A RESTful Privacy-aware and Mutable Decentralized Ledger

Sidra Aslam!-2[0000—0001-7020-1762] 1.4 Michael Mrissal:2[0000—0002—2330—1004]

! University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technology, Glagoljaska ulica 8, 6000
Koper, Slovenia
2 InnoRenew CoE, Livade 6, 6310 Izola, Slovenia
{sidra.aslam}@innorenew.eu
{michael.mrissa}@innorenew.eu

Abstract During the last decade, blockchain technology has gained massive attention due to its decentralized, trans-
parent, and verifiable features. However, data stored on the blockchain is publicly available, immutable, and may
link to the data owner, thus making privacy management and data modification major challenges. In this paper, we
present a RESTful decentralized storage framework that provides data privacy and mutability. To do so, it combines
blockchain with distributed hash table, role-based access control, ring signature, and multiple encryption mecha-
nisms. We designed a protocol that exploits metadata and pointers stored on the blockchain, while corresponding
encrypted data are stored off-chain, so that data owners are able to control their data. Each peer in our framework
offers RESTful APIs to operate, thus ensuring interoperability over the Web. In this paper, we present the operation
of our framework and its components that enable data protection at run-time. We also evaluate its performance with
time measurements from our proof-of-concept implementation.

Keywords: Decentralized framework - Blockchain - Security - Privacy.

1 Introduction

For several decades, people have been depending on centralized solutions that act as Trusted Third Parties (TTPs) to
exchange information and to transfer assets through the Internet. These TTPs are responsible for securing data ex-
changes and they collect massive amounts of privacy-sensitive information from their users. However, a TTP becomes
a single point of failure (SPOF) and is more vulnerable to security breaches and attacks [18]. As a solution to overcome
this issue, blockchain [12] has gained massive attention due to its decentralized, transparent and immutable features.
Indeed, blockchain allows participants to exchange information and store transactions without any TTP. Concretely, a
blockchain is a chain of blocks that contain transactions, and each block is linked to the previous one with a crypto-
graphic signature generated using a hash function.

Adding a block to the chain relies on a consensus algorithm [4], which ensures that the same copy of the transactions
in the block are validated by enough (in general, the majority) participants. For the validation to happen, different
consensus algorithms (e.g. proof of work, proof of stake, etc.) are available nowadays, with different characteristics
(computational cost, complexity, etc.).

However, the availability of the recorded data to everyone in the blockchain network raises issues when it comes
to privacy-sensitive data [11]. Besides this, the immutability property of blockchain guarantees that the data records
stored in transactions are tamper-proof, i.e. they can neither be deleted nor be mutated, which can be seen as a limiting
factor.

In this paper, we aim at addressing these challenges with a single framework that integrates the following contribu-
tions:

— asolution for decentralized data storage that combines blockchain and Distributed Hash Table (DHT) to allow for
data updates,

— aRole-Based Access Control (RBAC) solution to manage access to privacy-sensitive data,

— a flexible encryption design that allows to choose between multiple types of encryption while storing and querying
data on the blockchain,

— a proof-of-concept implementation with performance evaluation that demonstrate the feasibility of our solution.

The rest of the paper is organized as follows. In Section 3, we discuss existing work and their limitations before
highlighting the originality of our contribution. Section 4 presents our framework and its components and explains
how its provides privacy-preserving, secure, and decentralized data management. Section 5 describes the experimental
results that confirm the feasibility of our proposed solution. Finally, Section 6 concludes this paper and lays ground for
future work.

2 S. Aslam et al.
2 Motivating Scenario and Research Problem

In this section, we illustrate the need for our work with a wood supply chain scenario. It provides us with the re-
quirements to define our research problem and to design the proposed solution. The wood supply chain includes all
activities from the extraction of raw wood from a forest, its transformation, until its sale to the end customer. Trace-
ability in the supply chain allows its stakeholders to understand and guarantee wood origin, transport, processing, and
manufacturing. In Fig. 1, we identified the following 6 actors to be typically involved in the wood supply chain:

The wood cutting company identifies specific trees that are useful to make furniture and cuts them into logs.
The transport company picks raw wood (e.g logs) from the forest and transports them into a storage warehouse
for further processing.

