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Abstract: The Internet of Things (IoT) is experiencing widespread adoption across industry sectors
ranging from supply chain management to smart cities, buildings, and health monitoring. However,
most software architectures for the IoT deployment rely on centralized cloud computing infrastruc-
tures to provide storage and computing power, as cloud providers have high economic incentives to
organize their infrastructure into clusters. Despite these incentives, there has been a recent shift from
centralized to decentralized architectures that harness the potential of edge devices, reduce network
latency, and lower infrastructure costs to support IoT applications. This shift has resulted in new
edge computing architectures, but many still rely on centralized solutions for managing applications.
A truly decentralized approach would offer interesting properties required for IoT use cases. In this
paper, we introduce a decentralized architecture tailored for large-scale deployments of peer-to-peer
IoT sensor networks and capable of run-time application migration. We propose a leader election
consensus protocol for permissioned distributed networks that only requires one series of messages in
order to commit to a change. The solution combines a blockchain consensus protocol using Verifiable
Delay Functions (VDF) to achieve decentralized randomness, fault tolerance, transparency, and no
single point of failure. We validate our solution by testing and analyzing the performance of our
reference implementation. Our results show that nodes are able to reach consensus consistently, and
the VDF proofs can be used as an entropy pool for decentralized randomness. We show that our
system can perform autonomous real-time application migrations. Finally, we conclude that the
implementation is scalable by testing it on 100 consensus nodes running 200 applications.

Keywords: fault tolerance; blockchain; Internet of Things; edge computing; peer-to-peer; decentralized;
sensor networks; verifiable delay functions

1. Introduction

Cloud computing solutions have driven the centralization of computing, process
control (e.g., business information, manufacturing, distributed systems, IoT management),
and data storage to data centers. Existing cloud-based solutions have few incentives, aside
from reducing network latency, to redistribute their computing and storage resources.
There are many reasons why centralization is more appealing. These range from legislative
reasons, tax policies, and the availability and affordability of high speed internet and
electrical power to reductions in maintenance costs and even climate preservation [1].
However, cloud computing solutions are struggling to address the specific challenges of
emerging IoT and edge computing use cases.

The ever-growing number of devices on the edge causes scalability challenges for cen-
tralized architectures such as those based on cloud technologies. Edge devices tend to be
heterogeneous, and existing IoT platforms remain isolated and unable to fully exploit their
potential. Moreover, these devices have considerable computing resources, which, for the most
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part, remain underutilized, as most applications perform computation on the cloud. A major
related challenge is supporting the homogeneous usage of edge devices, which requires appli-
cations to migrate at run-time from an overloaded device to a more available one. Currently,
there is no standardized platform for general purpose computing that supports such run-time
application migration. Another limitation to the large-scale deployment of sensor networks is
the infrastructural investment needed to support the network, as typical architectures require a
middle layer infrastructure that enables access to the cloud (Figure 1 and [2]).

We believe these challenges can be overcome, as recent technological advances have
provided partial solutions and have presented new opportunities. These advances have
paved the way for the recent paradigm shift from centralized to decentralized architectures
for the IoT [3]. First, as edge devices are becoming more powerful and capable of running
complex software, they provide a huge pool of available, yet underutilized, computing
resources. Second, containerization solutions (as opposed to virtualization) have gained
momentum and provide a pathway towards overcoming the heterogeneity problems while
preserving acceptable performance [4]. Containerization software (e.g., Docker) provides
software abstraction that enables general purpose computing on edge devices. Third, with
the growth of edge devices capable of direct wireless communication, a mesh network
approach has become worth exploring as a solution to reduce or eliminate the middle layer
infrastructure needed for devices to connect to each other and to the cloud (Figure 2).
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Figure 1. Standard sensor network architecture.
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Figure 2. Mesh sensor network architecture.

The need for edge computing is illustrated well by scenarios related to ad-hoc net-
works [5], and especially with peer-to-peer wireless sensor networks. The paradigm
shift towards decentralization is relevant to numerous application domains such as smart
building monitoring, structural health monitoring, self-driving vehicles, micro-service
architectures, mobile devices, etc. In our work, we have experimented with a cultural
heritage building located in Bled, Slovenia. We deployed several sensors to monitor the
building’s state for maintenance purposes and its air quality to ensure safety for visitors. In
cases where buildings are located in remote areas, as in our use case, edge devices must
self-regulate and optimize their behavior at run-time. They must also have the capacity to
scale up as the number of devices grows (scalability) and to adjust when dysfunctions occur,
for example, when devices leave the network (experience byzantine behavior). In addition,
the operation of all devices should be recorded safely for later analysis (transparency).
In a cloud-based environment, edge devices send data to the cloud, where computation
occurs. However, issues such as poor network coverage, frequent disconnection, the cost of
infrastructural investment, inadequate dependability, and security concerns remain unad-
dressed [6-8]. Edge computing solutions attempt to reduce network latency; increase fault
tolerance, dependability, and security; and reduce the cost of infrastructural investment
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needed to provide network coverage. They also operate independently of an external
network connection. To address these issues, we propose an architecture based on an
innovative combination of existing technologies. Specifically, our architecture provides a
general purpose computation model allowing large scale sensor networks to distribute
the computational load among edge devices (sensors, controllers, etc.). The solution uses
containerization so that applications can be built using any programming language or
stack and to provide an abstraction layer between the application requirements and the
host hardware. The decision-making process for resource allocation is carried out by a
decentralized orchestrator implemented as a consensus protocol that outputs a migration
strategy, which is in turn stored on the blockchain (a blockchain is a growing list of records
called blocks, linked together using cryptography so that the contents cannot be modified
without breaking the list, and the nodes follow a shared consensus protocol to validate new
blocks). It features high fault tolerance, full transparency, reduced network infrastructure
cost, and no single point of failure. The network layer uses decentralized randomness
to constantly change the network topology to allow efficient propagation of information
pertaining to the resource utilization of nodes.
The main contributions in this paper are as follows:

e Introducing a decentralized architecture capable of run-time application migration for
large scale deployments of peer-to-peer IoT sensor networks;
¢ Describing three key contributions:

— A scalable consensus protocol layer;
- An efficient, secure, and dynamic topology based on k-means clustering;
— A decentralized orchestrator capable of low-latency, real-time application migrations;

¢  Evaluating each contribution by performing empirical tests with a reference imple-
mentation of the protocol;

e Improving migration times by implementing CRIU, an experimental feature of Docker
that allows the system to migrate an application’s state without affecting its run-time;

*  Showing that distributed consensus and application management is possible at run-
time, opening the door to several improvements towards self-managing IoT platforms;

¢ Demonstrating that blockchain overhead is a negligible aspect of the actual cost of
application migration and that the system is able to finalize blocks with slot times as
low as 5 s while maintaining higher decentralization than existing platforms;

¢ Identifying network instability (devices entering and leaving the network) as a po-
tential area for future exploration and proposing solutions to reduce the required
computational power while maintaining optimal application management;

¢  Extending the algorithm governing the decentralized orchestrator to allow applications to
submit migration policies that the orchestrator will have to follow during its operation.

