaces of \mathcal{V}.
4. Let

$$
\mathcal{V}=\left\{\left.\left[\begin{array}{ll}
z_{1} & z_{2} \\
z_{3} & z_{4}
\end{array}\right] \in \operatorname{Mat}_{2 \times 2}(\mathbb{C}) \right\rvert\, z_{1}-2 \overline{z_{2}}+z_{3}=0, z_{1}+\overline{z_{2}+z_{3}}+z_{4}=0\right\}
$$

be a given set. Show that \mathcal{V} is real subspace of vector space $\operatorname{Mat}_{2 \times 2}(\mathbb{C})$.

