1

© N o o & w0

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

Computer Science and Information Systems 00(0):0000-0000 https://doi.org/10.2298/CSIS123456789X

A Framework for Privacy-aware and Secure Decentralized Data Storage*

Sidra Aslam!23 and Michael Mrissa!+2

! InnoRenew CoE, Livade 6, 6310 Izola, Slovenia
sidra.ssc@stmu.edu.pk
2 University of Primorska, Faculty of Mathematics, Natural Sciences
and Information Technology, Glagoljaska ulica 8, 6000 Koper, Slovenia
3 Shifa Tameer-e-Millat University, Department of Computing, Islamabad, Pakistan
michael.mrissa@innorenew.eu

Abstract Blockchain technology gained popularity thanks to its decentralized and transparent features. However,
it suffers from a lack of privacy as it stores data publicly and has difficulty to handle data updates due to its main
feature known as immutability. In this paper, we propose a decentralized data storage and access framework that
combines blockchain technology with Distributed Hash Table (DHT), a role-based access control model, and multi-
ple encryption mechanisms. Our framework stores metadata and DHT keys on the blockchain, while encrypted data
is managed on the DHT, which enables data owners to control their data. It allows authorized actors to store and
read their data in a decentralized storage system. We design REST APIs to ensure interoperability over the Web.
Concerning data updates, we propose a pointer system that allows data owners to access their update history, which
solves the issue of data updates while preserving the benefits of using the blockchain. We illustrate our solution
with a wood supply chain use case and propose a traceability algorithm that allows the actors of the wood supply
chain to trace the data and verify product origin. Our framework design allows authorized users to access the data
and protects data against linking, eavesdropping, spoofing, and modification attacks. Moreover, we provide a proof-
of-concept implementation, security and privacy analysis, and evaluation for time consumption and scalability. The
experimental results demonstrate the feasibility, security, privacy, and scalability of the proposed solution.

Keywords: Blockchain, Distributed Hash Table, Security, Privacy, Decentralized framework.

1. Introduction

With increasing the number of internet users, large amounts of data are being generated each day [18]. Cloud computing
provides the facility to store, access, and share data with other users anytime. The main limitation of the cloud paradigm
is its centralized storage design, which leads to a single point of failure issue. Cloud storage systems rely on Trusted
Third Party (TTP) to collect and store users’ privacy-sensitive data, which is more vulnerable to security and attacks.
To address these challenges, blockchain has become popular as a decentralized and transparent data management
facility [23,42] that enables users to share and store information without any TTP. A blockchain is a peer-to-peer
distributed ledger in which a list of records called blocks are linked with each other and secured using a cryptographic
hash function [35]. It stores data on distributed nodes through a consensus mechanism that guarantees participant’s
trust by having the same copy of the data [34,37].

However, blockchain allows anyone to read and write contents, which may raise data security issues [40], and does
not handle privacy-sensitive data [21] by default. This is a limitation since data owners may not want to disclose their
sensitive information (e.g statistics about their business activities) on the blockchain. Scalability is also an issue, as the
data is replicated on every peer, storing large quantities has a prohibitive cost. Besides this, immutability of blockchain,
while an important feature, prevents data modifications.

In this paper, we propose a privacy-aware decentralized data storage and management framework that enables
actors to write, read, delete, update, and access their transactions history. Our solution allows data owners to control
and secure their data in a decentralized ledger. Building on previous work [2], our proposed framework is scalable
enough to handle an increasing number of actors while performing data write, read, update, and delete operations. The
main contributions of this paper are as follows:

— We propose a metadata extension based on existing research [1]. Our extension ensures privacy-aware data access
and enables trust between actors by recording each actor’s actions on data.

* This is an extended version of our previous paper [2].
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We propose a pointer system to manage the history of values that are stored in the DHT for a single piece of data.
It allows the data owner to maintain and access their transactions history in case of any updates in the pre-stored
data.

We propose a traceability algorithm that enables actors to trace their data and verify the product’s origin in a
decentralized platform.

We design and evaluate our decentralized framework against linking, eavesdropping, spoofing, and modification
attacks.

We provide a critical comparison of the proposed solution with state-of the-art decentralized solutions to show the
research gap.

We also provide implementation details with security and privacy analysis and performance evaluation of our
framework over a wood supply chain scenario to demonstrate its feasibility.

This paper is structured as follows. Section 2 discusses the motivating scenario that highlights the research challenges.
Section 3 provides some background knowledge together with an overview of existing decentralized solutions for data
storage and their shortcomings. Section 4 provides the detailed discussion of our contribution with proposed algorithms.
Section 5 shows the experimental results, analysis, and performance evaluation of our proposed framework. Finally,
section 6 summarizes our results and gives guidelines for the future work.

2. Motivating Scenario and Research Problem

In this section, we first explain the wood supply chain scenario that motivates our work. We then describe the research
problems that we address in this paper.

2.1. Motivating Scenario

Our scenario takes place in the context of the wood supply chain that motivates the need for decentralized solution
and highlights our research problems. The wood supply chain includes the whole process from wood logs, production,
transportation, and sell to the end customers. It enables the actors of the wood supply chain to verify the wood origin,
transport, processing, and manufacturing. As depicted in Figure 1, we identified six actors that participate in the wood
supply chain.

Forest manager

The forest manager identifies the trees that are good to make furniture (e.g oak) and cuts them into logs.
Transporter

The transporter loads wood logs from the forest and transports them to the sawmill.

Sawmill manager

It processes the logs and stores them for a specific time duration.

Product assembler

It divides logs into pieces for further processing.

Product seller owner

The product seller owner sells the furniture to the end customer.

Customer

The customer takes the wooden furniture and confirms the origin of the wood using the proposed traceability
algorithm (see Section 4.4).

This scenario highlights the need for decentralized data management, security, privacy, traceability, and data up-
dates [36]. Frauds are common in the wood supply chain, for example, during transportation actors can replace high
quality wood with low quality wood [30]. Therefore, all actors participating in the supply chain want to trace products
to prevent frauds. To overcome this problem, Radio Frequency Identification (RFID) chips are used with the wood to
manage wood traceability [31]. However, existing solutions involve centralized storage to maintain the record of RFID
data, thus making single point of failure a major concern [26].