The rest of this paper is structured as follows: Section 2 provides the necessary
background knowledge and overviews the most relevant related works to highlight the
originality of our proposal. Section 3 details our architecture and its operation. Section 4
describes our evaluation environment Section 6 summarizes the results and gives guidelines
for future work.

2. Background Knowledge and Related Work

The most critical unmet challenges in monitoring edge devices according to [9] are:
mobility management, scalability and resource availability at the edge of the network, coor-
dinated decentralization, interoperability and avoiding vendor lock-in, optimal resource
scheduling among edge nodes, and fault tolerance. No widely used cloud-based monitoring
tool for edge computing fully addresses these challenges. Some requirements remain unmet
when using any existing solution, as many system aspects, including containerization and
end-to-end network quality, are not adequately addressed [9]. The EU project RECAP [10]
presents a vision of the next generation of intelligent, self-managed, and self-remediated
cloud computing systems (i.e., a system that can monitor and relocate resources to achieve
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Quality of Service—QoS). The project also describes models intended to be integrated in
network topology-aware application orchestration and resource management systems from
an edge computing perspective [11]. Another solution, AutoMigrate [12], incorporates a
selection algorithm to determine which services should be migrated to optimize availability.
Although this system has solutions for most of the problems we address, it does not resolve
the single point of failure (SPOF) issue because it relies on a central service to orchestrate
migrations. Our decentralized implementation eliminates the SPOF issue.

2.1. Orchestration Solutions for Edge Computing

Orchestration denotes control by a single entity over many. This differs from chore-
ography, which is more collaborative and allows each involved party to describe its part
in the interaction [13]. We have identified the most successful orchestration solutions to
be Kubernetes [14], which is the most used and most feature-rich orchestration tool [15];
Docker Swarm (https:/ /github.com/docker/swarm accessed on: 25 April 2023); Ama-
zon Web Service Elastic Container Service [16]; the Distributed Cloud Operating System
(https://dcos.io/); and Nomad (https:/ /www.hashicorp.com/products/nomad accessed
on: 25 April 2023).

The Decenter EU project (Decenter project homepage: https:/ /www.decenter-project.eu)
proposes decentralized orchestration technologies for fog-to-edge computing. Although
the project does support decentralized orchestration between multiple domains and records
service-level agreements and violations to the blockchain, the solution is designed as a federated
approach where a multi-domain orchestrator maintains several domains that, in turn, are driven
from local orchestrators [17], thus still showing an SPOF with the multi-domain and local
orchestrators. The project also implements a blockchain to act as a brokerage platform where
smart contracts guarantee resource sharing across domains [18]. In contrast to a federated
approach, our implementation is fully decentralized, with a randomly selected orchestrator at
each interval, thus avoiding the SPOF problem and not relying on a trusted third party.

All of the architectures discussed above have a common flaw: the SPOF problem.
In each case, the flaw is characterized by a single orchestration entity. Most solutions
also lack support for edge devices. Our proposed solution addresses these shortcomings,
while providing full transparency, variability of the system, and a completely decentralized
operation backed by a strongly secure, scalable, and efficient consensus mechanism.

Recently, a decentralized protocol for the orchestration of containers named Caravela
was proposed [19]. The solution relies on Chord for resource discovery and employs a
volunteer system in which nodes are categorized as suppliers (supplying resources), buyers
(searching for resources), and traders (mediating supply/search for offers). The authors
show that their solution can scale using a random migration algorithm, but fails fulfill
deployment requests. It is also not able to fulfill the global binpack scheduling policy due
to a lack of global shared states.

Our proposed protocol extends the previous state-of-the-art Caravela [19] in the
following ways:

¢ (Caravela uses a market-based model in which edge nodes require a reward in the
form of digital currency for the network to operate. Caravela proposes using Bitcoin
but considers its implementation out of scope. Our solution does not require a market
model and an external digital currency as nodes also maintain a blockchain network.

*  (Caravela performs resource allocation in a more sophisticated way, offering multiple
heuristics such as binpack and round robin. However, the orchestrator is not able to
migrate applications at run-time. Container resource consumption is dynamic, and
the system must adapt to changes. Our protocol performs both initial scheduling and
run-time migrations.

*  (Caravela is completely decentralized, where actors offer resources to buyers. It is more
scalable, as it does not maintain a global log of all containers. Our protocol is able to
achieve comparable results and maintain a blockchain as an immutable, verifiable,
and secure log of the entire network state.
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A similar light-weight, blockchain-enabled architecture was proposed by Cheikhrouhou
et al. [20], which uses a round-robin-based block proposal consensus. However, the
proposed protocol does not guarantee liveliness in a permissionless setting. Nodes propose
blocks in a predictable round-robin algorithm based on their unique identifiers, which in
turn opens up the consensus layer to denial of service (DOS) and collusion attack vectors.

Similarly, Cheikhrouhou et al. [21] propose a proof of trust based consensus mecha-
nism, with the aim of securing message exchange in EV environments powered by the IoT.
However, their consensus mechanism assumes a private network in which nodes do not
exhibit Byzantine behavior. Containers, as used in this paper, are a group of namespaced
processes running within an operating system. Docker is the most widely used container
solution [22] and one of the few platforms that can migrate apps at run-time and enable
easy communication. For these reasons it was used as the main testing platform.

2.2. Available Blockchain Solutions

Ever since the inception of the Bitcoin protocol, blockchain protocols have been exten-
sively researched, and blockchain-based solutions apply to many domains, as shown in [21].
Most notable advances contribute to improving the consensus mechanisms that would
address the notorious energy inefficiency of Bitcoin’s POW consensus. In a PoW-based
consensus mechanism, nodes (miners) compete for the right to append new blocks to the
chain by computing a solution to a difficult problem. Appending new valid blocks is
rewarded with digital assets, which encourages miners to contribute more computational
resources in order to increase their rewards. The protocol periodically adjusts the difficulty
of the problem to meet the target block time of approximately 10 min.