The storage warehouse company sorts, processes, and stores logs temporarily.

The furniture assembly company cuts logs into pieces to assemble the furniture.

The furniture shop company exposes assembled furniture and conducts sales with the final customer.

— The customer buys wooden furniture and verifies product origin.

Warehouse management

company
Transport
company ﬂw
ooon Ay
I
",
™, - -
. ype of logs
Shipping date\
and time \‘D i S I
Nurmber of
™, decomposed parts
] - of original log
Number of : Blockchain Network D==
logs
Wood cutting Furniture assembly
Eljml:la r|:||' R PR et Enmpa n:l'l

;-’I.Z'urchased date Gluantity of

/ and time fimnal product

AL

Customers l
Furniture shop
company

Fig. 1. Overview of wood supply chain process.

Our wood supply chain scenario highlights the need for trust and traceability in the supply chain process. Typi-
cally, traceability is very important in the supply chain, allowing all stakeholders to be able to trace products at each
point [17]. Existing solutions rely on Radio Frequency Identification (RFID) technology to enable electronic trace-
ability of wood in the supply chain. Generally, this traceability framework needs a third-party centralized database
framework to collect and store RFID data, which leads to a Single Point Of Failure (SPOF). Decentralized storage
solutions can solve the problem of a single point of failure. In particular, blockchain is a decentralized and distributed
ledger technology that stores records of users in such a way that makes them accessible to all participants without the

A RESTHful Privacy-aware and Mutable Decentralized Ledger 3

risk of SPOF. A blockchain consists of a linear sequence of blocks. The contents of each block® contains a hash of the
contents of the previous one to prevent the modification of stored transactions [14]. If the previous block is modified,
the new hash one could generate from the content upon verification would not match the one stored in the next block.
This design provides the blockchain with its immutability feature [9]: once data has been stored, no one can modify it.

However, our wood supply chain scenario highlights that actors need to insert, retrieve and delete data about their
business activities, and at the same time, they need to be able to modify data, while keeping the proof that data was
inserted. There is a need to develop a solution that overcomes the immutability characteristic of blockchain to allow
update and delete operations on stored data. At the same time, the developed solution must fine-grained access control,
as data access permissions vary depending on the data requester identity (data owner, business partners, client).

2.1 Research Problem

According to wood supply chain scenario discussed above, using blockchain technology in supply chain requires taking
into account the following issues:

— Data modification management: In our case study, actors may need to modify data in blockchain (e.g number of
logs and product type). However, blockchain does not allow data modification, once it has been added to the chain
due to its immutability nature. The challenge consists in overcoming this limitation while keeping the properties
that make the blockchain interesting.

— Data security and access control: Blockchain stores data publicly and allows anyone to access it. In our context,
a decentralized solution should ensure data privacy and protect privacy-sensitive data from unauthorized access.

Therefore, according to wood supply chain scenario and limitations discussed above, the proposed solution must
satisfy the following requirements:

— Data protection: Users’ data (e.g name, identity) and product data (e.g location) records on the blockchain must
be protected from unauthorized access. Such data may be sensitive and user does not want to expose their data
publicly on the blockchain.

— Data security: Our framework must ensure the following data security properties: 1) confidentiality to make
sure that data must not available to unauthorized user, 2) integrity to verify that data contents are original and
unauthorized user can not alter data, 3) availability to make sure that data must be available to the authorized user,
and 4) non repudiation, so that once data is added to the chain no one can deny its existence (such as proof that a
log has been transported or processed).

— Anonymity: In some cases, the framework must make sure that other actors on the network may not be able to
link data with their owner. Typically, the data owner may want to protect the link between their identity and the
data they store on the blockchain.

In summary, due to its public nature, blockchain data is available to everyone and may link to its users which raise
privacy and security issues. Besides this, blockchain data cannot be deleted and modified thus making data modification
major concerns. In particular, data mutability, confidentiality, and identity privacy are vital challenges for blockchain
implementations. In the following, we discuss the limitations of decentralized solutions supporting privacy-aware data
access and data update.

3 Related Work

In this section, we present the related work and its limitations. First, we discuss existing work to store data on
blockchain. Second, we provide papers related to data updates on blockchain.

