
Computer Science and Information Systems 00(0):0000–0000 https://doi.org/10.2298/CSIS123456789X

A Framework for Privacy-aware and Secure Decentralized Data Storage⋆1

Sidra Aslam1,2,3 and Michael Mrissa1,22

1 InnoRenew CoE, Livade 6, 6310 Izola, Slovenia3

sidra.ssc@stmu.edu.pk4
2 University of Primorska, Faculty of Mathematics, Natural Sciences5

and Information Technology, Glagoljaška ulica 8, 6000 Koper, Slovenia6
3 Shifa Tameer-e-Millat University, Department of Computing, Islamabad, Pakistan7

michael.mrissa@innorenew.eu8

Abstract Blockchain technology gained popularity thanks to its decentralized and transparent features. However,9

it suffers from a lack of privacy as it stores data publicly and has difficulty to handle data updates due to its main10

feature known as immutability. In this paper, we propose a decentralized data storage and access framework that11

combines blockchain technology with Distributed Hash Table (DHT), a role-based access control model, and multi-12

ple encryption mechanisms. Our framework stores metadata and DHT keys on the blockchain, while encrypted data13

is managed on the DHT, which enables data owners to control their data. It allows authorized actors to store and14

read their data in a decentralized storage system. We design REST APIs to ensure interoperability over the Web.15

Concerning data updates, we propose a pointer system that allows data owners to access their update history, which16

solves the issue of data updates while preserving the benefits of using the blockchain. We illustrate our solution17

with a wood supply chain use case and propose a traceability algorithm that allows the actors of the wood supply18

chain to trace the data and verify product origin. Our framework design allows authorized users to access the data19

and protects data against linking, eavesdropping, spoofing, and modification attacks. Moreover, we provide a proof-20

of-concept implementation, security and privacy analysis, and evaluation for time consumption and scalability. The21

experimental results demonstrate the feasibility, security, privacy, and scalability of the proposed solution.22

Keywords: Blockchain, Distributed Hash Table, Security, Privacy, Decentralized framework.23

1. Introduction24

With increasing the number of internet users, large amounts of data are being generated each day [18]. Cloud computing25

provides the facility to store, access, and share data with other users anytime. The main limitation of the cloud paradigm26

is its centralized storage design, which leads to a single point of failure issue. Cloud storage systems rely on Trusted27

Third Party (TTP) to collect and store users’ privacy-sensitive data, which is more vulnerable to security and attacks.28

To address these challenges, blockchain has become popular as a decentralized and transparent data management29

facility [23,42] that enables users to share and store information without any TTP. A blockchain is a peer-to-peer30

distributed ledger in which a list of records called blocks are linked with each other and secured using a cryptographic31

hash function [35]. It stores data on distributed nodes through a consensus mechanism that guarantees participant’s32

trust by having the same copy of the data [34,37].33

However, blockchain allows anyone to read and write contents, which may raise data security issues [40], and does34

not handle privacy-sensitive data [21] by default. This is a limitation since data owners may not want to disclose their35

sensitive information (e.g statistics about their business activities) on the blockchain. Scalability is also an issue, as the36

data is replicated on every peer, storing large quantities has a prohibitive cost. Besides this, immutability of blockchain,37

while an important feature, prevents data modifications.38

In this paper, we propose a privacy-aware decentralized data storage and management framework that enables39

actors to write, read, delete, update, and access their transactions history. Our solution allows data owners to control40

and secure their data in a decentralized ledger. Building on previous work [2], our proposed framework is scalable41

enough to handle an increasing number of actors while performing data write, read, update, and delete operations. The42

main contributions of this paper are as follows:43

– We propose a metadata extension based on existing research [1]. Our extension ensures privacy-aware data access44

and enables trust between actors by recording each actor’s actions on data.45

⋆ This is an extended version of our previous paper [2].



2 Sidra Aslam, and Michael Mrissa

– We propose a pointer system to manage the history of values that are stored in the DHT for a single piece of data.46

It allows the data owner to maintain and access their transactions history in case of any updates in the pre-stored47

data.48

– We propose a traceability algorithm that enables actors to trace their data and verify the product’s origin in a49

decentralized platform.50

– We design and evaluate our decentralized framework against linking, eavesdropping, spoofing, and modification51

attacks.52

– We provide a critical comparison of the proposed solution with state-of the-art decentralized solutions to show the53

research gap.54

– We also provide implementation details with security and privacy analysis and performance evaluation of our55

framework over a wood supply chain scenario to demonstrate its feasibility.56

This paper is structured as follows. Section 2 discusses the motivating scenario that highlights the research challenges.57

Section 3 provides some background knowledge together with an overview of existing decentralized solutions for data58

storage and their shortcomings. Section 4 provides the detailed discussion of our contribution with proposed algorithms.59

Section 5 shows the experimental results, analysis, and performance evaluation of our proposed framework. Finally,60

section 6 summarizes our results and gives guidelines for the future work.61

2. Motivating Scenario and Research Problem62

In this section, we first explain the wood supply chain scenario that motivates our work. We then describe the research63

problems that we address in this paper.64

2.1. Motivating Scenario65

Our scenario takes place in the context of the wood supply chain that motivates the need for decentralized solution66

and highlights our research problems. The wood supply chain includes the whole process from wood logs, production,67

transportation, and sell to the end customers. It enables the actors of the wood supply chain to verify the wood origin,68

transport, processing, and manufacturing. As depicted in Figure 1, we identified six actors that participate in the wood69

supply chain.70

– Forest manager71

The forest manager identifies the trees that are good to make furniture (e.g oak) and cuts them into logs.72

– Transporter73

The transporter loads wood logs from the forest and transports them to the sawmill.74

– Sawmill manager75

It processes the logs and stores them for a specific time duration.76

– Product assembler77

It divides logs into pieces for further processing.78

– Product seller owner79

The product seller owner sells the furniture to the end customer.80

– Customer81

The customer takes the wooden furniture and confirms the origin of the wood using the proposed traceability82

algorithm (see Section 4.4).83

This scenario highlights the need for decentralized data management, security, privacy, traceability, and data up-84

dates [36]. Frauds are common in the wood supply chain, for example, during transportation actors can replace high85

quality wood with low quality wood [30]. Therefore, all actors participating in the supply chain want to trace products86

to prevent frauds. To overcome this problem, Radio Frequency Identification (RFID) chips are used with the wood to87

manage wood traceability [31]. However, existing solutions involve centralized storage to maintain the record of RFID88

data, thus making single point of failure a major concern [26].89

Therefore, blockchain, as a decentralized ledger technology that stores transactions in such a way that all partici-90

pants can easily access them without requiring any TTP, comes as an interesting technology for solving the single point91

of failure issue. Each block of the blockchain keeps the hash of its previous block to make it impossible to modify92



A Framework for Privacy-aware and Secure Decentralized Data Storage 3

Forest manager Transporter
 Sawmill manager Product assembler Product seller Customers

supplychain 

operations

Figure 1. Wood supply chain and its actors.

the stored transactions thus ensuring immutability [25,13]. We can say that data cannot be modified once it has been93

recorded on the blockchain. However, our scenario highlights that actors of the wood supply chain need to write, read,94

and update data about their product. As well, they do not want to have their business information publicly available due95

to security and privacy concerns. There is a need for a solution that overcomes the immutability feature of blockchain,96

to enable actors to perform update operation on recorded data. At the same time, the designed solution must protect97

data from unauthorized access and guarantee data access depending on the actor’s permission. The identified require-98

ments highlight our motivation to design decentralized data storage and management solution to ensure data access99

and updates, manage transactions history, security, privacy, data owner’s control on their data, and product traceability100

in a single framework.101

2.2. Research Problems102

According to the wood supply chain scenario discussed above, using blockchain technology in supply chains requires103

taking into account the following research problems:104

– Data modification105

Our scenario highlights that actors want to update data at each point of the supply chain (e.g wood location106

changes). However, it is not possible to update data once it has been recorded on the blockchain, due to its im-107

mutability feature. The challenge is to work around the original blockchain design to enable data updates.108