To address the inefficiency of PoW, new consensus mechanisms have been proposed,
the most notable ones being proof of stake (PoS), proof of authority (PoA), Tendermint, and
proof of history (PoH).

Proof of stake greatly reduces the energy footprint over PoW by selecting block-
producing nodes based on their stake in the digital asset the blockchain maintains. To
achieve this, a source of entropy for decentralized and secure randomness is needed. Nodes
are selected at random, normalized with their stake. In public networks, the consensus
mechanisms make the assumption that nodes participating in the consensus are financially
incentivized against Byzantine behavior to avoid risk of financial loss. To achieve this,
penalties for nodes violating the protocol are put in place [23]. Many consensus mechanisms
are based on PoS, with various trade-offs between security, decentralization, and scalability.
However, on a technical level, they can be categorized as vote-based consensus mechanisms
in which a subset of nodes is chosen to vote (attest) for a proposed block. If the proposed
block gathers sufficient votes, it is considered accepted and is thereby added to the chain.
The choice between aforementioned trade-offs stem from the basic CAP theorem [24]. The
subset of nodes participating in the consensus at each round (block) is significantly smaller
then the set of validators (consensus nodes). While this decreases decentralization, it greatly
improves scalability, as gathering and aggregating a large number of votes is not feasible.
However, this stresses the importance of unpredictability that arises from a secure source
of randomness [25]. In PoW-based blockchains, unpredictability comes from the mining
process. Obtaining the proof requires randomized guessing (unpredictability), which is
provably fair and uniform.

For PoS consensus mechanisms, many sources of randomness have been proposed.
Most notable are RANDAOQOI[26], verifiable random functions [27], and, recently, verifiable
delay functions [28].

The proposed solution makes use of a blockchain to store the state transitions of the
network in a verifiable and transparent way. Unlike existing blockchains, which either use
an account-based model [29] or a UTXO model [30], our blocks do not store transactions
or account states. The block structure is tailored to accommodate application migration
and the verifiability of migrations. Hence, the blocks are snapshots of the state of the
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system containing information about the available resources and the required resources of
applications managed by the system.

A survey of the most notable, readily available blockchain solutions for private net-
works yielded three candidates:

e Implementing a private Ethereum network, although the implementation is fairly
simple [31]. The available consensus mechanisms include PoW, which is not secure
for networks with no value, and proof of authority (PoA), which limits the consensus
nodes to a subset of trusted nodes, thereby decreasing decentralization and security.

*  Implementing a HyperLedger blockchain in all configurations requires notable CPU
burdens [32]. As the number of nodes in the network grows, the system requirements
scale far beyond what can be considered sustainable for edge devices.

e MultiChain (MultiChain Open source blockchain platform: https://www.multichain.
com/) also presents a viable alternative for a private blockchain network [33], but it is
also not suitable for edge devices [33]. Moreover, it is primarily focused on facilitating
cryptocurrency and asset transactions.

¢  Solana [34] uses verifiable delay functions as a source of entropy for their leader rota-
tion algorithm. However, their VDF implementation requires thousands of graphical
processing units to meet the speed requirements, which is not suitable for edge devices.

All the presented available off-the-shelf solutions satisfy most of the criteria posed by
the research question, but they all rely heavily on computational power, which makes them
unsuitable for edge devices. Furthermore, the required block structure and changes on the
protocol would outweigh the benefits and accumulate technical debt.

2.3. Decentralized Self-Managing IoT Architectures

A survey of the scientific literature shows multiple solutions that address decentralized
self-managing architectures for the Internet of Things (IoT). The most notable examples are
as follows:

*  Maior et al. [35] present a theoretical description of a decentralized solution for energy
management in IoT architectures. The solution is aimed at smart power grids. They
present four algorithms with analyses of correctness in order to describe the behavior
of self-governing objects.

* Higgins et al. [36] propose a distributed IoT approach for electrical power demand
management.

*  Suzdalenko and Galkin [37] extend the approach by Higgins et al. [36] by allowing
users to individually join and depart the environment at run-time.

* Niyato et al. [38] propose a system that addresses home energy management where
devices communicate directly among themselves.

e dSUMO [39] address the synchronization bottleneck by proposing a distributed and
decentralized microscopic simulation (the focus is on data throughput and not fault
tolerance; throughput is increased using a decentralized setting).

e Al-Madani et al. [40] address indoor localization utilizing Wireless Sensor Networks
(WSNSs) and relying on a publish/subscribe messaging model. The results show that
Really Simple Syndication (RSS) [41] achieves acceptable accuracy for multiple types
of applications.

*  Aauylaetal. [42] present a blockchain-based, multi-layered, edge-enabled, secure data
processing framework for an edge-envisioned vehicle-to-everything environment. The
solution is evaluated in terms of its latency, energy consumption, and SLA agreement
compliance.

¢  Singh et al. [43] propose a secure architecture based on a one-time signature scheme for
the IoT in an edge infrastructure. The solution relies on a blockchain-enabled distributed
network. The study shows favorable results compared to available solutions in terms of
computing time and communication cost.

e Kanagachalam et al. [44] present BloSIM, which is a blockchain-based service mi-
gration for connected cars in an embedded edge environment. They deployed edge
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clusters using NVIDIA Jetson boards in an embedded edge environment. Kubernetes
was used as a container orchestration instead of a decentralized consensus proto-
col. The authors used similar methodology for the evaluation through performance
parameters such as latency, throughput, storage, and bandwidth.

Our proposed solution differs from the previous contributions in two ways:

e We consider multiple criteria to optimize and include a framework to add more criteria in
the future. Other solutions typically focus on a single problem and presenting an optimal
solution for it. We argue that an IoT architecture requires multiple optimization criteria.

*  Our protocol is highly decentralized, as it allows all nodes to participate in the consen-
sus while maintaining low hardware requirements fit for edge devices.

A related approach by Samaniego and Deters [45] suggests using virtual resources in
combination with a permission-based blockchain for provisioning IoT services on edge
hosts. They use blockchain to manage permissions only and therefore provide security
using blockchain. In contrast, our approach uses blockchain to store all information about
service choreography, which makes it verifiable over time, while still providing security.