Therefore, blockchain, as a decentralized ledger technology that stores transactions in such a way that all partici-
pants can easily access them without requiring any TTP, comes as an interesting technology for solving the single point
of failure issue. Each block of the blockchain keeps the hash of its previous block to make it impossible to modify
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> supplychain
i operations
Forest manager Transporter Sawmill manager Product assembler Product seller Customers

Figure 1. Wood supply chain and its actors.

the stored transactions thus ensuring immutability [25,13]. We can say that data cannot be modified once it has been
recorded on the blockchain. However, our scenario highlights that actors of the wood supply chain need to write, read,
and update data about their product. As well, they do not want to have their business information publicly available due
to security and privacy concerns. There is a need for a solution that overcomes the immutability feature of blockchain,
to enable actors to perform update operation on recorded data. At the same time, the designed solution must protect
data from unauthorized access and guarantee data access depending on the actor’s permission. The identified require-
ments highlight our motivation to design decentralized data storage and management solution to ensure data access
and updates, manage transactions history, security, privacy, data owner’s control on their data, and product traceability
in a single framework.

2.2. Research Problems

According to the wood supply chain scenario discussed above, using blockchain technology in supply chains requires
taking into account the following research problems:

— Data modification
Our scenario highlights that actors want to update data at each point of the supply chain (e.g wood location
changes). However, it is not possible to update data once it has been recorded on the blockchain, due to its im-
mutability feature. The challenge is to work around the original blockchain design to enable data updates.

— Data security and privacy
Data stored on a blockchain is publicly accessible, highlighting the need for protection from unauthorized access. In
other words, different actors shall be granted different access to specific data pieces according to their permissions.
The challenge is to provide a decentralized solution that preserves privacy-sensitive data from unauthorized access
to ensure data security and privacy.

To address those challenges, we rely on joint usage of blockchain and Distributed Hash Table (DHT), presented
in the following to facilitate further understanding of the paper, together with an overview of existing work and its
limitations.

3. Background Knowledge and Related Work

In this section, we introduce the basic concepts underpinning blockchain technology and Distributed Hash Table
(DHT), we then explain their use in the context of decentralized data storage. We follow with a survey and analysis
of existing decentralized data storage solutions. We compare our proposed solution with existing work and summarize
the results in Table 1.

3.1. Basic Concepts: Blockchain and DHT

In 2008, blockchain technology [22] was introduced to the world and became popular due to its decentralized feature.
The blockchain is a decentralized database that stores all the transactions that take place on the network. All participants
on the network have the same copy of the transactions. Before adding each block to the blockchain, miners accept
and verify the transactions using a consensus algorithm such as proof of work. By using proof of work or similar
mechanism [15], miners solve very difficult mathematical calculations that should be accepted by other miners on the
network [3]. After verifying the correctness of transactions by other miners, a block is appended to the end of the
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chain [24]. Each block is comprised of a block version, timestamps, consensus signature, parent block hash, and many
transactions. The parent block stores the hash of its previous block to form a blockchain that ensures the immutability
of the stored data [32]. The hash is a unique value that ensures integrity of the entire blockchain from the initial block
(known as genesis block) to the last.

A distributed hash table (DHT) is a decentralized data storage system that stores data as (key, value) pairs over
a set of nodes that distribute the storage, possibly with some level of replication. As an example, a well-known DHT
implementation is Kademlia [19]. Each node in the DHT maintains the keys it is responsible for and their corresponding
values. A key is a unique identifier to its corresponding data value. Each key is generated by applying a hash function
to the value. A DHT is based on two main tasks: PUT(key, value) is used to add new data, while GET(key) is used to
retrieve the data, that is associated with the given key. A DHT node contains a routing table that maintains the identifier
of its neighbor nodes. To find a (key, value) pair, a requesting node contacts the multiple nodes in the network until it
reaches the destination node and finds the (key, value) pair. DHT has an advantage in terms of fault-tolerance because
(key, value) pairs are replicated on multiple nodes in the network, that ensures data availability [43]. In addition, and
as opposed to BC, it is scalable enough to manage large data volumes.

3.2. Blockchain and DHT-based data storage

There is a large amount of literature that combines DHT with blockchain to provide decentralized data storage. There is
a large amount of literature that combines DHT with blockchain to provide decentralized data storage. A framework to
manage personal data is proposed in [43]. The solution stores encrypted data (with shared key) on DHT and its pointer
on the blockchain. Both service and user can query the data. However, existing work supports one type of encryption.
Most work use a shared symmetric key for data encryption/decryption, as in [43], to query the data. In contrast,
our framework provides run-time flexibility, which provides various types of data encryption and decryption during
execution depending on users’ needs and application requirements. In [43], it is not clearly explained how symmetric
keys are protected from unauthorized access and where they are stored. In our work, we encrypt symmetric key with
the public key of the data owner, and store it on the DHT together with the data, so that later the data owner can access
the data.

In [28], a distributed access control and data management framework is presented. The framework enables secure
IoT data sharing by combining blockchain with off-chain storage (i.e DHT). Fine-grained access control permissions
are stored on the blockchain and are publicly visible, which raises privacy issues. Also, it is not possible to update
access control permissions due to public blockchain immutability nature. On the other hand, our proposed framework
is flexible to update access control permissions. We also maintain data owner anonymity for sharing data.

In [1], the authors propose a decentralized data storage for PingER (Ping End-to-End Reporting) framework. The
proposed framework stores metadata of the daily PingER files on a permissioned blockchain, while the original data
is stored off-chain. However, their solution writes monitoring agent name and file locations on the permissioned
blockchain, which is immutable and shared with other participants on the network. In addition, this solution does
not record the data modification history in case of any modification in the data. Our framework design relies on the
PingER proposal for the metadata structure, however, we integrate privacy and security management to enable role-
based access control and privacy protection. Our solution enables data owners to control and access their private data.
We also provide a solution to manage the previous versions of data using pointers that enable authorized users to access
their transaction history. In addition, our work includes proof of concept prototype as well as empirical performance
evaluation, which is not the case in PingER.