109

– Data security and privacy110

Data stored on a blockchain is publicly accessible, highlighting the need for protection from unauthorized access. In111

other words, different actors shall be granted different access to specific data pieces according to their permissions.112

The challenge is to provide a decentralized solution that preserves privacy-sensitive data from unauthorized access113

to ensure data security and privacy.114

To address those challenges, we rely on joint usage of blockchain and Distributed Hash Table (DHT), presented115

in the following to facilitate further understanding of the paper, together with an overview of existing work and its116

limitations.117

3. Background Knowledge and Related Work118

In this section, we introduce the basic concepts underpinning blockchain technology and Distributed Hash Table119

(DHT), we then explain their use in the context of decentralized data storage. We follow with a survey and analysis120

of existing decentralized data storage solutions. We compare our proposed solution with existing work and summarize121

the results in Table 1.122

3.1. Basic Concepts: Blockchain and DHT123

In 2008, blockchain technology [22] was introduced to the world and became popular due to its decentralized feature.124

The blockchain is a decentralized database that stores all the transactions that take place on the network. All participants125

on the network have the same copy of the transactions. Before adding each block to the blockchain, miners accept126

and verify the transactions using a consensus algorithm such as proof of work. By using proof of work or similar127

mechanism [15], miners solve very difficult mathematical calculations that should be accepted by other miners on the128

network [3]. After verifying the correctness of transactions by other miners, a block is appended to the end of the129



4 Sidra Aslam, and Michael Mrissa

chain [24]. Each block is comprised of a block version, timestamps, consensus signature, parent block hash, and many130

transactions. The parent block stores the hash of its previous block to form a blockchain that ensures the immutability131

of the stored data [32]. The hash is a unique value that ensures integrity of the entire blockchain from the initial block132

(known as genesis block) to the last.133

A distributed hash table (DHT) is a decentralized data storage system that stores data as (key, value) pairs over134

a set of nodes that distribute the storage, possibly with some level of replication. As an example, a well-known DHT135

implementation is Kademlia [19]. Each node in the DHT maintains the keys it is responsible for and their corresponding136

values. A key is a unique identifier to its corresponding data value. Each key is generated by applying a hash function137

to the value. A DHT is based on two main tasks: PUT(key, value) is used to add new data, while GET(key) is used to138

retrieve the data, that is associated with the given key. A DHT node contains a routing table that maintains the identifier139

of its neighbor nodes. To find a (key, value) pair, a requesting node contacts the multiple nodes in the network until it140

reaches the destination node and finds the (key, value) pair. DHT has an advantage in terms of fault-tolerance because141

(key, value) pairs are replicated on multiple nodes in the network, that ensures data availability [43]. In addition, and142

as opposed to BC, it is scalable enough to manage large data volumes.143

3.2. Blockchain and DHT-based data storage144

There is a large amount of literature that combines DHT with blockchain to provide decentralized data storage. There is145

a large amount of literature that combines DHT with blockchain to provide decentralized data storage. A framework to146

manage personal data is proposed in [43]. The solution stores encrypted data (with shared key) on DHT and its pointer147

on the blockchain. Both service and user can query the data. However, existing work supports one type of encryption.148

Most work use a shared symmetric key for data encryption/decryption, as in [43], to query the data. In contrast,149

our framework provides run-time flexibility, which provides various types of data encryption and decryption during150

execution depending on users’ needs and application requirements. In [43], it is not clearly explained how symmetric151

keys are protected from unauthorized access and where they are stored. In our work, we encrypt symmetric key with152

the public key of the data owner, and store it on the DHT together with the data, so that later the data owner can access153

the data.154

In [28], a distributed access control and data management framework is presented. The framework enables secure155

IoT data sharing by combining blockchain with off-chain storage (i.e DHT). Fine-grained access control permissions156

are stored on the blockchain and are publicly visible, which raises privacy issues. Also, it is not possible to update157

access control permissions due to public blockchain immutability nature. On the other hand, our proposed framework158

is flexible to update access control permissions. We also maintain data owner anonymity for sharing data.159

In [1], the authors propose a decentralized data storage for PingER (Ping End-to-End Reporting) framework. The160

proposed framework stores metadata of the daily PingER files on a permissioned blockchain, while the original data161

is stored off-chain. However, their solution writes monitoring agent name and file locations on the permissioned162

blockchain, which is immutable and shared with other participants on the network. In addition, this solution does163

not record the data modification history in case of any modification in the data. Our framework design relies on the164

PingER proposal for the metadata structure, however, we integrate privacy and security management to enable role-165

based access control and privacy protection. Our solution enables data owners to control and access their private data.166

We also provide a solution to manage the previous versions of data using pointers that enable authorized users to access167

their transaction history. In addition, our work includes proof of concept prototype as well as empirical performance168

evaluation, which is not the case in PingER.169

The authors in [8], propose the LightChain framework, which is a permissionless blockchain that operates over170

participating peers of a skip graph DHT. The proposed framework enables all participating peers to access blocks and171

transactions by using a skip graph overlay. LightChain allows every peer to join the blockchain without any restrictions.172

However, blocks and transactions are addressable and accessible to everyone on the network. In contrast to the existing173

framework, our solution uses Role-based Access Control (RBAC) model that allows only authorized users to access174

blocks and transactions. We store metadata with a pointer on the blockchain, which enables other actors to keep track175

of data changes with the help of this metadata.176

Table 1 presents a global overview of existing work with respect to the following features: decentralization, data177

privacy, data updates, transaction history support, and attacks prevention. The table shows that some existing solutions178

ensure decentralization, data privacy, and attacks prevention [43,7]. However, some solutions did not address data179

updates and transaction history support [28,1,8,27].180



A Framework for Privacy-aware and Secure Decentralized Data Storage 5

Table 1. Our proposed framework comparison with existing work

Solutions Decentralization Data Privacy Data Updates
Transaction

History
Support

Attacks Prevention

[43] Yes Yes No No No
[28] Yes No No No No
[1] Yes No No No No
[8] Yes No No No No

[16] Partial No No No No
[5] Yes Yes No No No
[38] Yes No No No No
[11] Partial Yes No No No
[41] Partial Yes No No No
[7] Partial Yes No No Yes
[27] Yes Yes No No No

Our solution Yes Yes Yes Yes Yes

3.3. Other Decentralized Data Storage Solutions181

An Ethereum-based blockchain platform is presented in [16]. The proposed solution allows companies partners to share182

data with each other. Original data are stored on off-chain storage such as MySQL, while a hash sum of corresponding183

data is sent to the blockchain. However, MySQL database is not scalable as DHT to manage a large amount of data [12].184

In addition, MySQL database becomes a single point of failure. In our solution, we use a DHT to store data as (key,185

value) pair, which can handle a large amount of data easily. In our framework, any authenticated user can efficiently186

retrieve the value with the help of a corresponding key. As well, our solution is fully decentralized and eliminates the187

risk of single point of failure.188

In [5], the authors propose a framework called u-share. It is a blockchain-based framework to maintain the owner’s189

data traceability while sharing data with their friends and family. The proposed framework is based on a software190

client to share the private keys with corresponding circle members, keeps a record of shared keys, and encrypt the191

data using the circle’s public key before to share it. However, sharing private key raises security issues. Additionally,192

the existing framework relies on one type of encryption method. Compared to the existing u-share framework, our193

proposed solution allows actors to directly generate their public and private keys at run time and control of their private194

keys. Our solution allows data owners to directly encrypt, decrypt, and share their data with other actors by using195

different types of encryption methods.196

The authors in [29] present a blockchain-based framework that enables users to share their data with other users.197