The main contribution of this paper is a light-weight blockchain protocol that can
achieve high decentralization and has low hardware requirements, making it suitable
for the hardware typically found in edge devices. The proposed protocol inherits ideas
from Ethereum 2.0 but replaces the source of entropy needed for consensus with a VDF.
Moreover, the structure of the block carries the state transition information, and unlike
existing blockchains, it does not have the concepts of accounts, balances, and transactions.
The acronyms used in this paper are presented in Table 1.

Table 1. Table of Abbreviations.

Abbreviation Long Name

VDF Verifiable Delay Function

SPOF Single Point Of Failure

UTXO Unspent Transaction Output

PoW /PoS Proof of Work /Proof of Stake

API Application Programming Interface
CRIU Checkpoint/Restore In Userspace
CPU Central Processing Unit

RAM Random Access Memory

PBFT Practical Byzantine Fault Tolerance
RNG Random Number Generator

3. Proposed Decentralized Architecture

In this section, we provide a general description of our architecture [46] and highlight
its main components. The main purpose of our architecture is to enable the verifiable and
decentralized management of applications on the edge. In our vision, applications can be
built as containers and submitted to the network by reaching any node via an API. We use
containerization to decouple the host running the application from the application itself
and address the issue of hardware and software heterogeneity. This allows the protocol
to assume an application can be run on all nodes in the network. A randomly selected
and decentralized orchestrator on the network would then be able to choreograph the
execution of the application and migrate applications between hosts at run-time. As our
architecture is fully decentralized, each node is locally driven by a protocol that participates
in establishing the global state of the network via a specially built consensus mechanism.
Nodes in the network reach consensus on a migration plan in an effort to improve the
resource allocation of running applications. A migration plan is viewed as a state transition,
which is stored on the blockchain formed by the participating nodes. We implement a
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choreographed solution, which is a collaborative, rather than a directed, approach (such
as orchestration). Choreographed systems define a way for each member to describe its
role in the interaction [13]. This collaborative approach avoids the SPOF problem. Despite
this advantage, there are no choreography solutions known to address the open problems
described at the start of the Section 2.

To provide a global understanding of our fully decentralized architecture, we first describe
the architecture of a single node, followed by the interaction protocols between nodes.

All identified orchestration solutions presented in Section 2.1 rely on a primary/replica
model. The main service selects the applications that need to be reallocated according to a
selected optimization algorithm.

Our migration algorithm is able to:

. Pause a container;
e  Transfer the context to a different host;
*  Resume the execution given the context.

Additionally, we implemented migrations using checkpoint/restore in userspace, or
CRIU, an experimental feature available in Docker [47].

3.1. Overview of Node Architecture

The node application that we developed is containerized in Docker. As shown in
Figure 3, the internal architecture of a node is composed of the following modules that
support application management:

*  Networking layer: this layer deals with network communication through deployed APIs;

*  Gossip protocol: A rendezvous-based gossip protocol is used to build a distributed
hash table (DHT) that maps public IP’s of nodes to their network address. The mes-
sages are encoded using protocol buffers (https:/ /developers.google.com /protocol-
buffers accessed on: 25 April 2023), which is the underlying protocol that makes sure
all messages reach all nodes in the network while minimizing network usage;

*  Block propagation protocol: relies on the gossip protocol to spread newly accepted
blocks over the network;

*  Resource propagation protocol: relies on the network layer to deliver the state of
resources (currently CPU, RAM, disk usage, and network utilization of Docker con-
tainers) over the network to the receiving node;

*  Consensus protocol: ensures all nodes reach consensus in a decentralized way (pre-

sented below);

Migration algorithm: guarantees that a migration strategy is reached whenever needed

thanks to a deterministic algorithm. This algorithm is executed at each slot until the

proposed block is accepted and finalized. The output of the algorithm is included in
the block to construct a verifiable and transparent log of each application’s life-cycle;

Docker daemon: hosts applications and is used for abstracting the underlying het-

erogeneity between devices, systems, and applications. It provides support to our

solution via Docker APIs;

Resource monitoring: relies on the Docker API to monitor the state and resource

allocations of the hosting device and the applications running on it.

Network layer

Block propagation
protocol

Resource propagation
protocal

Gaossip protocol

Application

Consensus algorithm Migration algorithm Resource monitoring

Docker daemon

Application 1 Application 2 O o o o Application n

Figure 3. General overview of a node architecture.
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3.2. Storing System States in a Blockchain

All nodes share information about their states through a federated type topology
obtained by distributed clustering of nodes, which is explained in more detail in Section 3.3.
We define a state as a matrix of vectors describing the resource consumption associated
with each application. A resource pool data structure is replicated in all nodes and contains
information about all node states. In our use case, we define a vector with the following
values:

{app, cpu,ram, disk, network, timestamp}

This provides a time series of system resource utilization for each application across an
operating period. The resources used by applications are obtained through the Docker API
and represented in percentages for simplicity. Taken at a specific time interval, the vector is
a block that includes a list of per-application resource statistics, as shown in Table 2, where
Nodeis a 256-bit hash representing the system-wide unique ID of the application, RAM,
DISK, and CPU are floats representing the portion of node’s available resources used by
the application. Finally, the average latency is computed as the 30 s moving average of
round-trip delay (RTT) towards randomly selected validators.

Table 2. An example of a data block.

v Node RAM DISK CPU Average Latency
) A 50% 23% 90% 23 ms

4] B 47% 87% 23% 33 ms

) C 12% 25% 15% 51 ms

U3 A 35% 14% 56% 101 ms

Uy D 25% 74% 16% 9ms

From a data block, it is then possible to compute a migration plan to optimize the allocation
of applications to nodes according to the resource states of all nodes. The migration plan is
also included in the block, which produces a transparent computational log for verifying if the
adopted migration plan was actually efficient and fair. The architecture does not enforce any
specific migration algorithm. The only constraints are that the algorithm must be deterministic
and must rely only on data included in the block (reached by consensus). For the same inputs
to a deterministic algorithm, proposed migrations can be verified much like transactions are
verified in public blockchains: using basic asymmetric cryptography.