The authors in [8], propose the LightChain framework, which is a permissionless blockchain that operates over
participating peers of a skip graph DHT. The proposed framework enables all participating peers to access blocks and
transactions by using a skip graph overlay. LightChain allows every peer to join the blockchain without any restrictions.
However, blocks and transactions are addressable and accessible to everyone on the network. In contrast to the existing
framework, our solution uses Role-based Access Control (RBAC) model that allows only authorized users to access
blocks and transactions. We store metadata with a pointer on the blockchain, which enables other actors to keep track
of data changes with the help of this metadata.

Table 1 presents a global overview of existing work with respect to the following features: decentralization, data
privacy, data updates, transaction history support, and attacks prevention. The table shows that some existing solutions
ensure decentralization, data privacy, and attacks prevention [43,7]. However, some solutions did not address data
updates and transaction history support [28,1,8,27].
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Table 1. Our proposed framework comparison with existing work

Transaction
Solutions Decentralization |Data Privacy Data Updates History Attacks Prevention
Support
[43] Yes Yes No No No
[28] Yes No No No No
[1] Yes No No No No
[8] Yes No No No No
[16] Partial No No No No
[5] Yes Yes No No No
[38] Yes No No No No
[11] Partial Yes No No No
[41] Partial Yes No No No
[7] Partial Yes No No Yes
[27] Yes Yes No No No
Our solution Yes Yes Yes Yes Yes

3.3. Other Decentralized Data Storage Solutions

An Ethereum-based blockchain platform is presented in [16]. The proposed solution allows companies partners to share
data with each other. Original data are stored on off-chain storage such as MySQL, while a hash sum of corresponding
data is sent to the blockchain. However, MySQL database is not scalable as DHT to manage a large amount of data [12].
In addition, MySQL database becomes a single point of failure. In our solution, we use a DHT to store data as (key,
value) pair, which can handle a large amount of data easily. In our framework, any authenticated user can efficiently
retrieve the value with the help of a corresponding key. As well, our solution is fully decentralized and eliminates the
risk of single point of failure.

In [5], the authors propose a framework called u-share. It is a blockchain-based framework to maintain the owner’s
data traceability while sharing data with their friends and family. The proposed framework is based on a software
client to share the private keys with corresponding circle members, keeps a record of shared keys, and encrypt the
data using the circle’s public key before to share it. However, sharing private key raises security issues. Additionally,
the existing framework relies on one type of encryption method. Compared to the existing u-share framework, our
proposed solution allows actors to directly generate their public and private keys at run time and control of their private
keys. Our solution allows data owners to directly encrypt, decrypt, and share their data with other actors by using
different types of encryption methods.

The authors in [29] present a blockchain-based framework that enables users to share their data with other users.
A smart contract is used to store data sharing policies that control users’ access to the data, while users’ private data
is stored on the off-chain storage called multi-chain. However, policies stored on the smart contract are immutable.
In contrast, our solution enables data owners to update access control permissions. In addition, we ensure data owner
anonymity to share data.

In [38], a decentralized supply chain system to keep track of goods and recipe ingredients is presented. The pro-
posed framework uses a smart contract to handle the exchange of goods on a distributed ledger. The main limitation of
this solution is the immutability and availability of data to everyone, which could lead to privacy and data modifica-
tion concerns. On the other hand, our solution stores encrypted data on DHT to ensures data privacy. In addition, our
framework allows actors to update data at each point of the chain.

In [11], a blockchain-based food supply chain traceability through smart contract is presented. The proposed frame-
work uses blockchain to store data hash while corresponding data are stored on IPFS (InterPlanetary File System)
off-chain storage. IPFS is a peer-to-peer storage network where data stores on the peers of the network [17]. However,
a manufacturer node server is used to handle all modules of the framework, which subjects to a single point of failure.
On the other hand, our framework modules are fully decentralized and independent of any central orchestrator. For the
sake of simplicity, we use a registry server to connect nodes to each other, however, decentralized discovery protocol
can easily be used instead of registry server [9].

In [41], the authors propose a decentralized IoT data sharing solution using IOTA Tangle and IPFS technology.
The proposed solution uses centralized data handling unit (such as a local server) to collect and encrypt the data
using asymmetric encryption, which becomes a single point of failure. In contrast, our proposed solution manage and
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store data without any central party. The IPFS is used to upload the encrypted data, while the corresponding hash and
metadata are managed on the IOTA Tangle. However, the IPFS network is immutable and stores files and its content
permanently [14]. On the other hand, we use DHT to store the data and we extend it to allow data modification at any
time. In contrast, our solution allows going through the history of data values and supports querying it.

The authors in [33] propose a blockchain-based framework that maintains the traceability of the food supply chain.
RFID technology is used to automatically identify objects through radio frequency signals. However, blockchain tech-
nology is not scalable to store a large amount of data. In contrast to this solution, we propose to only store metadata
and pointer on the blockchain, while original data is stored on a DHT, which better supports storing large amounts of
data. In addition, our framework supports data mutability, thanks to the DHT, whereas blockchain is immutable and
shows more difficulty to handle large amounts of data.

In [4] the authors discuss the distributed cloud storage system called Storj. It is a trust-based storage system between
host and customer. In this system, people sell their free storage hardware space and earn money. Customers encrypt
(using AES256-CTR) their data before storing it on the network. Storj allows the data owner to control and access their
data on the network. However, Storj is very costly and depends on a centralized architecture to conclude storage data
and payments [7,10]. In contrast, our solution is fully decentralized architecture and avoids a single point of failure. In
addition, Storj uses one type of encryption method to establish trust between customer and host [39]. As compared to
this, our solution offers different types of encryption methods and enables trust in the decentralized system instead of
participants on the network.

In [27] the authors discuss a decentralized data storage framework that combines Solid Pods with blockchain tech-
nology. Solid (Social Linked Data) relies on RDF (Resource Description Framework) and semantic web to manage
data. Solid enables people to store their personal data in Pods (Personal online data stores) hosted at the location ac-
cording to the people’s wish. The proposed framework discusses the following two cases to ensure data confidentiality.
The first is to store file hash on the blockchain while Solid Pods is used to store the data. Second, they use smart contract
to store the data on a Blockchain whereas solid pods are used to store the software wallet (public and private key pair).
User can access their data using the software wallet. However, Solid Pods itself does not ensure data verification and
trust [6]. In addition, it does not support storing large amounts of data as DHT does [20]. In contrast, our framework
allows to manage large amounts of data in a decentralized way due to the use of a DHT. Therefore, our approach to data
storage is quite different as we do not adopt a user-based isolated storage but rather a globally decentralized storage
that relies on the network peers to ensure security and privacy.