3.1 Blockchain-based data storage

In [10], a blockchain-based software connector framework is presented. The proposed framework is used to share
information between companies and stakeholders. Hash sum of the data is stored on blockchain whereas original data
is stored on a MySQL database. However, MySQL databases are centralized and subject to the SPOF problem, in

3 Except the first block called genesis block.

4 S. Aslam et al.

addition they are not as scalable as DHTs to store large amounts of data [8]. In our work, we rely on DHT to store data,
which does not form a SPOF and better handles large amount of data.

In [3], the authors present a blockchain-based framework called u-share for data sharing. The proposed framework
enables users to control and trace the data they share with their family, friends, and others. A software client is used
to manage the sharing of the private key with its circle members. It maintains the record of shared keys and ensures
that the shared data is encrypted with the circle’s public key. However, private key sharing is subject to security issues.
Additionally, the this framework uses one type of encryption. In contrast, our framework enables actors to stay in
control of their keys and does not allow the sharing of private key as a recommended good practice. Our solution also
allows actors to use multiple types of encryption methods while storing and querying data on blockchain.

In [19], the authors propose a decentralized supply chain framework to maintain the traceability of goods and recipe
ingredients. A smart contract is used to manage the exchange of goods on distributed ledger. However, product data
is accessible publicly and immutable, which leads to privacy and data updates issues. In contrast to this solution, we
store encrypted data on off-chain storage to maintains data privacy. Our framework enables actors to update data at
each point of the chain.

In [7], the authors present a blockchain-based supply chain framework to maintain food traceability using a smart
contract. The proposed framework stores data hash on a blockchain whereas actual data are stored on IPFS (point-
to-point distributed hypermedia distribution protocol) off-chain storage. However, a manufacture node server is used
to manage the entire framework modules, which leads to a single point of failure. In contrast, we propose a fully
decentralized framework without any central server. Our solution relies on a registry server that enables nodes to
connect with each other, however, a decentralized discovery protocol can also be used instead of this registry server
[6].

In [16], the authors propose a blockchain-based agri-food supply chain traceability framework. RFID (Radio-
Frequency IDentification) is used to manage and identify products through radio-frequency signal. However, blockchain
has a limited size of a block to store transactions. In our solution, we overcome this limitation by storing only metadata
and pointer on blockchain, while original data is stored on off-chain storage.

3.2 DHT-based data storage

In [20], the authors propose a blockchain-based personal data management framework that combines blockchain with
DHT. The proposed framework stores encrypted data and shared key on DHT while the corresponding pointer is stored
on blockchain. It allows service and user to query the data using the pointer. However, this framework uses one type of
encryption (shared symmetric key) to encrypt/decrypt data. Additionally, the paper does not explain how they protect
the symmetric key from unauthorized access. Their work relies on fine-grained access control to access blockchain.
However, the authors did not clearly explain who has permission to read, write, and update data. Permissions are stored
on blockchain and lead to immutability issues. In contrast, our framework provides multiple types of data encryption
methods depending on the actor’s requirements. We encrypt a symmetric key with the owner’s public key that allows
only owner to access it using their private key. Our solution is flexible and simple because it allows the owner to define
and modify their access control policies.

In [15], the authors present a distributed access control and data management framework. The proposed framework
combines blockchain with DHT for secure IoT data sharing. Blockchain is used to manage and store access control
permissions, which is publicly visible and leads to privacy issues. However, access control permissions are unable to
modify due to blockchain immutability feature. In contrast to this solution, our proposed solution is flexible to update
access control permissions. We also ensures data owner anonymity while sharing data.

The authors in [1], present a blockchain-based data storage for PingER (Ping End-to-End Reporting). The proposed
solution use permissioned blockchain to store metadata of PingER files whereas corresponding data are stored on
DHT without any encryption mechanisms. Additionally, this framework stores monitoring agent name and upload
locations of the file on the blockchain, which raises data security and privacy issues. Typically, blockchain users want
to protect their sensitive information such as username and data location from unauthorized access. They may not want
to disclose their sensitive information on the blockchain. Inspired by the PingER metadata structure, our framework
extends metadata structure and enables privacy and security management that ensures authorized access control and
privacy protection.