In order to provide liveliness and responsiveness, delivering resource consumption
statistics to the block producer (P in Figure 4) must be faster than % - slotTime. Using
the gossip protocol produces unwanted latency, and greatly increases resource utilization
when maintaining the message queue (MQ). To overcome this, we implement a distributed
k-means clustering algorithm that requires no communication between nodes to compute.
Clustering is used to group nodes in a separate overlay network where statistics are
propagated using the UDP protocol. The seed used to compute k-means is shared by all
nodes, the VDF proof. Cluster representatives (R in Figure 4) are nodes that are responsible
for requesting resource utilization statistics from their members, and transmitting them to
the block producer. The timing details are strongly intertwined with the synchronicity of
the consensus algorithm further explained in Section 3.4.

This federated overlay topology greatly decreases decentralization and, consequently,
fault tolerance in case a cluster representative exhibits Byzantine behavior. However, this is
of limited concern considering that a failure to disseminate resource utilization only delays
potential migrations for a subset of applications in the current block. Once a new block is
accepted, a new overlay topology is computed. Eventually, a node exhibiting Byzantine
behavior will be excluded from the validator set as, detailed in Section 3.4.
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Slotn +1
Slotn

r 1

f
fi ; Report Statistics
2
Eé % Candidate Block
3
Eg ; Send Attestations

L T=1/3* slotTime ) L T=2/3 * slotTime

Block (n)

) L T= slotTime )
RS

Gather statistics and attestations Gossip new block

Self-elect into roles / Compute
clustering overlay

proof = vdf(n.blockHash, difficulty)

Figure 4. Diagram of the time-synchronous protocol depicting the important roles and actions each
node executes for each slot.

3.3. Migration Algorithm and Verifiability

To forge a block, nodes compute a migration plan based on resource statistics in
the previous block. The migration plan is executed once the proposed block is accepted.
Application migration is realized using Docker commands to pause the application, com-
press it, and transfer it to the destination node where it is restored. Preferably, CRIU is
used and only the state of the running container is extracted and migrated. All migration
plans are securely stored in the blockchain for eventual verification. The time to produce
a block is configurable and largely depends on the requirements for responsiveness, re-
source availability, and network size. However, there are some lower bounds set by the
consensus protocol (empirically, 5 s) under which we experienced occasional block and
vote propagation issues, as well as aggregation delays that can cause unplanned soft forks.

Each block contains data that describe the states of nodes and the migration plan
resulting from the application of the generation algorithm. Each block also contains the
signature of the previous block to follow the principles of the blockchain, so that all blocks
are dependent on their previous blocks, which makes it irreversible. To demonstrate our
approach, we relied on the Algorithm 1 to generate migration plans according to the
resource pool. Blocks also include meta-data that facilitate their utilization, such as the
block’s hash, the previous block’s hash, VDF proof, aggregated votes, validator set updates,
slot, and epoch.

Algorithm 1 Deterministic migration plan generation.

Input: BlockData
Output: Generation plan
Max < FindMaxLoadedNode(BlockData)
Min < FindMinLoadedNode(BlockData)
if !|AppQueue.isEmpty() then
while !AppQueue.isEmpty() do
Min < FindMinLoadedNode(BlockData)
Min.add App(AppQueue.dequeue())
end while
else
AppToMigrate <= Max.MaxLoad App
DeltaScore < (Max.score — Min.score)
NextDeltaScore <= (Max.score — AppToMigrate.score) — (Min.score +
AppToMigrate.score)
end if
if Math.abs(DeltaScore > NextDeltaScore) then
Migrate(AppToMigrate, Min)
end if




Sensors 2023, 23, 4448

11 0f 23

3.4. Consensus Mechanism

A key component of a blockchain is the ability for nodes to reach consensus on the
global state of the ledger. With increasing interest in blockchain technology in recent years,
many consensus algorithms have built upon basic proof of work (PoW) [48] concepts. PoW
is a technique that protects from various attacks by requiring a certain amount of processing
power to use a service, which makes a potential attack worthless because it becomes too
costly. However, most algorithms used in permission-less blockchain implementations rely
on basic game theory assumptions, which hold only when the blockchain facilitates value
transfers and actors can be assumed to behave in their own (financial) interests (i.e., the
nothing at stake problem).

In permissioned networks, where there is usually no monetary value, the consensus
algorithms used in monetary blockchain implementations are not appropriate. Instead, a
known family of consensus algorithms for permissioned networks can be used based on
voting schemes for leader elections such as Practical Byzantine Fault Tolerance (PBFT) [49],
Proof of Elapsed Time (PoET) [50], or RAFT [51]. However, these algorithms require
multiple messages to be sent through the network in order to commit a change, thereby
increasing network utilization and delay.

Our algorithm is based on a random draw that is universally verifiable. To achieve
decentralized randomness and verifiability, we make use of Verifiable Delay Functions
(VDF) [28]. A VDF is a function that takes a large, but configurable, quantity of non-parallel
work to compute and produces a verifiable proof. More specifically, VDFs are similar to
time lock puzzles but may require a trusted setup where the verifier prepares each puzzle
using its private key. Additionally, a difficulty parameter can be adjusted to increase the
amount of sequential work, thereby increasing the delay. A VDF can be decomposed into
three main phases, namely:

1. A setup phase, where a security parameter (blocky,s;,) and a difficulty parameter d are given;

2. An evaluation phase, which computes the VDF from the given input to produce a
proof p, which is meant to be infeasible to compute in less then time(d);

3. A verify phase, which is a deterministic algorithm that outputs either frue or false on
input p, blocky,,g,, d. Verification should be much faster than evaluation.

A VDF construction must meet the following properties:

1.  Correctness, which requires that the output to an honest evaluation always outputs
true in Verify;

2. Soundness, which ensures that obtaining a positive output from Eval given a mali-
cious output is negligible;

3. Sequential, which guarantees honest parties can compute a VDF in t sequential steps
and no adversary can compute it in less than ¢t with parallelization.

We extend our previous consensus algorithm [46] such that nodes first compute a
VDF depending on the difficulty assigned for block n + 1 and desired slotTime, which
is configurable and allows the operator to set the desired slotTime directly effecting net-
work performance. We then use the proof P, = VDF((n — 1)pasn, (1 — V)aifficurry) as a
decentralized entropy pool for a random number generator (RNG) to draw decentralized
randomness for a given slot. Figure 4 illustrates the time-synchronous protocol executed
for each slot. Nodes are able to self-elect into consensus roles (e.g., Block Producer (P),
Validator (V), Committee Member (C)), as outlined in Algorithm 2. Due to the seeded RNG,
all nodes compute the same assignment of roles for all participating nodes, thereby not
requiring any message exchange to agree on their roles. Moreover, the canonical nature
of the chain provides some security guarantees so that the roles for the future block n + 1
cannot be computed before block 7 is accepted. Once roles are assigned for a given slot,
nodes perform their sub-protocols as follows:
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1. The Block Producer (P) is a singular node elected to each slot to produce a candidate
block. The candidate block is sent to all committee members. Upon sending, the block
producer listens for attestations for % x slotTime and aggregates them. The aggregated
signature is then included in the block header and gossiped to the entire network if a
sufficient number of votes are received; otherwise, a skip block is proposed.