In a summary, most existing data storage solutions are subject to the single point of failure issue, data mutability or
adopt different designs. In the following, we detail our framework and proposed algorithms in detail.

4. Contribution

In this paper, we propose a secure and privacy-aware decentralized framework to support data storage, authorized data
access, data mutability, management of their update history, and traceability. This section starts with the metadata
structure that is immutable record of data operations. Then, it describes the overview of our proposed framework and
follows with the detail of its execution or sequence. After that, it details the proposed algorithms. Each actor of the
framework runs the same code that is structured into a set of components as depicted in Figure 3.

4.1. Metadata Structure

In [1], authors write metadata such as names and locations only once a day on the permissioned blockchain, which is
immutable and they shared this information with all users on the network. In contrast, we store metadata of each actor’s
action (such as data write date and time) to maintain the actor’s trust. This allows actors to keep track of the data.

We propose a privacy-aware metadata extension discussed in the paper [1], to handle privacy restrictions on the data.
Therefore, our framework encrypts the actor’s private information (e.g name and location) with encryption mechanisms
(illustrated in Algorithm 2), and store this encrypted data on the DHT. Our solution also allows only authorize actors
to update the product location in case if wood drives from one place to another place. We use a blockchain to store
the metadata and DHT key of this encrypted data. Our proposed metadata structure contains the DHT key, previous
pointer, data owner’s id, date, time, and RFID_number as shown in Figure 2. The DHT key is a hash pointer that points
to the data in the DHT. Previous pointer is a hash key of the previous version of the data, which enables data owners
to access their transaction history. In our framework, each actor has unique data owner id which is used to make a data
request and identify who is the owner of the corresponding data. Our solution records data and time of each operation
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267 (such as data write, read, update, and delete) that is performed on the data. RFID_number is a unique data id of the log,
268 lumber and product which is used to trace the items in the chain.

Metadata Structure

| DHT key | | Previous Pointer |

| DateTime | | Data Owner ID |

RFID_number

Figure 2. Metadata structure on the blockchain

»9  4.2. Architecture Overview

270 Our framework uses RESTful APIs to enable actors to communicate with other actors and support the framework
271 functionalities.

Independent registry server

send HTTP request | | return peer list

\4
access request ) ) Block 0 Block 1 Block N 8
¢ read / write pointer
check permission encrypted data
permission | ____.._.._.., > and metadata { Header }—a» [ Header J B 2 [ Header } store i
response B — e data
RBAC component €
Blockchain Tranaction 1 Tranaction 1 Tranaction 1 encrypted data
response . : :
"""""""""""" > P Transaction N Transaction N Transadtion N Shctypiedidata

E Ac})r
decrypt data encrypt data | ) DHT component
! ' Blockchain component )

Asymmetric = ? U UMy U R U Ry g
Pub Pri DHT response

Symmetric =
ke
[E(symmetric key) = Q ]

Encryption component

Figure 3. Overview of the decentralized framework

272 Figure 3 depicts the execution workflow of the proposed framework and its components. In our framework, all
273 actors are running the same ma in program and they call to registry_server (/peers resource, method ' GET')
274 to retrieve the list of available actors (e.g peers) and connect with each other through APIs.

275 Let us illustrate the operation of our framework with the wood supply chain scenario developed earlier: an actor,
276 for example a forest manager actor, starts the main program to store the number of logs and type of wood that he
277 cuts. Then, he will call the /peers resource of the registry_server with the " POST’ method to add its public
278 key and Uniform Resource Locator (URL) to the list of connected peers or actors. After that, he will send a  GET’
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request to the /peers resource to receive the information of available peers. Then, he will take a copy of the recent
40 transactions of the blockchain using /chain resource with a / GET’ method*.

In the proposed framework, the RBAC component called by the main component is responsible for checking the
permission of the actor. It allows the only authorized actor to perform operations such as data write, read, delete, and
update.

An authorized actor has a choice between multiple types of encryption techniques to secure their data in a de-
centralized ledger. Our encryption_component called by the main component generates keys (a public/private
key pair, or a symmetric key) based on the encryption method chosen by the authorized actor and encrypts the data
accordingly.

We store the encrypted data on the DHT component, while DHT key (a hash pointer of the data) and metadata are
stored on the blockchain component. Later, an authorized actor can access their data using the DHT key stored on
the blockchain component.

Accordingly, an authorized actor can create a new block using /chain resource with the method ' POST’ . To
read the data, an actor will call the resource /chain/<id> with  GET’ method. If an actor wants to update some
part of the data, then it will call the /chain/<id> resource using ' PUT’ method. Similarly, to delete the data, an
authorized actor will make a  DELETE’ request to the /chain/<id> resource. An actor can access their public key
using the resource /public_key with method ‘GET’ .

Figure 4 shows the swagger user interface that enables authorized actors to use the proposed APIs discussed above.

/chain %
| #e=ar s /chain v|
/chain/{id} v
‘m /chain/{id} “ ‘
/chain/{id} A4
/peers v
/public_key ~

Figure 4. Overview of the proposed API using Swagger

The overview of each actor’s actions (such as write, read, update, and delete) on the data is depicted in figure 5.
The data represents in the figure 5 is stored on the DHT component, while corresponding metadata is managed on the
blockchain component. Please see the detail of the metadata structure in section 4.1.