A smart contract is used to store data sharing policies that control users’ access to the data, while users’ private data198

is stored on the off-chain storage called multi-chain. However, policies stored on the smart contract are immutable.199

In contrast, our solution enables data owners to update access control permissions. In addition, we ensure data owner200

anonymity to share data.201

In [38], a decentralized supply chain system to keep track of goods and recipe ingredients is presented. The pro-202

posed framework uses a smart contract to handle the exchange of goods on a distributed ledger. The main limitation of203

this solution is the immutability and availability of data to everyone, which could lead to privacy and data modifica-204

tion concerns. On the other hand, our solution stores encrypted data on DHT to ensures data privacy. In addition, our205

framework allows actors to update data at each point of the chain.206

In [11], a blockchain-based food supply chain traceability through smart contract is presented. The proposed frame-207

work uses blockchain to store data hash while corresponding data are stored on IPFS (InterPlanetary File System)208

off-chain storage. IPFS is a peer-to-peer storage network where data stores on the peers of the network [17]. However,209

a manufacturer node server is used to handle all modules of the framework, which subjects to a single point of failure.210

On the other hand, our framework modules are fully decentralized and independent of any central orchestrator. For the211

sake of simplicity, we use a registry server to connect nodes to each other, however, decentralized discovery protocol212

can easily be used instead of registry server [9].213

In [41], the authors propose a decentralized IoT data sharing solution using IOTA Tangle and IPFS technology.214

The proposed solution uses centralized data handling unit (such as a local server) to collect and encrypt the data215

using asymmetric encryption, which becomes a single point of failure. In contrast, our proposed solution manage and216



6 Sidra Aslam, and Michael Mrissa

store data without any central party. The IPFS is used to upload the encrypted data, while the corresponding hash and217

metadata are managed on the IOTA Tangle. However, the IPFS network is immutable and stores files and its content218

permanently [14]. On the other hand, we use DHT to store the data and we extend it to allow data modification at any219

time. In contrast, our solution allows going through the history of data values and supports querying it.220

The authors in [33] propose a blockchain-based framework that maintains the traceability of the food supply chain.221

RFID technology is used to automatically identify objects through radio frequency signals. However, blockchain tech-222

nology is not scalable to store a large amount of data. In contrast to this solution, we propose to only store metadata223

and pointer on the blockchain, while original data is stored on a DHT, which better supports storing large amounts of224

data. In addition, our framework supports data mutability, thanks to the DHT, whereas blockchain is immutable and225

shows more difficulty to handle large amounts of data.226

In [4] the authors discuss the distributed cloud storage system called Storj. It is a trust-based storage system between227

host and customer. In this system, people sell their free storage hardware space and earn money. Customers encrypt228

(using AES256-CTR) their data before storing it on the network. Storj allows the data owner to control and access their229

data on the network. However, Storj is very costly and depends on a centralized architecture to conclude storage data230

and payments [7,10]. In contrast, our solution is fully decentralized architecture and avoids a single point of failure. In231

addition, Storj uses one type of encryption method to establish trust between customer and host [39]. As compared to232

this, our solution offers different types of encryption methods and enables trust in the decentralized system instead of233

participants on the network.234

In [27] the authors discuss a decentralized data storage framework that combines Solid Pods with blockchain tech-235

nology. Solid (Social Linked Data) relies on RDF (Resource Description Framework) and semantic web to manage236

data. Solid enables people to store their personal data in Pods (Personal online data stores) hosted at the location ac-237

cording to the people’s wish. The proposed framework discusses the following two cases to ensure data confidentiality.238

The first is to store file hash on the blockchain while Solid Pods is used to store the data. Second, they use smart contract239

to store the data on a Blockchain whereas solid pods are used to store the software wallet (public and private key pair).240

User can access their data using the software wallet. However, Solid Pods itself does not ensure data verification and241

trust [6]. In addition, it does not support storing large amounts of data as DHT does [20]. In contrast, our framework242

allows to manage large amounts of data in a decentralized way due to the use of a DHT. Therefore, our approach to data243

storage is quite different as we do not adopt a user-based isolated storage but rather a globally decentralized storage244

that relies on the network peers to ensure security and privacy.245

In a summary, most existing data storage solutions are subject to the single point of failure issue, data mutability or246

adopt different designs. In the following, we detail our framework and proposed algorithms in detail.247

4. Contribution248

In this paper, we propose a secure and privacy-aware decentralized framework to support data storage, authorized data249

access, data mutability, management of their update history, and traceability. This section starts with the metadata250

structure that is immutable record of data operations. Then, it describes the overview of our proposed framework and251

follows with the detail of its execution or sequence. After that, it details the proposed algorithms. Each actor of the252

framework runs the same code that is structured into a set of components as depicted in Figure 3.253

4.1. Metadata Structure254

In [1], authors write metadata such as names and locations only once a day on the permissioned blockchain, which is255

immutable and they shared this information with all users on the network. In contrast, we store metadata of each actor’s256

action (such as data write date and time) to maintain the actor’s trust. This allows actors to keep track of the data.257

We propose a privacy-aware metadata extension discussed in the paper [1], to handle privacy restrictions on the data.258

Therefore, our framework encrypts the actor’s private information (e.g name and location) with encryption mechanisms259

(illustrated in Algorithm 2), and store this encrypted data on the DHT. Our solution also allows only authorize actors260

to update the product location in case if wood drives from one place to another place. We use a blockchain to store261

the metadata and DHT key of this encrypted data. Our proposed metadata structure contains the DHT key, previous262

pointer, data owner’s id, date, time, and RFID_number as shown in Figure 2. The DHT key is a hash pointer that points263

to the data in the DHT. Previous pointer is a hash key of the previous version of the data, which enables data owners264

to access their transaction history. In our framework, each actor has unique data owner id which is used to make a data265

request and identify who is the owner of the corresponding data. Our solution records data and time of each operation266



A Framework for Privacy-aware and Secure Decentralized Data Storage 7

(such as data write, read, update, and delete) that is performed on the data. RFID_number is a unique data id of the log,267

lumber and product which is used to trace the items in the chain.268

DHT key

DateTime

Metadata Structure

Previous Pointer

RFID_number

DateTime Data Owner ID

Figure 2. Metadata structure on the blockchain

4.2. Architecture Overview269

Our framework uses RESTful APIs to enable actors to communicate with other actors and support the framework270

functionalities.271

Independent registry server

DHT response

encrypt datadecrypt data

send HTTP request return peer list

check permission

Actor

access request

response
Header Header

Tranaction 1

 


Transaction N

Tranaction 1

 


Transaction N

Block 0 Block 1 Block N

Blockchain component
DHT component

encrypted data
read / write pointer


 and metadata

Asymmetric =

Pub Pri

Symmetric =

key

E(symmetric key) =

Encryption component

Header

Tranaction 1

 


Transaction N encrypted data

encrypted data

store 

data

Blockchain 

response

RBAC component

Figure 3. Overview of the decentralized framework

Figure 3 depicts the execution workflow of the proposed framework and its components. In our framework, all272

actors are running the same main program and they call to registry_server (/peers resource, method ’GET’)273

to retrieve the list of available actors (e.g peers) and connect with each other through APIs.274

Let us illustrate the operation of our framework with the wood supply chain scenario developed earlier: an actor,275

for example a forest manager actor, starts the main program to store the number of logs and type of wood that he276

cuts. Then, he will call the /peers resource of the registry_server with the ’POST’ method to add its public277

key and Uniform Resource Locator (URL) to the list of connected peers or actors. After that, he will send a ’GET’278