In [5], the authors propose a permissionless blockchain-based LightChain framework that replicates each block
and transaction within the peers of DHT. The proposed solution allows every peer to access blocks and transactions
using a skip graph. However, blocks and transactions are publicly accessible which leads to data security issues. As

A RESTHful Privacy-aware and Mutable Decentralized Ledger 5

compared to this framework, we use RBAC to control unauthorized access to blocks and transactions. Our solution
stores metadata on blockchain that ensures data traceability.

As a summary, we have identified the most relevant work related to blockchain and DHT data storage. To the
best of our knowledge, this is the first paper that provides decentralized data storage, data mutability, manages access
to privacy-sensitive data, multiple types of encryption, and message sender anonymity at the same time in a single
solution. In the following, we discuss the steps of our proposed framework in detail.

4 Proposed Framework

In this paper, we propose a secure privacy-aware decentralized framework that supports role-based access control, data
mutability and actor’s anonymity. Each actor, as a peer of the framework, runs the same code that is structured into a
set of components. The following subsections describe each of these components in detail as depicted in Fig. 2.

Independent registry server

E Full access
 (ommomer |2
| .y
1 Business Limited access
Send request | | Retum available partner Data 3
peer list public data
! Public user access Data 4

>

q il Verify permission

to read/write data A J

Act N
ctor *‘ < RBAC component
1! RBAC response

A e S

Decrypt data Encrypt data \ Send request to read/write
pointer and metadata . ! ! H

d ! Store data ! - !

[N :
; ; - - ; | - DN - |
i | Asymmetric encryption : Blockchain response ' i DHT DHT |

DHT component

il

Symmetric encryption

(S Encrypt symmetric key with :
owner's public ke: '

Encryption manager component Return signed data

]
o
Q
=
(]
0
o
=]
Q
o
3
kel
o
3
@
3
2

DHT response

®

<
<

Ring signature component

Fig. 2. Overview of a peer architecture.

4.1 General Overview

Our proposed framework allows wood supply chain actors to store data, read data upon request, and communicate with
other actors through HTTP calls. Fig. 2 shows the layout of our framework and its components organized around a
main program. In our framework different actors are running the main program and they connect to each other using
their APIs, after an initial call to the registry_server to get the list of available peers.

Let us consider the following example: an actor such as a wood cutter logs in our framework to store the number of
logs cut on this day. When the program starts, the wood cutter will send a * POST’ request to the /peers resource of
the registry_server to add its public key and URL (Uniform Resource Locator) to the list of connected peers®.
Then, it will call the /peers resource with the * GET’ method and retrieve the list of connected peers. It will then
connect with other available peers to download a copy of the blockchain (/chain resource, method ' GET’ , available
on each peer).

4 Please note that the registry server can easily be replaced by a decentralized discovery protocol like Chord4S [6].

6 S. Aslam et al.

Upon request, the main component will call the rbac_manager component to verify the current actor’s permis-
sion such as wood cutter to perform read and write operations. Indeed, each actor’s roles, resources, and permission
are defined in this rbac_manager component.

Our framework allows the authorized actor to choose different types of encryption methods while storing data and
generates a public key, private key, or symmetric key accordingly. Before storing the data, the main component will
call the encrypt_manager component to encrypt the entered data with the current actor’s public key or symmetric
key depends on the selected encryption method. For each actor, the encrypt_manager component is responsible
for generating public and private keys. This encrypted data sent to off-chain (key-value) storage called DHT _manager
component, while corresponding pointer and metadata are stored on a blockchain_manager component (pointer
is the hash of the data).

An authorized actor allows to create, update, delete, and read data using the pointer stored on the public ledger.
A request (/chain/<block_no>, method ' GET’) to the main component might call the ring_signature
component to sign data anonymously, only in the case where the data is privacy-sensitive and the role of the requester
requires anonymization. Accordingly, a request to (/chain/<block_no>, method ' POST’), will create a block,
or update it if it already exists, and process the contents sent in the request message.

The following subsections describe each of these components in detail.

4.2 Framework components

In this section, we describe in detail the components of the proposed framework including decentralized data storage,
authorized data access, ensure data traceability, and maintains the actor’s anonymity.