4.3. Interaction via RESTful API

In this section, we detail the possible usage of our framework with a sequence diagram (Figure 6) that illustrates the
interaction between an actor (e.g. a forest manager) and the framework using its RESTful API. We assume that every
actor is already registered on the framework. An actor makes a *POST’ request to the /chain resource to write log
data in the framework. Our solution assigns a unique data id (RFID_number) to the log that enables authorized actors
to trace the log in the chain. In the case of a successful response (HTTP code 201), it returns the links including the id in
the response. Our framework stores the DHT key of this generated data in the metadata. Therefore, this DHT key points
to the location of the log data on the DHT. The actor can use these links to perform further actions on the log data by
sending another HTTP request as described in the links. To read the data, an actor would use the GET link that would
call the /chain/<id> resource with method *GET’ to retrieve the representation of the log data. In the case of a
successful response (HTTP code 200), our framework returns the representation of the log data. In case an actor wants
to update their data, then they use the PUT link that makes a  PUT’ request to the (/chain/<id> resource). It will

4 Please note that here we avoid downloading the whole blockchain due to performance issues, but only the most recent part, the rest being
on-demand. This particular aspect of the work is out of the scope of this paper.
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Figure 5. High-level representation of actors actions on the data

then write the new data against the same id. Then, a new metadata structure is created on the blockchain, and it contains
the new DHT key of this updated data and the previous pointer of the old version of the data. Similarly, to delete the
data, an actor may follow the DELETE link (/chain/<id> resource, method ' DELETE’ ). Our framework allows
the authorized actor to delete specific data based on the id. After verifying the permission of the actor, it will delete the
data. In this case, a new metadata structure is created on the blockchain that has a new DHT key with a NULL value.

4.4. Registration and Data Management

This section presents the proposed algorithms that support our solution including actor registration using designated
REST APIs, data management on the decentralized storage and on the blockchain, and traceability algorithm to keep
track of the data history.

— Actor Registration

Algorithm 1 describes the actor’s connection or registration procedure to the proposed framework using our REST-
ful APIs. Once actor would successfully connect to the framework then they can perform different actions on the
data such as write, read, update etc, and actors can also connect to other actors through HTTP requests. Each new
actor needs to connect to the framework once to perform actions.

Firstly, the actor calls the /peers resource with ’ GET’ method to receive the available peer list (pl). After that,
it calls the /peers resource ' POST’ method to add its public key to the list of available peers and registers to
the registry server. Then it sends a request to other peers to acknowledge the connected peer (/peers resource,
"POST’ method). If the current actor is already in the list then it will be disconnected or removed from the
peer list using the /peers resource with  DELETE’ method. Then it sends a request to other available peers to
acknowledge the disconnected peer.

Data Management on the DHT

The process to write or store the data including metadata and corresponding DHT key (a hash pointer of the
encrypted data) is shown in Algorithm 2. Our proposed framework combine blockchain with a DHT in a way that
allows authorized actors to write and update the data about their activities. For instance, if an actor has a role "data
owner" and wants to store their log data such as:
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Actor Framework

POST '/chain' - Create new log data

Y

JSON-LD structure of the data on DHT:
{
"id": "RFID_number",
"resource": "log",
"woodtype": "oak",
"datetime": "2022-03-16, T-19:20:30.45+01:00",
"location": {"lat": "38,3951" long": "-77,0364"}
}

Response: 201 - Log data created, links

Received links in the response

"links": {
"GET": "http://127.0.0.1:8001/chain/<id>",
"PUT": "http://127.0.0.1:8001/chain/<id>",
"DELETE":  "http:/127.0.0.1:8001/chain/<id>",
"POST": "http://127.0.0.1:8001/chain"

}
GET '/chain/<id>' - Retrieve a representation of log data R
< Response: 200 - Return representation oflog ’
PUT '/chain/<id>' - Update log data -
B 2 Response: 201 - Log dataupdated .. ’
DELETE '/chain/<id>' - Delete log data 5
< Response: 201 - Log data deleted

Figure 6. Sequence diagram of possible actor interactions with the framework

{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-06-01, T-11:16:25.45+01:00",
"location":
{
"lat": "14,2472",
"long": "-43,2135"
}
}

Then, Authenticate (actor, role) andCheckPermission (actor, role, wv) verify thatthe cur-
rent actor has the right permissions to store their data or not. The CheckPermission checks if the current actor
has a role ’forest manager’ then he is allowed to write, read, update, and delete their data in the decentralized
platform.

After verifying the permission of the current actor, our framework provides different encryption methods (em)
to encrypt the data before storing it on the decentralized ledger that ensures data security. An authorized actor is
allowed to choose between asymmetric em and symmetric em. Asymmetric encryption is based on separate
public and private keys. A public key is used to encrypt the data, while a corresponding private key is used to
decrypt the data. In our motivating scenario, if a forest manager actor chooses asymmet ric em then data will be
encrypted with the data owner’s public key, so later he can only access his data using his private key.

The authorized actor also has an option to choose symmet ric em to encrypt the data, if he wants to enable other
actors to read their data. A symmetric key is based on a single key to encrypt and decrypt the data. If the data
owner chooses symmetric em, then our framework encrypts the data with the symmetric key and then this
symmet ric key will be encrypted with a data owner public key to protect the key from unauthorized actors.
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Algorithm 1 Actor registration algorithm
Input: ca: current actor
Output: pl: peer list, boolean value
> GET: HTTP verb GET request (constant)
> POST: HTTP verb POST request (constant)
> pe: endpoint of the peer (constant)
> Req.Method: identify request type (variable)
> p: peer in loop (variable)

if Req.Method == GET then

1:
2: return pl
3: end if
4: if Req.Method == POST then
5 pl.Append(ca)
6: for each p € pl do
7: RequestsPost(p(pe), ca)
8: end for
9: return true
10: end if

11: if Req.Method == DELETE then
12: pl.Remove(ca)
13: for each p € pl do

14: RequestsDelete(p(pe), ca)
15: end for
16: return true
17: end if
351 Upon data read request, the data owner would encrypt this symmetric key using the requester’s the public key to
352 enable the authorized actors to read the data.
353 We store this encrypted symmetric key (ek) and encrypted data (ed) on the DHT. The ed stores on the DHT contains
354 resource, woodtype, location (such as latitude and longitude) that shows the geographical location of the resource
355 in the wood supply chain. Then, the function FindLast Transact ion takes the data id such as (r fid_number)
356 as input and returns previous pointer (pp) if it exists otherwise it returns 0. We store the metadata on the blockchain.
357 The metadata includes DHT key (dk), pp, datetime, data owner id (doid), and data id (7 fid_number).
s — Data Management on the Blockchain
359 As an extension to the work in [1], we propose a metadata structure that manages the pointer and connects the
360 different values attached to a specific piece of data to maintain its history. For example, a forest manager actor, as
361 a data owner, would write a log information such as:
{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-05-03, T-10:12:21.45+01:00",
"location":
{
"lat": "13,2351",
"long": "-15,5142"
}
}
362 In this case, the proposed solution stores the DHT key as a new pointer of the log data in the metadata. Later, the
363 data owner can access the data using a data id (RFID_number of the corresponding data). An actor can update
364 some parts of the data against the same data id such as:
{