8 Sidra Aslam, and Michael Mrissa

request to the /peers resource to receive the information of available peers. Then, he will take a copy of the recent279

40 transactions of the blockchain using /chain resource with a ’GET’ method4.280

In the proposed framework, the RBAC component called by the main component is responsible for checking the281

permission of the actor. It allows the only authorized actor to perform operations such as data write, read, delete, and282

update.283

An authorized actor has a choice between multiple types of encryption techniques to secure their data in a de-284

centralized ledger. Our encryption_component called by the main component generates keys (a public/private285

key pair, or a symmetric key) based on the encryption method chosen by the authorized actor and encrypts the data286

accordingly.287

We store the encrypted data on the DHT component, while DHT key (a hash pointer of the data) and metadata are288

stored on the blockchain component. Later, an authorized actor can access their data using the DHT key stored on289

the blockchain component.290

Accordingly, an authorized actor can create a new block using /chain resource with the method ’POST’. To291

read the data, an actor will call the resource /chain/<id> with ’GET’ method. If an actor wants to update some292

part of the data, then it will call the /chain/<id> resource using ’PUT’ method. Similarly, to delete the data, an293

authorized actor will make a ’DELETE’ request to the /chain/<id> resource. An actor can access their public key294

using the resource /public_key with method ‘GET’.295

Figure 4 shows the swagger user interface that enables authorized actors to use the proposed APIs discussed above.296

Figure 4. Overview of the proposed API using Swagger

The overview of each actor’s actions (such as write, read, update, and delete) on the data is depicted in figure 5.297

The data represents in the figure 5 is stored on the DHT component, while corresponding metadata is managed on the298

blockchain component. Please see the detail of the metadata structure in section 4.1.299

4.3. Interaction via RESTful API300

In this section, we detail the possible usage of our framework with a sequence diagram (Figure 6) that illustrates the301

interaction between an actor (e.g. a forest manager) and the framework using its RESTful API. We assume that every302

actor is already registered on the framework. An actor makes a ‘POST’ request to the /chain resource to write log303

data in the framework. Our solution assigns a unique data id (RFID_number) to the log that enables authorized actors304

to trace the log in the chain. In the case of a successful response (HTTP code 201), it returns the links including the id in305

the response. Our framework stores the DHT key of this generated data in the metadata. Therefore, this DHT key points306

to the location of the log data on the DHT. The actor can use these links to perform further actions on the log data by307

sending another HTTP request as described in the links. To read the data, an actor would use the GET link that would308

call the /chain/<id> resource with method ‘GET’ to retrieve the representation of the log data. In the case of a309

successful response (HTTP code 200), our framework returns the representation of the log data. In case an actor wants310

to update their data, then they use the PUT link that makes a ’PUT’ request to the (/chain/<id> resource). It will311

4 Please note that here we avoid downloading the whole blockchain due to performance issues, but only the most recent part, the rest being
on-demand. This particular aspect of the work is out of the scope of this paper.



A Framework for Privacy-aware and Secure Decentralized Data Storage 9

W
ood Supply C

hain D
ecentralized Storage

Actors

Forest manager
actor

Records data 

about log

Reads log 

data

Transporter 

actor

Records data about log Updates location of log

Sawmill manager
actor

Records lumber 

data from log data

Reads lumber 

data

Updates lumber 

data

Delete lumber 

data

Product
assembler actor

Records assembly
product  data from

lumber data

Reads assembly 

product  data

Updates assembly 

product data

Delete assembly 

product data

Records product location Reads product data
Product seller 


actor

Customer
Records product, log data 

Actors perform actions on the data

in the framework


Updates log 

data

Delete log 

data

Figure 5. High-level representation of actors actions on the data

then write the new data against the same id. Then, a new metadata structure is created on the blockchain, and it contains312

the new DHT key of this updated data and the previous pointer of the old version of the data. Similarly, to delete the313

data, an actor may follow the DELETE link (/chain/<id> resource, method ’DELETE’). Our framework allows314

the authorized actor to delete specific data based on the id. After verifying the permission of the actor, it will delete the315

data. In this case, a new metadata structure is created on the blockchain that has a new DHT key with a NULL value.316

4.4. Registration and Data Management317

This section presents the proposed algorithms that support our solution including actor registration using designated318

REST APIs, data management on the decentralized storage and on the blockchain, and traceability algorithm to keep319

track of the data history.320

– Actor Registration321

Algorithm 1 describes the actor’s connection or registration procedure to the proposed framework using our REST-322

ful APIs. Once actor would successfully connect to the framework then they can perform different actions on the323

data such as write, read, update etc, and actors can also connect to other actors through HTTP requests. Each new324

actor needs to connect to the framework once to perform actions.325

Firstly, the actor calls the /peers resource with ’GET’ method to receive the available peer list (pl). After that,326

it calls the /peers resource ’POST’ method to add its public key to the list of available peers and registers to327

the registry server. Then it sends a request to other peers to acknowledge the connected peer (/peers resource,328

’POST’ method). If the current actor is already in the list then it will be disconnected or removed from the329

peer list using the /peers resource with ’DELETE’ method. Then it sends a request to other available peers to330

acknowledge the disconnected peer.331

– Data Management on the DHT332

The process to write or store the data including metadata and corresponding DHT key (a hash pointer of the333

encrypted data) is shown in Algorithm 2. Our proposed framework combine blockchain with a DHT in a way that334

allows authorized actors to write and update the data about their activities. For instance, if an actor has a role "data335

owner" and wants to store their log data such as:336



10 Sidra Aslam, and Michael Mrissa

Actor

JSON-LD structure of the data on DHT:
{
 "id": "RFID_number",
 "resource": "log",
 "woodtype": "oak",
 "datetime": "2022-03-16, T-19:20:30.45+01:00",
 "location": {"lat": "38,3951",long": "-77,0364"}
}

Received links in the response
"links": {
 "GET": "http://127.0.0.1:8001/chain/<id>",
 "PUT": "http://127.0.0.1:8001/chain/<id>", 
 "DELETE":   "http://127.0.0.1:8001/chain/<id>",
 "POST": "http://127.0.0.1:8001/chain"
}

Framework

Response: 201 - Log data updated

Response: 201 - Log data deleted

POST '/chain' - Create new log data

DELETE '/chain/<id>' - Delete log data

PUT '/chain/<id>' - Update log data

Response: 201 - Log data created, links

GET '/chain/<id>' - Retrieve a representation of log data

Response: 200 - Return representation of log

Figure 6. Sequence diagram of possible actor interactions with the framework

{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-06-01, T-11:16:25.45+01:00",
"location":
{

"lat": "14,2472",
"long": "-43,2135"

}
}
Then, Authenticate(actor, role) and CheckPermission(actor, role, v) verify that the cur-337

rent actor has the right permissions to store their data or not. The CheckPermission checks if the current actor338

has a role ’forest manager’ then he is allowed to write, read, update, and delete their data in the decentralized339

platform.340

After verifying the permission of the current actor, our framework provides different encryption methods (em)341

to encrypt the data before storing it on the decentralized ledger that ensures data security. An authorized actor is342

allowed to choose between asymmetric em and symmetric em. Asymmetric encryption is based on separate343

public and private keys. A public key is used to encrypt the data, while a corresponding private key is used to344

decrypt the data. In our motivating scenario, if a forest manager actor chooses asymmetric em then data will be345

encrypted with the data owner’s public key, so later he can only access his data using his private key.346

The authorized actor also has an option to choose symmetric em to encrypt the data, if he wants to enable other347

actors to read their data. A symmetric key is based on a single key to encrypt and decrypt the data. If the data348

owner chooses symmetric em, then our framework encrypts the data with the symmetric key and then this349

symmetric key will be encrypted with a data owner public key to protect the key from unauthorized actors.350