2. The Committee Members (C) are responsible for attesting to candidate blocks. They
verify the block integrity, signatures, and data to produce a Boneh-Lynn-Shacham
signature (BLS), then send the signature to the block producer.

3. Validator (V) nodes receive a new block and verify the integrity and committee signa-
tures to decide to either accept or reject the block.

The protocol assumes all validating nodes form a validator set, which is shared among
all nodes participating in the consensus protocol. The assumption is guaranteed by logging
inclusions and exclusions in blocks. To build the validator set, a node builds the chain to
the current tip (last block), and upon verifying each block, it executes the validator state
transition function to reconstruct the validator set. The state transaction function simply
stores changes to the membership of the validator set. Nodes that want to participate in the
consensus gossip their signed inclusion request, and once included into a block, they are
considered in the validator set by all nodes simultaneously and can begin participating by
role self-election. Nodes are excluded from the validator set when they are elected to the
role of Block Producer (P) and then fail to deliver the candidate block to the committee in
time. The committee will then vote for a skip block, which includes only the exclusion of
the Block Producer (P). In a permissioned setting, this is considered sufficient to evaluate
future failures in case a node is faulty. The node can rejoin the validator set at any time
by gossiping an inclusion request. We define the consensus protocol more formally in
Algorithm 3.

Algorithm 2 Role election.

Input: Slot, ValidatorSet

Output: Roles]]
Slotseeq <= VDF(chain go_1)-hash, chain o, _qy.dif ficulty)
ValidatorSet <= Shuf fle(ValidatorSet, Slotgee;)
Roles['blockProducer'] < ValidatorSet.subset(0,1)

Roles|'committee’| <= ValidatorSet.subset(1, committeeSize)

Roles['validator'] <= ValidatorSet.subset(committeeSize, ValidatorSet.size)
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Algorithm 3 Consensus

Input: Role][]
Output: O
switch (Roles[nodeld)])
case blockProducer:
block.migrations < prepareMigrationPlan(containerStats)
block.signature < sign(block)
broadcast(block, committee)
votes <= await(*LotTime)
block.votes <= BLS.aggregate(votes)
if hasMajority(block.votes) then
gossip(block)
else
skipBlock()
end if
case committee:
candidateBlock <= await (SLotTime2 )
if candidateBlock == null then
skipBlock()
else
proof <« verify(candidateBlock.proof)
migrations <= verify(candidateBlock.migrationPlan)
signature <= verify(candidateBlock.signature)
if (proof & migrations & signature) then
send(vote, blockProducer)
else
skipBlock()
end if
end if
case validator:
block < await(slotTime)
if block == null then
skipBlock()
else
proof <= verify(block.proof)
migrations <= verify(block.migrationPlan)
signature <= verify(block.signature)
votes <= verify(block.votes)
if (proof & migrations & signature)& votes) then
chain < block
end if
end if

end switch
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3.5. Security and Fault Tolerance Considerations

Fault tolerance is an important property of the system which must guarantee the
liveliness of applications running at any given time. Hence, the risk of accidental forks (a
split in the blockchain) is a concern. In a permissioned setting, forks are accidental and are
a product of node failures or message propagation delays. We provide various scenarios of
forks below and show how the fork choice rule addresses them:

1.  The proposed block b for the current slot s is not propagated to all committee members
in time C. A forked subset C; C C votes and includes a skip block sb for slot s:

(i) When ‘ > ¢ r, block b will pass the majority vote, and the tip of the chain s b.
However Cy tip is sb. In this case, Cy will produce different role assignments
and attempt to build on sb. Even if the block producer bp € Cy, a majority

vote cannot pass as I%I >C £ Therefore, C ¥ will add another sb. Eventually,
the real block will reach the forked nodes, and due to a hash mismatch, nodes
will initiate the fork resolution protocol.

(ii) When 9 < Cy, block b will not pass the majority vote, and the tip of the
chain is sb. No fork will occur.

2. Alternatively, attestations for b can be aggregated in time, but b fails to propagate to
all committee members in time. A subset of committee members may then assume the
block producer experienced a fault and start gossiping sb. A network partition in the
validator set occurs due to a race condition. However, eventually b will reach nodes
with the tip sb. Due to a hash mismatch, they will initiate the fork resolution protocol.

Figure 5 illustrates how fork resolution works. At height 2, two different blocks are
proposed and accepted. Both reference the correct previous block hash in which all nodes
agreed on the same previous block n + 1. However, any blocks after height 2 will have a
different previous block hash. Eventually, one of the chains has to be dismissed. For each
of the aforementioned cases where a fork can occur, this eventually happens. In case of
disconnect or high latency, the network eventually reaches higher connectivity as peers
build new connections. Moreover, for each slot, nodes take up new roles in the consensus
protocol, and the likelihood of effected nodes to maintain the same roles decreases rapidly.

_ Hash: M39FN2
Slot =4 Attestations: 15

Hash Mlsmalch

Slot=3 Hash: B48E74 Hash: 44322G
Attestations: 7 Attestations: 8
Back(rack
Slot=2 Hash: 81E9D2 Hash: E015DA
Attestations: 5 Attestations: 9
_ Hash: FE3A66
Slot =1 Attestations: 15

Figure 5. Fork resolution protocol.

In Nakamoto-style [30] consensus algorithms, the fork choice rule states that the
longest chain (most proof of work) is the correct chain. However, a vote/role-based
consensus reduces variance in block time and the forked chain can have an identical block
height. Instead, when a node cannot add a new valid block due to a mismatch with the
previous block hashes, it backtracks to recheck the attestations for each block down to the
forked block. Afterwards, it rebuilds the chain including the blocks by following the chain
with most cumulative attestations. Note that in order for a node to receive a valid block
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with a different previous block hash, the network partitions/high latency must have been
resolved for the node to receive the alternative chain.