"id": "RFID_number",
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Algorithm 2 Algorithm for the data write operation

Input: d: data, actor: current actor, role: role of the actor, v: HTTP verb POST, PUT, em: encryption method, pp: pointer of

previous transaction when data is updated

Output: ed: encrypted data, encrypted symmetric key (ek) > pk: public key of data owner (constant)

> doid: id of the data owner (constant)

> sk: symmetric key (variable)

> dht: variable to store the ed and ek

> dk: dht key points to the data in dht (variable)
> rfid_number: data id (variable)

> datetime: timestamp (variable)

> pp: previous pointer (variable)

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

if Authenticate(actor, role) then
if CheckPermission(actor, role, v) then
if em == true then > if true we use asymmetric encryption)
ed<«— Encrypt(d, pk)
else > if false we use symmetric encryption)
encrypd<— Encrypt(d, sk)
ek<— Encrypt(sk, pk)
ed«— encrypd, ek
end if
dk<— Digest(ed)
dht < SetValue(ed)
pp < FindLastTransaction(rfid-number)
AddTransaction(dk, pp, datetime, doid, rfid_number)
end if
end if

"resource": "log",
"woodtype": "maple",
"datetime": "2022-08-06, T-14:16:23.45+01:00",
"location":
{
"lat": "11,2256",
"long": "-21,1525"

}

Our solution allows the data owner to perform different operations (such as update, read and delete) on their data
for the specific RFID_number. In case of data update, new metadata will be generated on the blockchain that
includes a new DHT key of the updated data and the previous pointer that refers to the previous version of the
data that is stored on the DHT (illustrated in Algorithm 2). Therefore, the DHT key of the previous version of the
transaction becomes the previous pointer which is stored in the new metadata. The proposed metadata structure
also stores the datetime of the updated data. This way if the data owner wants to see their transactions history,
then the function FindLastTransaction (did) returns the recent version of the transaction against this data
id as RFID_number containing the DHT key of new data and previous pointer of the updated data. This way an
actor can access their update history. To read the data, an authorized actor can decrypt and access their data in the
decentralized platform. In case, if data is encrypted with the data owner’s public key then a data owner can use
their private key to decrypt and read the data. If the data is encrypted with a symmetric key then the authorized
actor first decrypts the symmetric key using their private key and then this decrypted symmetric key will be used
to access the data that is stored on the DHT. Similarly, an authorized actor can delete their data against a specific
RFID_number, then a new transaction is created on the blockchain that includes a new metadata structure. This
metadata includes a new DHT key with a NULL value.

Traceability
We propose an solution that maintains data id references to ensure traceability. It enables actors to verify the origin
of the final product in the chain. Our solution assigns a unique data id (such as RFID_number) to the log, lumber,
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and product. We assume that, RFID chips are inserted into the logs and then into the lumbers and final products.
The following code shows the log data in JSON format such as.

{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-05-10, T-13:10:20.45+01:00",
"location":
{
"lat": "25,1324",
"long": "-45,1326"

}
A log produces different pieces of lumbers and each lumber has unique id as RFID_number. The following code
shows the lumber data.

{
"id": "RFID_number",
"resource": "lumber",
"datetime": "2022-05-13, T-14:12:23.454+01:00",
"location":
{
"lat": "12,2425",
"long": "-23,1526"
}I
"log":
{
"id": "RFID_number"
}
}

The data described above contains a reference id (RFID_number) of the log that was turned into lumbers. The
different pieces of lumbers participate to build a final product such as wooden furniture. The following is a JSON
representation of product data.

{
"id": "RFID_number",
"resource": "product",
"datetime": "2022-06-02, T-16:14:26.45+01:00",
"location":
{
"lat": "52,5323",
"long": "-24,3316"
}I
"lumber":
{
"id": "REFID_number"
}
}

The product data represented above contains an id reference of lumber that was used to build it. This way an
authorized actor can verify the origin of the wooden product and can identify where it comes from. The process
to trace the data and verifies the product origin in the wood supply chain is shown in Algorithm 3. For instance, a
customer buys a wooden product such as a bed and he wants to trace this product. Then, he can use the product id
as a data id (such as RFID_number) to keep track of their origin. The proposed algorithm enables actors to trace
the product’s origin using the data id’s references discussed above.

In Algorithm 3, the did is an RFID_number of the item in the wood supply chain, and data (e.g location) of the
item changes for the same did. Therefore, we can have multiple transactions on the blockchain against this did.
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Whenever the location of the item would change then new metadata of the same did will be recorded on the
blockchain, and the corresponding data is stored to the DHT. The FindLastTransaction function returns the
last or recent transaction t of this did, which is a RFID_number. For instance, if we have did of the log then it
finds the last transaction of this log.

This transaction t has the metadata that contains DHT key that points to the data recorded on the DHT. The
function CheckPermission verifies if the current data requester is authorize to read the data or not depending
on their role and HTTP verbs permission ' GET’ . Then, the function GetReferences has the t as input and
takes the did of the items. After that, it gets the previous references of this did. For example, if we have a input
did as product id then it finds the previous references such as RFID_number of the lumbers. Then, it checks items
(e.g lumbers) in the list and add items (e.g lumbers references) in the output list (o). Then, the Traceability
function takes i such as lumber as input and call recursively to find out the log and add them in the list o. In case
the list o is empty it is returned anyway, and it means that the log does not contain any previous reference.