A Framework for Privacy-aware and Secure Decentralized Data Storage 11

Algorithm 1 Actor registration algorithm
Input: ca: current actor
Output: pl: peer list, boolean value

▷ GET: HTTP verb GET request (constant)
▷ POST: HTTP verb POST request (constant)
▷ pe: endpoint of the peer (constant)
▷ Req.Method: identify request type (variable)
▷ p: peer in loop (variable)

1: if Req.Method == GET then
2: return pl
3: end if
4: if Req.Method == POST then
5: pl.Append(ca)
6: for each p ∈ pl do
7: RequestsPost(p(pe), ca)
8: end for
9: return true

10: end if
11: if Req.Method == DELETE then
12: pl.Remove(ca)
13: for each p ∈ pl do
14: RequestsDelete(p(pe), ca)
15: end for
16: return true
17: end if

Upon data read request, the data owner would encrypt this symmetric key using the requester’s the public key to351

enable the authorized actors to read the data.352

We store this encrypted symmetric key (ek) and encrypted data (ed) on the DHT. The ed stores on the DHT contains353

resource, woodtype, location (such as latitude and longitude) that shows the geographical location of the resource354

in the wood supply chain. Then, the function FindLastTransaction takes the data id such as (rfid_number)355

as input and returns previous pointer (pp) if it exists otherwise it returns 0. We store the metadata on the blockchain.356

The metadata includes DHT key (dk), pp, datetime, data owner id (doid), and data id (rfid_number).357

– Data Management on the Blockchain358

As an extension to the work in [1], we propose a metadata structure that manages the pointer and connects the359

different values attached to a specific piece of data to maintain its history. For example, a forest manager actor, as360

a data owner, would write a log information such as:361

{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-05-03, T-10:12:21.45+01:00",
"location":
{

"lat": "13,2351",
"long": "-15,5142"

}
}
In this case, the proposed solution stores the DHT key as a new pointer of the log data in the metadata. Later, the362

data owner can access the data using a data id (RFID_number of the corresponding data). An actor can update363

some parts of the data against the same data id such as:364

{
"id": "RFID_number",



12 Sidra Aslam, and Michael Mrissa

Algorithm 2 Algorithm for the data write operation
Input: d: data, actor: current actor, role: role of the actor, v: HTTP verb POST, PUT, em: encryption method, pp: pointer of

previous transaction when data is updated
Output: ed: encrypted data, encrypted symmetric key (ek) ▷ pk: public key of data owner (constant)

▷ doid: id of the data owner (constant)
▷ sk: symmetric key (variable)
▷ dht: variable to store the ed and ek
▷ dk: dht key points to the data in dht (variable)
▷ rfid_number: data id (variable)
▷ datetime: timestamp (variable)
▷ pp: previous pointer (variable)

1: if Authenticate(actor, role) then
2: if CheckPermission(actor, role, v) then
3: if em == true then ▷ if true we use asymmetric encryption)
4: ed← Encrypt(d, pk)
5: else ▷ if false we use symmetric encryption)
6: encrypd← Encrypt(d, sk)
7: ek← Encrypt(sk, pk)
8: ed← encrypd, ek
9: end if

10: dk← Digest(ed)
11: dht← SetValue(ed)
12: pp← FindLastTransaction(rfid-number)
13: AddTransaction(dk, pp, datetime, doid, rfid_number)
14: end if
15: end if

"resource": "log",
"woodtype": "maple",
"datetime": "2022-08-06, T-14:16:23.45+01:00",
"location":
{

"lat": "11,2256",
"long": "-21,1525"

}
}
Our solution allows the data owner to perform different operations (such as update, read and delete) on their data365

for the specific RFID_number. In case of data update, new metadata will be generated on the blockchain that366

includes a new DHT key of the updated data and the previous pointer that refers to the previous version of the367

data that is stored on the DHT (illustrated in Algorithm 2). Therefore, the DHT key of the previous version of the368

transaction becomes the previous pointer which is stored in the new metadata. The proposed metadata structure369

also stores the datetime of the updated data. This way if the data owner wants to see their transactions history,370

then the function FindLastTransaction(did) returns the recent version of the transaction against this data371

id as RFID_number containing the DHT key of new data and previous pointer of the updated data. This way an372

actor can access their update history. To read the data, an authorized actor can decrypt and access their data in the373

decentralized platform. In case, if data is encrypted with the data owner’s public key then a data owner can use374

their private key to decrypt and read the data. If the data is encrypted with a symmetric key then the authorized375

actor first decrypts the symmetric key using their private key and then this decrypted symmetric key will be used376

to access the data that is stored on the DHT. Similarly, an authorized actor can delete their data against a specific377

RFID_number, then a new transaction is created on the blockchain that includes a new metadata structure. This378

metadata includes a new DHT key with a NULL value.379

– Traceability380

We propose an solution that maintains data id references to ensure traceability. It enables actors to verify the origin381

of the final product in the chain. Our solution assigns a unique data id (such as RFID_number) to the log, lumber,382



A Framework for Privacy-aware and Secure Decentralized Data Storage 13

and product. We assume that, RFID chips are inserted into the logs and then into the lumbers and final products.383

The following code shows the log data in JSON format such as.384

{
"id": "RFID_number",
"resource": "log",
"woodtype": "maple",
"datetime": "2022-05-10, T-13:10:20.45+01:00",
"location":
{

"lat": "25,1324",
"long": "-45,1326"

}
}
A log produces different pieces of lumbers and each lumber has unique id as RFID_number. The following code385

shows the lumber data.386

{
"id": "RFID_number",
"resource": "lumber",
"datetime": "2022-05-13, T-14:12:23.45+01:00",
"location":
{

"lat": "12,2425",
"long": "-23,1526"

},
"log":
{

"id": "RFID_number"
}

}

The data described above contains a reference id (RFID_number) of the log that was turned into lumbers. The387

different pieces of lumbers participate to build a final product such as wooden furniture. The following is a JSON388

representation of product data.389

{
"id": "RFID_number",
"resource": "product",
"datetime": "2022-06-02, T-16:14:26.45+01:00",
"location":
{

"lat": "52,5323",
"long": "-24,3316"

},
"lumber":
{

"id": "RFID_number"
}

}

The product data represented above contains an id reference of lumber that was used to build it. This way an390

authorized actor can verify the origin of the wooden product and can identify where it comes from. The process391

to trace the data and verifies the product origin in the wood supply chain is shown in Algorithm 3. For instance, a392

customer buys a wooden product such as a bed and he wants to trace this product. Then, he can use the product id393

as a data id (such as RFID_number) to keep track of their origin. The proposed algorithm enables actors to trace394

the product’s origin using the data id’s references discussed above.395

In Algorithm 3, the did is an RFID_number of the item in the wood supply chain, and data (e.g location) of the396

item changes for the same did. Therefore, we can have multiple transactions on the blockchain against this did.397



14 Sidra Aslam, and Michael Mrissa

Whenever the location of the item would change then new metadata of the same did will be recorded on the398

blockchain, and the corresponding data is stored to the DHT. The FindLastTransaction function returns the399

last or recent transaction t of this did, which is a RFID_number. For instance, if we have did of the log then it400

finds the last transaction of this log.401

This transaction t has the metadata that contains DHT key that points to the data recorded on the DHT. The402

function CheckPermission verifies if the current data requester is authorize to read the data or not depending403

on their role and HTTP verbs permission ’GET’. Then, the function GetReferences has the t as input and404

takes the did of the items. After that, it gets the previous references of this did. For example, if we have a input405

did as product id then it finds the previous references such as RFID_number of the lumbers. Then, it checks items406