RBAC manager component: we use a Role-Based Access Control (RBAC) model to manage access to privacy-
sensitive data. The RBAC model is based on the following four parameters: user, role, resource, and permission. In
RBAC, users are actors related to the application. Roles are the application’s functions that allow to access resources
based on the given permissions. A permission is an authorization to access one or more resources within the applica-
tion [2].

In our work, we define the following users, roles, resources, and permissions that assigns permissions to the user
based on their role in our wood supply chain scenario.

— Users: In our framework, we need to define RBAC users according to the actors of the wood supply chain. There-
fore, we define the following users: wood cutter, transporter, warechouse manager, furniture assembler, furniture
seller, and customer.

— Roles: According to the different actions our supply chain users can perform on the architecture, we define the
following roles:

e Data owner: Any user’ can be data owner. Data owners can add, read, modify and delete data about their
products. For example, a wood cutter would act as "data owner" and insert information such as (date:1.1.2021,
trees-cut:20, type:oak, price:20 Euro, margin:20%).

e Business partner: The business partner role allows specific users (chosen by the data owner) to access data
that is not available to anyone. For example, a furniture assembler would act as "business partner" and might
be allowed to read from the previous example: (trees-cut:20, type:oak, price:20 Euro).

e Public reader: The public reader role gives access to all public data. For example, a customer would act as
"public reader" to monitor the origin of a product and might be allowed to read from the previous example:
(type:oak).

— Resources: In our framework, user can access resources according to defined roles and permissions. In our frame-
work, we define the following resources:

e DHT: User can access DHT resource to add data about their business activities. For example, a wood cutter
has a role "data owner" and store information such as (date:1.1.2021, trees-cut:20, type:oak, price:20 Euro,
margin:20%).

e Blockchain: User allows to access blockchain resource to read data. For example, a customer has a role "public
reader" and might be allowed to read information such as (date:1.1.2021).

5 Except the end client that has read-only access

A RESTHful Privacy-aware and Mutable Decentralized Ledger 7

— Permissions: We define permissions to restrict user’s actions to access resources. For example, from previous
example. a wood cutter has a role "data owner" and has a "permission" to write, read, update, and delete data such
as (trees-cut:30, type:maple, price:50 Euro), whereas transport company would act as a "business partner" and has
only "permission” to read information such as (trees-cut:30).

— Rules and policies: Our framework defines rules and policies that controls access to the data such as private data,
privacy-sensitive data, and public data. Our rbac_manager component is responsible to authenticate role of
current login actor. It also ensures if current role has permission to access resource or not as denoted by ver-
ify_permission (role, operation, resource).

For example, wood cutter has a role ’business partner’ logs into the framework to store data on blockchain. The
main component calls the method authenticate (actor, role) to authenticate thatif a ’business partner’
role exists in our rbac_manager component or not. After role authentication, the rbac_manager component
verifies the permissions of actions for current login actor’s role such as if (actor_role == ’owner’), then
"owner" has permission to perform read, write, update, and delete all types of data on the blockchain. In case,
if (actor_role == ’'business_partner’), then our framework allows just to read some data such as
privacy-sensitive and public data. If (actor_role == ’public_user’), then our framework provides ac-
cess to just read public data.

Our framework provides filter access based on role such as wood cutter as a business partner’ has not permission
to write, update, and delete data. We maintain data security by limiting unnecessary access to sensitive data based
on each actor’s role. Please note that although this simple RBAC model answers the requirements of our scenario,
more elaborate models could be plugged in without changing anything in the framework design.

Blockchain component: We use blockchain_manager component to manage metadata and pointer of encrypted
data. Our proposed metadata structure consists of the data entry date, data entry time, and data pointer. The main com-
ponents of the blockchain include block transaction, consensus algorithms, and metadata extension. Each component
is explained as follows.

— Block transaction: Each block contains the block header, consensus signature, hash of the previous block, times-

tamps, verified metadata, and pointer of the actual data. Each block has a unique hash value, which maintains the
integrity of the entire blockchain from the first block (genesis block) to the last block in the network [13]. In our
framework, actors will connect to the framework and call initialize (chain) method to copy the blockchain
if there will be any other available actors on the network, otherwise genesis block will be created and added to the
blockchain.
A blockchain is composed of a chain of the blocks where each block is comprised of many transactions [13]. Each
transaction is broadcast on the network for verification and miners verifies the transaction through signature. Then,
the verified transactions are added to the block of the blockchain. After storing verified metadata and pointer on
the blockchain, our framework returns the block number to the data owner. The proposed framework allows data
owner to access specific block from the blockchain by using block number. The data owner can read, update, and
delete data from this specific block.