Algorithm 3 Traceability algorithm

Input: did: data id (DHT key)

actor: requester actor, role: requester role, v: HTTP verb GET

Output: o: DHT keys of tracked items

> 1: items list (variable)

1:
2
3:

10
t < FindLastTransaction(did)
if CheckPermission (actor, role, v) then

4: 1 + GetReferences (t)
5. if1# () then
6: 0«0
7: for eachi € 1do
8: o.Append(i)
9: o.Append(Traceability(i))
10: end for
11: return o
12: end if
13: end if
14: return ()
5. Results and Evaluation

This section presents the results and performance evaluation of the proposed decentralized data storage framework.
The evaluation framework is discussed in Section 5.1. The security and privacy analysis are presented in Section 5.2.
Section 5.3 discusses the performance evaluation of our proposed framework.

5.1.

Evaluation Framework

To implement and evaluate the performance of our framework, we used Python 3.7.0. We used a Python library’ to
implement a blockchain to store the DHT key and metadata. We implemented a DHT using the Kademlia library®,
which allows to store and get data linked with a given key on the peer-to-peer network. We used the cryptography
RSA library to generate private/public keys and encrypt/decrypt the data. We conducted experiments and evaluated our
framework on a 64-bit Windows operating system, Core i7 1.80 GHz processor, and 16 GB RAM.

Shttps://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
Shttps://github.com/bmuller/kademlia
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5.2. Privacy and Security Analysis

The proposed solution supports data privacy and enables data owners to own and control their data in a decentral-
ized platform. Our check permission method prevents unauthorized actors to perform operations on data such as data
write, read, update, and delete. In addition, to protect privacy-sensitive data from unauthorized access, our framework
provides multi layers of encryption to ensure privacy and security. The data stored on the DHT are encrypted before
uploading. Even if an unauthorized actor gains access to the DHT nodes then they can only see the cipher texts and
cannot achieve any information about the data. Moreover, in our solution, we used blockchain and DHT because of
their decentralized and distributed design. This can solve the single-point failure issue, and ensures data replication and
availability. We analyzed and evaluated the security of our framework under the following threats:

- Linking attack

A linking attack happens when the attacker tries to link various transactions or data with the corresponding public
key. In our design, we use different encryption mechanisms to encrypt the data, such as the data owner’s public key,
symmetric key, and requester’s public key. We generate public, private, and symmetric keys at run-time according
to the encryption method chosen by the actor. To secure the symmetric key from unauthorized access, our frame-
work encrypts the symmetric key with the data owner’s public key and stores it on the DHT. This way only the
authorized user is allowed to use this symmetric key to decrypt and access their data. For this reason, an attacker
cannot link different transactions to the same public key, because our solution encrypts the data using different
encryption mechanisms and public keys.

— Eavesdropping attack

In an eavesdropping attack, an attacker tries to listen to privacy-sensitive information in the network. To protect
against this attack, we encrypt privacy-sensitive data with the requester’s public key upon data read request. This
way only authorized actors can access and read the data using their private key.

— Spoofing attack

A spoofing attack happens when a malicious actor uses the ID of another actor and tries to access the data. In our
framework, a malicious user cannot spoof the ID of another actor because they could not spoof its private key. In
our solution, each actor has a private key that is kept secret and not shared with others.

— Modification attack

A modification attack occurs when an attacker tries to change the data content. In our framework design, we allow
data owners to encrypt the data using their public key and store the corresponding pointer on the blockchain. Our
proposed metadata design keeps the track of data entry date and time to recognize the changes in the data. An
attacker cannot modify the data because data can only be decrypted with a data owner’s private key that is kept
secret by the data owner.

5.3. Performance Evaluation

We evaluated the results according to time consumption and scalability with respect to the number of peers. We com-
puted the time consumption of the proposed solution according to the following parameters: actor’s check permission,
data encryption/decryption using asymmetric or symmetric techniques, DHT access, and blockchain access. We ob-
served time consumption while performing data write, update, read, delete, and traceability operations. Figure 7 and 8
show the time consumption of the different parts of our solution, respectively using symmetric encryption and asym-
metric encryption.
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a2 The general trend of our measurements shows that DHT access takes most of the time needed, followed by
w3 blockchain access, encryption/decryption and then permission check, which makes sense since the DHT deals with
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data storage and is therefore I/O-bound. We believe however that some low-level optimization is performed at this
stage (see the scalability tests and discussion).

In general, the usage of symmetric or asymmetric encryption does not impact the solution much, except a slight
increase of time consumption if asymmetric encryption is used. We make sense of these results by acknowledging the
higher number of keys and costly computation that are needed when using asymmetric cryptography.

The most time-consuming operation is, without surprise, the write operation, since it requires the most from the
system. Second comes the update operation which is similar to a write except it is already related to an existing piece
of data. Third comes traceability, which does not modify the existing data but requires following the history of different
pieces of data. Finally, the delete operation is less costly, and the read operation only consists in resolving the DHT
pointer and if granted, fetching the data.

Moreover, we tested the scalability of our solution with a growing number of actors 1, 100, 200, 300, 400 and
obtained a reasonable performance with 400 actors (please note that increasing the number of actors to more than
400 would lead to additional synchronization problem, which would slow down the speed and performance. These
problems are out of the scope of this paper.) The HTTP requests will be only partially processed in parallel, since
they share the CPU time, and we tested our prototype with a quad-core CPU. In our solution, actors are the same as
blockchain nodes and DHT nodes. We tested our solution with a number of 400 actors which are considered as 400
nodes.

1z
18

14

12 m \Write data
. W Update data
W Read data
[eX:]
Delete data
o
Traceability
04
oz
o Mem il il T | 1 |
1 100 200 00

Mumber of actors

Average Time (seconds)

Figure 9. Average time consumption under different number of actors

We calculated the average time consumption of our prototype with an increasing number of actors. The actor reg-
istration operation is performed only once for 1, 100, 200, 300, and 400 actor and the time costs is 0,0034 seconds,
0,0039 seconds, 0,0041 seconds, 0,0046 seconds, and 0,0049 seconds respectively. Therefore, we tested our proto-
type 100 times for all operations such as write data, update data, read data, delete data, and traceability. After that,
we calculated the average time, Standard Deviation (SD), minimum (min), and maximum (max) values in seconds.
Figure 9 depicts the average time consumption between a different number of actors, and detailed results statistics are
summarized in Table 2.