(e.g lumbers) in the list and add items (e.g lumbers references) in the output list (o). Then, the Traceability407

function takes i such as lumber as input and call recursively to find out the log and add them in the list o. In case408

the list o is empty it is returned anyway, and it means that the log does not contain any previous reference.409

Algorithm 3 Traceability algorithm
Input: did: data id (DHT key)

actor: requester actor, role: requester role, v: HTTP verb GET
Output: o: DHT keys of tracked items

▷ l: items list (variable)

1: l← ∅
2: t← FindLastTransaction(did)
3: if CheckPermission (actor, role, v) then
4: l← GetReferences (t)
5: if l ̸= ∅ then
6: o← ∅
7: for each i ∈ l do
8: o.Append(i)
9: o.Append(Traceability(i))

10: end for
11: return o
12: end if
13: end if
14: return ∅

5. Results and Evaluation410

This section presents the results and performance evaluation of the proposed decentralized data storage framework.411

The evaluation framework is discussed in Section 5.1. The security and privacy analysis are presented in Section 5.2.412

Section 5.3 discusses the performance evaluation of our proposed framework.413

5.1. Evaluation Framework414

To implement and evaluate the performance of our framework, we used Python 3.7.0. We used a Python library5 to415

implement a blockchain to store the DHT key and metadata. We implemented a DHT using the Kademlia library6,416

which allows to store and get data linked with a given key on the peer-to-peer network. We used the cryptography417

RSA library to generate private/public keys and encrypt/decrypt the data. We conducted experiments and evaluated our418

framework on a 64-bit Windows operating system, Core i7 1.80 GHz processor, and 16 GB RAM.419

5 https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
6 https://github.com/bmuller/kademlia

https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post
https://github.com/bmuller/kademlia


A Framework for Privacy-aware and Secure Decentralized Data Storage 15

5.2. Privacy and Security Analysis420

The proposed solution supports data privacy and enables data owners to own and control their data in a decentral-421

ized platform. Our check permission method prevents unauthorized actors to perform operations on data such as data422

write, read, update, and delete. In addition, to protect privacy-sensitive data from unauthorized access, our framework423

provides multi layers of encryption to ensure privacy and security. The data stored on the DHT are encrypted before424

uploading. Even if an unauthorized actor gains access to the DHT nodes then they can only see the cipher texts and425

cannot achieve any information about the data. Moreover, in our solution, we used blockchain and DHT because of426

their decentralized and distributed design. This can solve the single-point failure issue, and ensures data replication and427

availability. We analyzed and evaluated the security of our framework under the following threats:428

– Linking attack429

A linking attack happens when the attacker tries to link various transactions or data with the corresponding public430

key. In our design, we use different encryption mechanisms to encrypt the data, such as the data owner’s public key,431

symmetric key, and requester’s public key. We generate public, private, and symmetric keys at run-time according432

to the encryption method chosen by the actor. To secure the symmetric key from unauthorized access, our frame-433

work encrypts the symmetric key with the data owner’s public key and stores it on the DHT. This way only the434

authorized user is allowed to use this symmetric key to decrypt and access their data. For this reason, an attacker435

cannot link different transactions to the same public key, because our solution encrypts the data using different436

encryption mechanisms and public keys.437

438

– Eavesdropping attack439

In an eavesdropping attack, an attacker tries to listen to privacy-sensitive information in the network. To protect440

against this attack, we encrypt privacy-sensitive data with the requester’s public key upon data read request. This441

way only authorized actors can access and read the data using their private key.442

443

– Spoofing attack444

A spoofing attack happens when a malicious actor uses the ID of another actor and tries to access the data. In our445

framework, a malicious user cannot spoof the ID of another actor because they could not spoof its private key. In446

our solution, each actor has a private key that is kept secret and not shared with others.447

448

– Modification attack449

A modification attack occurs when an attacker tries to change the data content. In our framework design, we allow450

data owners to encrypt the data using their public key and store the corresponding pointer on the blockchain. Our451

proposed metadata design keeps the track of data entry date and time to recognize the changes in the data. An452

attacker cannot modify the data because data can only be decrypted with a data owner’s private key that is kept453

secret by the data owner.454

5.3. Performance Evaluation455

We evaluated the results according to time consumption and scalability with respect to the number of peers. We com-456

puted the time consumption of the proposed solution according to the following parameters: actor’s check permission,457

data encryption/decryption using asymmetric or symmetric techniques, DHT access, and blockchain access. We ob-458

served time consumption while performing data write, update, read, delete, and traceability operations. Figure 7 and 8459

show the time consumption of the different parts of our solution, respectively using symmetric encryption and asym-460

metric encryption.461



16 Sidra Aslam, and Michael Mrissa

Figure 7. Time consumption using symmetric encryption

Figure 8. Time consumption using asymmetric encryption

The general trend of our measurements shows that DHT access takes most of the time needed, followed by462

blockchain access, encryption/decryption and then permission check, which makes sense since the DHT deals with463



A Framework for Privacy-aware and Secure Decentralized Data Storage 17

data storage and is therefore I/O-bound. We believe however that some low-level optimization is performed at this464

stage (see the scalability tests and discussion).465

In general, the usage of symmetric or asymmetric encryption does not impact the solution much, except a slight466

increase of time consumption if asymmetric encryption is used. We make sense of these results by acknowledging the467

higher number of keys and costly computation that are needed when using asymmetric cryptography.468

The most time-consuming operation is, without surprise, the write operation, since it requires the most from the469

system. Second comes the update operation which is similar to a write except it is already related to an existing piece470

of data. Third comes traceability, which does not modify the existing data but requires following the history of different471

pieces of data. Finally, the delete operation is less costly, and the read operation only consists in resolving the DHT472

pointer and if granted, fetching the data.473

Moreover, we tested the scalability of our solution with a growing number of actors 1, 100, 200, 300, 400 and474

obtained a reasonable performance with 400 actors (please note that increasing the number of actors to more than475

400 would lead to additional synchronization problem, which would slow down the speed and performance. These476

problems are out of the scope of this paper.) The HTTP requests will be only partially processed in parallel, since477

they share the CPU time, and we tested our prototype with a quad-core CPU. In our solution, actors are the same as478

blockchain nodes and DHT nodes. We tested our solution with a number of 400 actors which are considered as 400479

nodes.480

Figure 9. Average time consumption under different number of actors

We calculated the average time consumption of our prototype with an increasing number of actors. The actor reg-481

istration operation is performed only once for 1, 100, 200, 300, and 400 actor and the time costs is 0,0034 seconds,482

0,0039 seconds, 0,0041 seconds, 0,0046 seconds, and 0,0049 seconds respectively. Therefore, we tested our proto-483

type 100 times for all operations such as write data, update data, read data, delete data, and traceability. After that,484

we calculated the average time, Standard Deviation (SD), minimum (min), and maximum (max) values in seconds.485

Figure 9 depicts the average time consumption between a different number of actors, and detailed results statistics are486

summarized in Table 2.487

As we can see from Figure 9 and Table 2, for the case of 1 actor, write data gives an average of 0,5712 seconds488

which is less than the average time of data write for 100, 200, 300, and 400 actors. The update data has an SD of 0,0211489

seconds which is close to the SD of update data for the case of 200 actors. The data read provides an max value of490

0,0456 seconds which is less than the may value of read data for the case of 100, 200, 300, and 400 actors. The delete491



18 Sidra Aslam, and Michael Mrissa

data takes an average time of 0,0214 seconds which is close to the average time of delete data for 100 and 200 actors.492

The traceability data operation has a min value of 0,0112 seconds and a max value of 0,0312 seconds.493