— Consensus mechanism: It is used in our blockchain_manager component to establish the agreement on one
state of the data in a distributed network. It ensures that the same copy of the data is replicated to all nodes in the
blockchain network. Further, it verifies the transactions from this block and prevents the attacker to change the state
of the data. Our framework uses a proof of work consensus mechanism to add each block to the blockchain. To do
s0, miners solve the complex puzzle and receive a reward such as a new coin to validate the block. Miners validate
the transactions in a block and add this block to the blockchain. Proof of work consensus mechanism prevents a
malicious actor to compromise more than half of the hashing power on the blockchain. The process to verify the
proof and its correctness is easy and fast. In the following we define the proposed metadata structure.

— Metadata extension: In [1], the authors allow storing metadata in the blockchain. We follow a similar approach

and store the metadata information for each piece of data to maintain product traceability and actors’ trust.
In our framework (see Fig. 2), we have an RBAC_manager component to restrict user’s actions on the data
and we use a blockchain component to store metadata and pointer of actual data that are stored on the DHT
component. We integrate all these components with each other to work together. We use REST APIs (/chain)
that allow actors to copy blockchain and to store and read data on the distributed framework. Using REST APIs
present many benefits, amongst them the possibility to use a generic HTTP client for any communication between
nodes, better performance and scalability.

8 S. Aslam et al.

Block header

Hash of previous block Actual data

) Private data
Timestamp

Product id
User name

Consensus signature

Product location

Merkle tree root

Privacy-sensitive data

Metadata content Actual data Product delivery place

pointer stored Product pickup place
on blockchain

Data pointer

User id Public data

Product type
Data entry date Product delivery date

Product name

th

Data entry time

Fig. 3. Metadata structure on blockchain

We propose a metadata extension that relies on paper [1], to handle privacy constraints on data. To do so, we pro-
pose to encrypt user’s sensitive information (e.g location) with encryption mechanisms, and we store this encrypted
data on offline storage (DHT).

In our sample scenario, actual data on DHT consists of an actor’s name, product identity, product location, quantity,
and wood type. Fig. 3 illustrates the metadata structure on blockchain that contains the data entry date, data entry
time, and data pointer.

DHT component: In the proposed framework the encrypted data of each actor is stored on off-blockchain (key, value)
storage called DHT. We implement a DHT component of our framework by using the Kademlia library. DHT is com-
prised of network of nodes that enable actors to write/read data associated with a given key. Actor’s data are randomized
across the nodes of the network and replicated to eliminate the chance of data loss. Our proposed framework records the
date and time of each new data entered by the actor. This enables a network to keep track of the product and maintains
the order of product entries.

Encryption manager component: In our framework, the encrypt_manager component is responsible for data
encryption and decryption according to the selected encryption method. Our framework allows actors to choose en-
cryption methods for each data write operation. If the data owner chooses the asymmetric encryption method then data
will be encrypted with the owner’s public key and stored encrypted data on DHT. A public key is accessible publicly
while the private key is kept private by the key’s owner to decrypt the data. If the data owner chooses the symmetric
encryption method then data will be encrypted with a symmetric key and this symmetric key again will be encrypted
with the owner’s public key to ensure that only the data owner can access it later. Both encrypted symmetric key and
encrypted data will be stored on DHT.

Ring signature component: 1t is an option here to actor’s ensure anonymity within a group. A signature is created by
any member from a set of public keys called a ring. Therefore, the identity of the signer remains hidden and no one can
identify that who is the actual signer of the data. In our framework, the data owner can allow other actors to read their
data upon request by using(/chain/<block_no>, method ' GET’). To read data, we rely on encryption according
to data reading requirements:

— Private data will not be shared with anyone. Therefore, it will be encrypted with the owner’s public key, so only
the owner can decrypt data using their private key.

— Privacy-sensitive data is shared with only a specific number of users. It will be encrypted using the receiver’s public
key, so later data can be decrypted only with the corresponding private key. The data owner will also sign data by
using ring signature to remain anonymous within a group, An authorized requester can read data and verify the
signature.