As we can see from Figure 9 and Table 2, for the case of 1 actor, write data gives an average of 0,5712 seconds
which is less than the average time of data write for 100, 200, 300, and 400 actors. The update data has an SD of 0,0211
seconds which is close to the SD of update data for the case of 200 actors. The data read provides an max value of
0,0456 seconds which is less than the may value of read data for the case of 100, 200, 300, and 400 actors. The delete
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data takes an average time of 0,0214 seconds which is close to the average time of delete data for 100 and 200 actors.
The traceability data operation has a min value of 0,0112 seconds and a max value of 0,0312 seconds.

Table 2. Detailed results under different number of actors

Number of actors|Data operations|Average Time|St Deviation Minimum | Maximum
Write data 0,5712 0,4321 0,4635 0,6564
Update data 0,0224 0,0211 0,0221 0,0412
1 Read data 0,0254 0,0113 0,0124 0,0456
Delete data 0,0214 0,0212 0,0213 0,0434
Traceability 0,0201 0,0101 0,0112 0,0312
Write data 0,6552 0,5352 0,5432 0,7681
Update data 0,0346 0,0321 0,0334 0,0571
100 Read data 0,0632 0,0512 0,0542 0,0724
Delete data 0,0233 0,0221 0,0223 0,0342
Traceability 0,0464 0,0413 0,0421 0,0641
Write data 0,9325 0,6215 0,6316 1,8622
Update data 0,0356 0,0241 0,0256 0,0392
200 Read data 0,0738 0,0635 0,0641 0,0956
Delete data 0,0215 0,0153 0,0171 0,0516
Traceability 0,0521 0,0439 0,0472 0,0695
Write data 1,2455 0,7529 0,7924 1,9372
Update data 0,0573 0,0543 0,0561 0,0635
300 Read data 0,0713 0,0537 0,0655 0,0836
Delete data 0,0531 0,0457 0,0461 0,0734
Traceability 0,0636 0,0531 0,0571 0,0913
Write data 1,6121 1,3163 1,3223 2,4692
Update data 0,0626 0,0551 0,0569 0,0931
400 Read data 0,0911 0,0815 0,0857 0,2419
Delete data 0,0882 0,0731 0,0765 1,4271
Traceability 0,0791 0,0682 0,0693 0,0975

For the case of 100 actors, the write operation gives an average of 0,6552 seconds which is slightly higher than the
average time to write data with 1 actor. The update operation gives an SD time of 0,0321 seconds which is slightly
higher than the SD to update data with 1 actor and 200 actors. The read operation has a SD of 0,0512 seconds which
is slightly close to the SD of read data for 300 actors. The delete operation gives a min value of 0,0223 seconds which
is close to the min value for 1 actor. The traceability algorithm has an average time of 0,0464 seconds which is less as
compared to the average time for 200, 300, and 400 actors.

Similarly, with the number of 200 actors, the average time to write data is 0,9325 seconds which is slightly higher
than the average time to write data for the number of 1 and 100 actors. The update operation provides an SD of 0,0241
seconds which is less than the SD of update data for the case of 100 actors. The read operation gives an average time of
0,0738 seconds which is slightly close to the average time to read data for the case of 300 actors. The delete operation
has a min value of 0,0171 seconds which is less than the min value for 1, 100, 300, and 400 actors. The traceability
data operation gives a max value of 0,0695 seconds which does not show much difference from the max value of 100
actors.

For the case of 300 actors, the write data operation gives an average of 1,2455 seconds which is slightly higher as
compared to the average time to write data for 200 actors. The update gives an SD value of 0,0543 seconds which is
close to the SD for the number of 400 actors. The read data operation gives a max value of 0,0836 seconds which is
less as compared to the max value to read data for the number of 200 and 400 actors. The delete operation provides
an SD of 0,0457 seconds which is less than the SD for 400 actors. The traceability takes an average time of 0,0636
seconds which is higher than the average time for 1, 100, and 200 actors.

For the number of 400 actors, the average time to write data is 1,6121 seconds which is higher than the average
time to write data for 1, 100, 200, and 300 actors. The update data operation gives an SD of 0,0551 seconds which is
close to the SD value of update data for 300 actors. The read data provides a min value of 0,0857 seconds and a max
value of 0,2419 seconds. The average time to delete data operation is slightly higher than the average time to update
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operation for 1, 100, 200, and 300 actors. The traceability provides a max value of 0,0975 seconds which is close to
the max value for 300 actors.

We interpret the reasonable increase in time consumption despite the large increase in the number of actors as a
consequence of the efficiency of DHT access, which is known to be logarithmic, combined with a number of low-level
optimization from the Python language, together with operating system and hardware optimization mechanisms related
to data management and process execution.

Overall, our experimental results demonstrates that the proposed solution is scalable and able to manage many
actors at the same time. The results show that each operation take average time less than 1 minute, while increasing the
number of actors, therefore, we can conclude that our solution is acceptable for the end user.

6. Conclusion

In this paper, we present a decentralized data storage and access framework that ensures data security, privacy, and
mutability in wood supply chain scenario. The proposed framework integrates blockchain technology with DHT, a
role-based access control model, and different types of encryption techniques. Our solution allows authorized actors
to write, read, delete, update their data and manage transaction history on a decentralized system. The proposed trace-
ability algorithm enables authorized actors to trace the product data in a decentralized ledger. We provided a critical
comparative analysis of our work with existing solutions to show the research gap. The main limitations of existing
solutions are a single point of failure, data mutability, and public availability of the data.

Our prototype design is flexible to expand and can be easily reused for different application domains such as
medicine, agriculture, etc. We discussed the security and privacy analysis of our proposed solution and evaluate its
performance in terms of time cost and scalability. The experimental results show that the proposed solution is scalable,
secure, and achieves an acceptable time cost.

In future work, we plan to test our framework with different real-life use-cases and enhance data access with
semantic annotation to identify data concepts that are stored and in turn exploit this information to drive the RBAC
model. We believe the richness of description logic can contribute to better fine-grained access control and facilitate
data management. Another step forward relates to the possibility to adapt semantically annotated data to specific local
interpretation depending on the context of the qeury issuer - for example, converting data units between countries.
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