Another aspect of forks is the fault tolerance related to applications running in the
system. Every block includes a migration plan, and in case of a fork, two or more migration
plans are created and accepted by two disjoint sets of nodes. A migration plan will
include all applications, which guarantees the liveliness of and variability in computation.
Moreover, in case of a chain split, both sets of nodes (A, B) will execute the their respective
plans, which can unfold in the following two ways:

1.  Anapplication A is planned to migrate from a node in A to a node in set B, or vice versa;
2. Anapplication A is planned to migrate to another node within sets A or B;
3. Anapplication A does not need to migrate in either chain.

In order for an application to migrate from one node to another, a direct connection
between the nodes must be established, where one node sends a compressed version of
the container to the other. To execute this, both the origin and destination node must agree
and run the migration protocol. If a fork occurs due to high network latency or complete
disconnection between the two sets, the migration protocol will attempt to communicate
between the sets, resolving the fork as shown in Figure 5 as long as communication is
possible. Whenever a migration plan requires an application to migrate between two
conflicting chains, it forces a fork resolution. Moreover, in such cases, only one migration
is run at the same time. However, in the event application A is planned to migrate within
its originating chain, the migration will not force the network to reconnect. This could be
considered a hard fork, as there is no connection between the two networks, and results in
separate instances of the network. The final example is when application A is not required
to migrate, in which case one instance remains running and the system is not affected. The
only example where serious faults might occur is when the network is not well connected
and forks occur when one partition accepts a block, while the rest vote for a skip block.
However, the migration algorithm is deterministic and the input is in the previous block.
This means both block producers will produce the same migration plan even though the
block hashes will be different. Although there will be two conflicting chains, the migration
plan will be the same. Once the partition is solved, the forked chain with a skipped block
will revert back to the correct chain.

4. Evaluation and Empirical Results

To assess the performance of our implementation, we designated a specific node to
record operational information about the entire system in a time series database. Our
experimental environment utilized Docker Swarm technology to establish a cluster of eight
nodes, each featuring a 16-core (32-thread) Ryzen Threadripper CPU and 32 GB of RAM.
The nodes within the cluster were interconnected by an overlay network with negligible
latency. To simulate more realistic network conditions, we introduced artificial latency on
individual UDP packets in the form of a random delay within the range of 0-5 milliseconds.

The Docker service deployed a containerized node software across the cluster, which
balanced the load across nodes. This network was designed as a Docker service, which
commenced a new node every 10 s to avoid congested network conditions. The bootstrap
setup was established with each test-net, where the first node was designated as the
bootstrapping node, with its public key and IP address known to all other nodes.

Each node was restricted to one CPU core and 256 MB of RAM, exceeding the protocol’s
requirements. Furthermore, the test applications were implemented as Docker images,
which were executed through a Docker daemon within each node’s Docker container
instance. This two-tiered abstraction facilitated the separation of node resources from
application resources, permitting the test-net to operate seamlessly.

Figure 6 outlines the architecture employed by the cluster. The swarm was created by
defining an overlay network that could support more than the standard 256 IP addresses to
accommodate our experiments. The complete reference implementation of the protocol,
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along with instructions, is available on the project’s Github at https://github.com/Nion-
Network/Core accessed on: 30 April 2023.

ISR

10.

11.

12.

13.

14.

15.

A step-wise list of how the network is established using the protocol is given below:

The first node in the network is a bootstrapping node, and its public IP is known to
all other nodes.

Each node is a Docker container that starts on a Docker swarm cluster.

A new node is spun up every 10 s to avoid unrealistic congestion.

Each node first connects to the bootstrapping node and joins the network.

Together, the bootstrapping node and all other nodes maintain a Kademlia-style DHT,
which helps nodes discover each other.

The first block (genesis block) is created by the bootstrapping node only after a
sufficient amount of validator nodes have joined the network.

To join the network as a validator, a node must send a signed inclusion request to
everyone.

Initially, the bootstrapping node gathers inclusion requests, which will be included in
the validator set once the genesis block is created.

The minimum number of nodes required to join the network is 1 + the size of the
committee.

Once the first block is created, all nodes run a verifiable delay function and continue
self-electing into roles and reaching consensus on each slot.

For every block, the block producer includes the digitally signed inclusion requests in
the block so that other validating nodes who joined the network are considered as
validators for the next slot.

The network continues to grow as new nodes join and send inclusion requests, and
consensus is reached on each slot.

After all nodes are included in the validator set, an external service starts submitting
containerized applications to the network via a POST request to the specific validator.
Validators receiving a request to run an application do so and start reporting the
resources consumed.

Each following block contains a migration plan, which all nodes validate and execute
in accordance with the protocol.

Cluster

Docker Swarm

Cluster 0
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Figure 6. Cluster architecture.

4.1. Consensus Layer

To verify that VDF-based consensus provides good decentralized randomness, we

analyze the distribution of assigned roles. Figure 7 shows the frequency nodes were elected
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into individual roles. Additionally, since container resource consumption statistics are
propagated through a decentralized k-means clustering, cluster representatives are also
shown. We observe that nodes were elected into all roles, while there was some variance in
the block producer role. This is due to the small sample size of 1000 slots in each, of which
only one node is selected as the block producer. A more uniform distribution is expected
with a larger sample size.
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Figure 7. Distribution of roles across all participating nodes over a period of time: each bar chart
shows the number of times a node has been elected to a specific role.

To validate the scalability of the consensus layer, we examined a network of 1000 nodes
with a committee size of 256 nodes and a target block time of 16 s. Figure 8 shows the block
times, and the number of votes per block that were successfully aggregated within the
time window for the given slot. We observe that all proposed blocks were accepted as the
majority vote threshold was surpassed, and no skip blocks were produced despite the low
block time and size of the committee. Moreover, we observe almost no variance in block
time, indicating that the system had no issue propagating messages.
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Figure 8. Committee vote aggregation and block times in a network of 1000 nodes and 256 committee
members.
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4.2. Orchestration and Migration

One of the most important features of the system is the ability to migrate applications
in a decentralized, transparent, and verifiable way. The decentralized orchestrator aims
to distribute load across the network evenly by migrating applications away from nodes
with heavy load to those with resources available. To test the performance and efficiency of
migrations, we consider the worst case scenario in which all applications were submitted to
one node. Figure 9 illustrates the CPU load of nodes across the last 750 slots because nodes
join the network gradually and affect the early distribution, which skews the observations.
We observe that the orchestration algorithm migrates applications away from nodes with
high CPU consumption to nodes with more available resources. This resulted in a gradual
decline in the mean CPU load across the network.
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Figure 9. CPU load distribution of the entire network over the last 750 slots.