A RESTful Privacy-aware and Mutable Decentralized Ledger 9

— Public data is available to anyone. It will optionally be signed by ring signature or encrypted with the data owner’s
public key to guarantee data ownership.

5 Implementation and Evaluation

This section discusses the implementation and evaluation of our proposed work. We discuss the implementation details
in section 5.1 and section 5.2 presents the evaluation setup.

5.1 Implementation

We implemented the key components of our framework by using an open source blockchain library® and the Kademlia
DHT library’. The blockchain library is used to achieve consensus on a distributed network and creation of blocks.
While, we used the DHT to store and retrieve data link with a key in a network of peer nodes. We performed all
the experimental process using Python 3. The experiments are performed on the data (privacy-sensitive, private, and
public) entered by the actors into the framework.

5.2 [Evaluation

We evaluated the key components of our proposed framework on 64-bit Microsoft Windows Operating System with
16GB of memory. In the following, we discuss the qualitative security and privacy analysis as well as quantitative
performance evaluation.

Security analysis: According to the design of proposed framework, only authorized actors are allowed to access
the system to perform write, read, update, and delete operations. A malicious user cannot modify existing data unless
he/she controls more computation power than all other miners.

Our framework ensures following security properties: we achieve confidentiality using asymmetric and
symmetric encryption. We encrypt data with the owner’s public key and store the corresponding pointer on the blockchain
to achieve integrity. Our framework archives availability through the access control model. We ensures
non-repudiation by adding metadata to the chain.

Linking attack: Our framework uses a unique public key for each transaction. It prevents a malicious user to link
multiple data and transactions with the same ID.

Modification attack: In our solution, data owner has ability to encrypt data with their public key and store hash
of the encrypted data on the blockchain. It also records evidence of data entry date and data entry time to trace last
modification of data. An attacker can not modify owner’s data.

Privacy: Our proposed solution ensures that the owner owns and control their private data. Actor’s private data will
not be shared with other actors on the network. To share privacy-sensitive data and public data with other actors, this
data will be encrypted using requester’s public key to protect the data from malicious actors who tries to read the data
during data sharing process. In our proposed solution, we achieve anonymity using ring signature.

Scalability: Currently, we tested our prototype with six actors and achieve reasonable performance. Our framework
is flexible and scalable to work with a large number of actors.

Performance evaluation: We evaluate the time overhead to verify permission, data encryption/decryption using a
symmetric or asymmetric method, DHT access, blockchain access, and overall total time while data store, read, update
and delete operations. Fig. 4 outlines the time processing for both asymmetric encryption without ring signature 4(a)
and asymmetric encryption with ring signature 4(b).

The results demonstrate that the total time of asymmetric encryption without ring signature is larger than the total
time of asymmetric encryption with ring signature while store, update and delete data.

We calculated the overall time for symmetric encryption as depicted in Fig. 5. We compare results symmetric
encryption without ring signature 5(a) with symmetric encryption using ring signature 5(b). It is seen from the results
that the total time of storing and deleting data for symmetric encryption without ring signature is larger than the
symmetric encryption with ring signature. The total time to read data for symmetric encryption without ring signature
is less than the symmetric encryption with ring signature. Total time to update data for both 5(a) and 5(b) are not much
affected by the ring signature and symmetric encryption.

® https://github.com/satwikkansal/python_blockchain_app/tree/ibm_blockchain_post.
7 https://github.com/bmuller/kademlia

10 S. Aslam et al.

We also calculated average, standard deviation, min, and max value for both asymmetric and symmetric encryption
while store, read, update, and delete data. We ran our prototype 50 times and experimental results show that asymmetric
encryption gives a standard deviation of 0,022 seconds and symmetric encryption has a standard deviation of 0,023
seconds during data storing operation. To read data, asymmetric encryption has a minimum value of 0,124 seconds and
symmetric encryption gives 0,142 seconds. For data update operation, asymmetric encryption has maximum value of
0,068 seconds and symmetric encryption gives 0,052 seconds maximum value. Experimental results clearly show that
our proposed framework achieves a low overhead that is acceptable for the actor.