Table 2. Detailed results under different number of actors

Number of actors Data operations Average Time St Deviation Minimum Maximum

1

Write data 0,5712 0,4321 0,4635 0,6564
Update data 0,0224 0,0211 0,0221 0,0412
Read data 0,0254 0,0113 0,0124 0,0456
Delete data 0,0214 0,0212 0,0213 0,0434
Traceability 0,0201 0,0101 0,0112 0,0312

100

Write data 0,6552 0,5352 0,5432 0,7681
Update data 0,0346 0,0321 0,0334 0,0571
Read data 0,0632 0,0512 0,0542 0,0724
Delete data 0,0233 0,0221 0,0223 0,0342
Traceability 0,0464 0,0413 0,0421 0,0641

200

Write data 0,9325 0,6215 0,6316 1,8622
Update data 0,0356 0,0241 0,0256 0,0392
Read data 0,0738 0,0635 0,0641 0,0956
Delete data 0,0215 0,0153 0,0171 0,0516
Traceability 0,0521 0,0439 0,0472 0,0695

300

Write data 1,2455 0,7529 0,7924 1,9372
Update data 0,0573 0,0543 0,0561 0,0635
Read data 0,0713 0,0537 0,0655 0,0836
Delete data 0,0531 0,0457 0,0461 0,0734
Traceability 0,0636 0,0531 0,0571 0,0913

400

Write data 1,6121 1,3163 1,3223 2,4692
Update data 0,0626 0,0551 0,0569 0,0931
Read data 0,0911 0,0815 0,0857 0,2419
Delete data 0,0882 0,0731 0,0765 1,4271
Traceability 0,0791 0,0682 0,0693 0,0975

For the case of 100 actors, the write operation gives an average of 0,6552 seconds which is slightly higher than the494

average time to write data with 1 actor. The update operation gives an SD time of 0,0321 seconds which is slightly495

higher than the SD to update data with 1 actor and 200 actors. The read operation has a SD of 0,0512 seconds which496

is slightly close to the SD of read data for 300 actors. The delete operation gives a min value of 0,0223 seconds which497

is close to the min value for 1 actor. The traceability algorithm has an average time of 0,0464 seconds which is less as498

compared to the average time for 200, 300, and 400 actors.499

Similarly, with the number of 200 actors, the average time to write data is 0,9325 seconds which is slightly higher500

than the average time to write data for the number of 1 and 100 actors. The update operation provides an SD of 0,0241501

seconds which is less than the SD of update data for the case of 100 actors. The read operation gives an average time of502

0,0738 seconds which is slightly close to the average time to read data for the case of 300 actors. The delete operation503

has a min value of 0,0171 seconds which is less than the min value for 1, 100, 300, and 400 actors. The traceability504

data operation gives a max value of 0,0695 seconds which does not show much difference from the max value of 100505

actors.506

For the case of 300 actors, the write data operation gives an average of 1,2455 seconds which is slightly higher as507

compared to the average time to write data for 200 actors. The update gives an SD value of 0,0543 seconds which is508

close to the SD for the number of 400 actors. The read data operation gives a max value of 0,0836 seconds which is509

less as compared to the max value to read data for the number of 200 and 400 actors. The delete operation provides510

an SD of 0,0457 seconds which is less than the SD for 400 actors. The traceability takes an average time of 0,0636511

seconds which is higher than the average time for 1, 100, and 200 actors.512

For the number of 400 actors, the average time to write data is 1,6121 seconds which is higher than the average513

time to write data for 1, 100, 200, and 300 actors. The update data operation gives an SD of 0,0551 seconds which is514

close to the SD value of update data for 300 actors. The read data provides a min value of 0,0857 seconds and a max515

value of 0,2419 seconds. The average time to delete data operation is slightly higher than the average time to update516



A Framework for Privacy-aware and Secure Decentralized Data Storage 19

operation for 1, 100, 200, and 300 actors. The traceability provides a max value of 0,0975 seconds which is close to517

the max value for 300 actors.518

We interpret the reasonable increase in time consumption despite the large increase in the number of actors as a519

consequence of the efficiency of DHT access, which is known to be logarithmic, combined with a number of low-level520

optimization from the Python language, together with operating system and hardware optimization mechanisms related521

to data management and process execution.522

Overall, our experimental results demonstrates that the proposed solution is scalable and able to manage many523

actors at the same time. The results show that each operation take average time less than 1 minute, while increasing the524

number of actors, therefore, we can conclude that our solution is acceptable for the end user.525

6. Conclusion526

In this paper, we present a decentralized data storage and access framework that ensures data security, privacy, and527

mutability in wood supply chain scenario. The proposed framework integrates blockchain technology with DHT, a528

role-based access control model, and different types of encryption techniques. Our solution allows authorized actors529

to write, read, delete, update their data and manage transaction history on a decentralized system. The proposed trace-530

ability algorithm enables authorized actors to trace the product data in a decentralized ledger. We provided a critical531

comparative analysis of our work with existing solutions to show the research gap. The main limitations of existing532

solutions are a single point of failure, data mutability, and public availability of the data.533

Our prototype design is flexible to expand and can be easily reused for different application domains such as534

medicine, agriculture, etc. We discussed the security and privacy analysis of our proposed solution and evaluate its535

performance in terms of time cost and scalability. The experimental results show that the proposed solution is scalable,536

secure, and achieves an acceptable time cost.537

In future work, we plan to test our framework with different real-life use-cases and enhance data access with538

semantic annotation to identify data concepts that are stored and in turn exploit this information to drive the RBAC539

model. We believe the richness of description logic can contribute to better fine-grained access control and facilitate540

data management. Another step forward relates to the possibility to adapt semantically annotated data to specific local541

interpretation depending on the context of the qeury issuer - for example, converting data units between countries.542

Acknowledgment543

The authors gratefully acknowledge the European Commission for funding the InnoRenew project (Grant Agreement544

#739574) under the Horizon2020 Widespread-Teaming program and the Republic of Slovenia (Investment funding545

of the Republic of Slovenia and the European Regional Development Fund). They also acknowledge the Slovenian546

Research Agency ARRS for funding the project J2-2504.547

References548

1. Ali, S., Wang, G., White, B., Cottrell, R.L.: A blockchain-based decentralized data storage and access framework for pinger.549

In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE550

International Conference on Big Data Science and Engineering (TrustCom/BigDataSE). pp. 1303–1308. IEEE (2018)551

2. Aslam, S., Mrissa, M.: A restful privacy-aware and mutable decentralized ledger. In: European Conference on Advances in552

Databases and Information Systems. pp. 193–204. Springer (2021)553

3. Aslam, S., Tošić, A., Mrissa, M.: Secure and privacy-aware blockchain design: Requirements, challenges and solutions. Journal554

of Cybersecurity and Privacy 1(1), 164–194 (2021)555

4. Benisi, N.Z., Aminian, M., Javadi, B.: Blockchain-based decentralized storage networks: A survey. Journal of Network and556

Computer Applications 162, 102656 (2020)557

5. Chakravorty, A., Rong, C.: Ushare: user controlled social media based on blockchain. In: Proceedings of the 11th international558

conference on ubiquitous information management and communication. pp. 1–6 (2017)559

6. Domingue, J., Third, A., Ramachandran, M.: The fair trade framework for assessing decentralised data solutions. In: Companion560

Proceedings of The 2019 World Wide Web Conference. pp. 866–882 (2019)561

7. de Figueiredo, S., Madhusudan, A., Reniers, V., Nikova, S., Preneel, B.: Exploring the storj network: a security analysis. In:562

Proceedings of the 36th Annual ACM Symposium on Applied Computing. pp. 257–264 (2021)563