In Figure 10, we compare migration times of both test-nets to evaluate the feasibility
and performance of CRIU enabled migrations. We break down a migration into three
steps: Save , Transmit, and Resume. For standard migrations, saving requires pausing the
running container, exporting, and compressing it. In CRIU migrations, the container is
paused but not exported. Only the state of the container is extracted and compressed. After
transmission, the receiving node must resume the container. In standard migrations, the
container is uncompressed and resumed. While using CRIU, a new container from the
same base image is created, and the uncompressed state is injected into it.

Using CRIU, the payload for transmission is much smaller, and hence the transmission
time is greatly improved over standard migrations. Additionally, compression is a CPU-
intensive task. Compressing and decompressing only the state of an application instead
of the entire container is considerably faster. The median uncompressed exported state of
the application using standard migration was 142.2 MB. Using CRIU, the median size of
the uncompressed state was 15.2 MB. The spikes in standard migrations can be attributed
to a lack of resources, as nodes under heavy stress from running other applications lack
the resources needed to perform the compression promptly. Table 3 provides a statistical
summary of the observed times in milliseconds. We observe that CRIU-enabled migrations
are not only faster but also produce more consistent migration times. This can be observed
by the considerably lower standard deviation in Table 3.
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Table 3. Summary of migration times in milliseconds.

Type Segment Min. Max. Med. Mean SD
CRIU Resume 2366 10,012 3259 3540 1166
CRIU Save 1975 8368 2701 3126 1111
CRIU Transmit 46 833 79 88 61
Standard Resume 1449 34,337 7414 9550 6637
Standard Save 4010 49,080 11,231 12,875 6942
Standard Transmit 506 15,007 1624 2047 1467
CRIU
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Figure 10. Migration timing comparison between standard and CRIU-enabled migrations.

Another way to visualize the dynamics of the system is shown in Figure 11. Each
bar chart shows nodes on the x-axis. Stacked bars are used to illustrate the number of
applications running on the node and their respective CPU consumption in %. We observe
that, initially, the application distribution was uneven, with a very high CPU load on one
node. This is the result of submitting incoming applications to one node. Over time, the
system is able to evenly distribute applications across the network.
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Figure 11. Discrete time visualization of applications and their CPU load utilization on participating
nodes. Colors indicate individual containers active on each node and are not necessarily the same
container on different nodes.

4.3. Network Clustering

The performance of the decentralized orchestrator heavily depends on the propagation
speed of resource allocation from all validators. In a clustered network, validators report
their resources to their cluster representatives, which then send an aggregated report to the
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block producer. To avoid a potential attack vector on the clustering, the network topology
changes every slot. Figure 12 shows the time needed to deliver the resource reports to
representatives and, finally, the producer. We observe that in the first few minutes, while the
nodes are joining the network at a high frequency, the propagation times are slower (still
well within m) but stabilize quickly, even with networks of 1000 nodes.
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Figure 12. Time distribution of resource propagation in two phases. Initially, validators submit
their resource statistics to their respective cluster representatives (To representative). After, cluster
representatives send collected reports to the block producer (To Producer). There were a total of
50 clusters created each slot within a target slot time of 16 s, which sets the upper bound for resource
propagation at 5.4 s.

5. Discussion

Our experiments demonstrate that the reference implementation of the protocol be-
haves as intended. We found that employing verifiable delay functions as a source of
entropy for role election provided an effective means of ensuring security while achieving
consensus. Throughout our extensive testing, we closely monitored telemetry data from
individual nodes as well as the overall system, but did not observe any significant devia-
tions from expected behavior, except during the initial phase when several nodes joined
the network simultaneously. We consider a network size of 1000 nodes to be sufficiently
large and representative for drawing conclusions, although we acknowledge that larger
networks could be tested if hardware constraints were not a limiting factor.

It should be noted that the proposed protocol does not constitute an incremental con-
tribution to existing autonomous container orchestration protocols, and thus a comparative
analysis is not applicable. Overall, our observations indicate that the absence of unexpected
behavior during testing is a positive indication that the protocol performed as expected
based on its theoretical assumptions.

6. Conclusions

In this paper, we introduced a decentralized architecture capable of run-time appli-
cation migration for large-scale deployments of peer-to-peer IoT sensor networks. We
describe three key contributions: a scalable consensus protocol layer; an efficient, secure,
and dynamic topology; and a decentralized orchestrator capable of low-latency real-time
application migrations.

We evaluate each contribution by performing empirical tests with our reference im-
plementation of the protocol. Additionally, we improve migration times by implementing
CRIU, an experimental feature of Docker that allows the system to migrate an applica-
tion’s state without affecting its run-time. Using CRIU-enabled migrations, we observe
considerable reduction (nearly 10-fold) and improved consistency in migration times.



Sensors 2023, 23, 4448

21 0f 23

References

The results of our experiments show that distributed consensus and application
management is possible at run-time, thus opening the door to several improvements
towards self-managing IoT platforms. The increase in network usage and CPU load has
been shown to be acceptable when taking into account the scalability, fault tolerance,
transparency, and absence of an SPOF that our solution brings. More importantly, we have
shown that blockchain overhead is a negligible aspect of the actual cost of application
migration as the system is able to finalize blocks with slot times as low as 5 s while
maintaining higher decentralization than existing platforms.

As future work, network instability (devices entering and leaving the network) should
be explored, and solutions to reduce the required computational power while maintain-
ing optimal application management should be investigated. Moreover, the algorithm
governing the decentralized orchestrator will be extended to allow applications to submit
migration policies that the orchestrator will have to follow during its operation. As future
work, more efficient orchestration algorithms should be explored, with emphasis given on
performing multiple migrations in the same slot with a non-cycling constraint.

Furthermore, geo-sharding the network must be explored. In a geo-sharded network,
nodes participating are assigned into shards based on their geographical location. A weaker
consensus within a shard can speed up the state transition by periodically snapshotting sharded
states into the main chain. This will enable applications to specify more complex migration
policies by limiting a geographical area within which the application may run (geo-fencing) or
to improve network latency by migrating applications closer to clients of specific regions.
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