20 Sidra Aslam, and Michael Mrissa

8. Hassanzadeh-Nazarabadi, Y., Küpçü, A., Özkasap, Ö.: Lightchain: A dht-based blockchain for resource constrained environ-564

ments. arXiv preprint arXiv:1904.00375 (2019)565

9. He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H.: A decentralized service discovery approach on peer-to-peer networks. IEEE566

Transactions on Services Computing 6(1), 64–75 (2011)567

10. Hei, Y., Liu, Y., Li, D., Liu, J., Wu, Q.: Themis: An accountable blockchain-based p2p cloud storage scheme. Peer-to-Peer568

Networking and Applications 14(1), 225–239 (2021)569

11. Huang, H., Zhou, X., Liu, J.: Food supply chain traceability scheme based on blockchain and epc technology. In: International570

Conference on Smart Blockchain. pp. 32–42. Springer (2019)571

12. Khamphakdee, N., Benjamas, N., Saiyod, S.: Performance evaluation of big data technology on designing big network traffic572

data analysis system. In: 2016 Joint 8th International Conference on soft computing and Intelligent Systems (SCIS) and 17th573

International Symposium on Advanced Intelligent Systems (ISIS). pp. 454–459. IEEE (2016)574

13. Kumar, M.V., Iyengar, N.: A framework for blockchain technology in rice supply chain management. Adv. Sci. Technol. Lett575

146, 125–130 (2017)576

14. Legault, M.: A practitioner’s view on distributed storage systems: Overview, challenges and potential solutions. Technology577

Innovation Management Review 11(6), 32–41 (2021)578

15. Li, W., Andreina, S., Bohli, J.M., Karame, G.: Securing proof-of-stake blockchain protocols. In: Data Privacy Management,579

Cryptocurrencies and Blockchain Technology, pp. 297–315. Springer (2017)580

16. Longo, F., Nicoletti, L., Padovano, A., d’Atri, G., Forte, M.: Blockchain-enabled supply chain: An experimental study. Com-581

puters & Industrial Engineering 136, 57–69 (2019)582

17. Lykousas, N., Koutsokostas, V., Casino, F., Patsakis, C.: The cynicism of modern cybercrime: Automating the analysis of583

surface web marketplaces. arXiv preprint arXiv:2105.11805 (2021)584

18. Marr, B.: How much data do we create every day? the mind-blowing stats everyone should read. forbes. may, 21 2018 (2018)585

19. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on the xor metric. In: International Work-586

shop on Peer-to-Peer Systems. pp. 53–65. Springer (2002)587

20. Mikroyannidis, A., Third, A., Domingue, J.: A case study on the decentralisation of lifelong learning using blockchain technol-588

ogy. Journal of Interactive Media in Education 2020(1) (2020)589

21. Moser, M.: Anonymity of bitcoin transactions. In: Münster Bitcoin Conference (MBC), Münster, Germany (July 2013)590

22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review p. 21260 (2008)591

23. Nakamoto, S., Bitcoin, A.: A peer-to-peer electronic cash system. Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf 4 (2008)592

24. Ølnes, S., Ubacht, J., Janssen, M.: Blockchain in government: Benefits and implications of distributed ledger technology for593

information sharing (2017)594

25. Pazaitis, A., De Filippi, P., Kostakis, V.: Blockchain and value systems in the sharing economy: The illustrative case of backfeed.595

Technological Forecasting and Social Change 125, 105–115 (2017)596

26. Podduturi, P.R., Maco, T., Ahmadi, P., Islam, K.: Rfid implementation in supply chain management. International Journal of597

Interdisciplinary Telecommunications and Networking (IJITN) 12(2), 34–45 (2020)598

27. Ramachandran, M., Chowdhury, N., Third, A., Domingue, J., Quick, K., Bachler, M.: Towards complete decentralised verifica-599

tion of data with confidentiality: Different ways to connect solid pods and blockchain. In: Companion Proceedings of the Web600

Conference 2020. pp. 645–649 (2020)601

28. Shafagh, H., Burkhalter, L., Hithnawi, A., Duquennoy, S.: Towards blockchain-based auditable storage and sharing of iot data.602

In: Proceedings of the 2017 on Cloud Computing Security Workshop. pp. 45–50 (2017)603

29. Shrestha, A.K., Vassileva, J., Deters, R.: A blockchain platform for user data sharing ensuring user control and incentives.604

Frontiers in Blockchain 3, 48 (2020)605

30. da Silva, D.L., Corrêa, P.L.P., Najm, L.H.: Requirements analysis for a traceability system for management wood supply chain606

on amazon forest. In: 2010 Fifth International Conference on Digital Information Management (ICDIM). pp. 87–94. IEEE607

(2010)608

31. Sirkka, A.: Modelling traceability in the forestry wood supply chain. In: 2008 IEEE 24th International Conference on Data609

Engineering Workshop. pp. 104–105. IEEE (2008)610

32. Swan, M.: Blockchain thinking: The brain as a decentralized autonomous corporation [commentary]. IEEE Technology and611

Society Magazine 34(4), 41–52 (2015)612

33. Tian, F.: An agri-food supply chain traceability system for china based on rfid & blockchain technology. In: 2016 13th interna-613

tional conference on service systems and service management (ICSSSM). pp. 1–6. IEEE (2016)614

34. Toyoda, K., Mathiopoulos, P.T., Sasase, I., Ohtsuki, T.: A novel blockchain-based product ownership management system615

(poms) for anti-counterfeits in the post supply chain. IEEE access 5, 17465–17477 (2017)616

35. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Communi-617

cations Surveys & Tutorials 18(3), 2084–2123 (2016)618

36. Tzoulis, I., Andreopoulou, Z.: Emerging traceability technologies as a tool for quality wood trade. Procedia Technology 8,619

606–611 (2013)620

37. Voronchenko, K.: Do you need a blockchain? Supervised by Ivo Kubjas 22 (2017)621



A Framework for Privacy-aware and Secure Decentralized Data Storage 21

38. Westerkamp, M., Victor, F., Küpper, A.: Blockchain-based supply chain traceability: Token recipes model manufacturing pro-622

cesses. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Commu-623

nications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). pp.624

1595–1602. IEEE (2018)625

39. Wilkinson, S., Boshevski, T., Brandoff, J., Buterin, V.: Storj a peer-to-peer cloud storage network. https://www.storj.626

io/storj2014.pdf (2014)627

40. Xu, L., Shah, N., Chen, L., Diallo, N., Gao, Z., Lu, Y., Shi, W.: Enabling the sharing economy: Privacy respecting contract628

based on public blockchain. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. pp. 15–21629

(2017)630

41. Zheng, X., Lu, J., Sun, S., Kiritsis, D.: Decentralized industrial iot data management based on blockchain and ipfs. In: IFIP631

International Conference on Advances in Production Management Systems. pp. 222–229. Springer (2020)632

42. Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and opportunities: A survey. International Journal of633

Web and Grid Services 14(4), 352–375 (2018)634

43. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain to protect personal data. In: 2015 IEEE Security and635

Privacy Workshops. pp. 180–184. IEEE (2015)636

https://www.storj.io/storj2014.pdf
https://www.storj.io/storj2014.pdf
https://www.storj.io/storj2014.pdf

	1 Introduction
	2 Motivating Scenario and Research Problem
	2.1 Motivating Scenario
	2.2 Research Problems

	3 Background Knowledge and Related Work
	3.1 Basic Concepts: Blockchain and DHT
	3.2 Blockchain and DHT-based data storage
	3.3 Other Decentralized Data Storage Solutions

	4 Contribution
	4.1 Metadata Structure
	4.2 Architecture Overview
	4.3 Interaction via RESTful API
	4.4 Registration and Data Management

	5 Results and Evaluation
	5.1 Evaluation Framework
	5.2 Privacy and Security Analysis
	5.3 Performance Evaluation

	6 Conclusion