014 01 = Time to verify permission
0,12 ® Data encrypt /decrypt time
! 0,08 (asymmetric encryption)
= Time to verify permission
0,1 = DHT access time
Data encrypt /decrypt time
0,08 (asymmetric encryption) 0,06 Blockchain access time

DHT access time
u Ring signature create time
Blockchain access time

™ Ring signature verify time

Time consumption (seconds)

m Total time

0,02 I I I I 0,02 Total time
0 — —
Store data Read data Update data Delete data
0 _—

Store data Read data Update data Delete data

Time consumption (seconds)

(a) Time overhead of asymmetric encryption without ring signa-
ture (b) Time overhead of asymmetric encryption with ring signature

Fig. 4. Overall time overhead for asymmetric encryption

0,12

0,16 M Time to verify permission

35 0,14 W Time to verify permission - 01 m Data encrypt /decrypt time

5 e (symmetric encryption)

o

g o Dat t /decrypt ti S B DHT access time

%) ™ Data enci ec ime

= (s mmet?’cpenc rZ'Zn) \SJ-'— 0,08

c 01 V! L Typti p

%. DHT access time g Blockchain access time

£ a

£ 0,08 £ 0,06

s Blockchain access time 2 M Ring signature create time

S 006 g

o s}

»E 0,04 M Total time g 0,04 M Ring signature verify time
=

0,02 I Total time

I - B

Store data Read data Update data Delete data J J I
. a_

Store data Read data Updatedata Delete data

(a) Time overhead of symmetric encryption without ring signa-
ture (b) Time overhead of symmetric encryption with ring signature

Fig. 5. Overall time overhead for symmetric encryption

6 Conclusion

In this paper, we illustrate the need for privacy-aware decentralized data storage, access control, data mutability, and
actor anonymity in the wood supply chain scenario. Our framework enables this by combining the blockchain with
DHT, role-based access control, and multiple encryption mechanisms that allow only authorized actors to access and
modify their data without disclosing their identity on a distributed ledger.

A RESTHful Privacy-aware and Mutable Decentralized Ledger 11

Thanks to its RESTful (between peers) and component-based (inside a peer) design, our framework is fully reusable
across the wide diversity of possible application domains and use cases. We also presented a performance evaluation
regarding its operation. Our simulation results demonstrate that our framework shows promising results and achieves
an acceptable overhead.

To the best of our knowledge, this research is the first work that integrates this combination of technologies in a
single framework. In future work, we plan to compare our solution to similar blockchain implementations. Furthermore,
we will study how the behaviour of our prototype evolves over larger number of peers, and devise optimizations to
improve its performance over large scale networks, in real or simulated environments.

Acknowledgment

The authors gratefully acknowledge the European Commission for funding the InnoRenew project (Grant Agreement
#739574) under the Horizon2020 Widespread-Teaming program and the Republic of Slovenia (Investment funding
of the Republic of Slovenia and the European Regional Development Fund). They also acknowledge the Slovenian
Research Agency ARRS for funding the project J2-2504.

References

1. Saqib Ali, Guojun Wang, Bebo White, and Roger Leslie Cottrell. A blockchain-based decentralized data storage and access
framework for pinger. In 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communi-
cations/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pages 1303-1308.
1EEE, 2018.

2. Elisa Bertino. Rbac models - concepts and trends. Computers & Security, 22(6):511-514, 2003.

3. Antorweep Chakravorty and Chunming Rong. Ushare: user controlled social media based on blockchain. In Proceedings of the
11th international conference on ubiquitous information management and communication, pages 1-6, 2017.

4. Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and Ji Wang. Untangling blockchain: A data
processing view of blockchain systems. /IEEE Transactions on Knowledge and Data Engineering, 30(7):1366—-1385, 2018.

5. Yahya Hassanzadeh-Nazarabadi, Alptekin Kiipcii, and Oznur Ozkasap. Lightchain: A dht-based blockchain for resource con-
strained environments. arXiv preprint arXiv:1904.00375, 2019.

6. Qiang He, Jun Yan, Yun Yang, Ryszard Kowalczyk, and Hai Jin. A decentralized service discovery approach on peer-to-peer
networks. IEEE Transactions on Services Computing, 6(1):64-75, 2011.

7. Haihui Huang, Xiuxiu Zhou, and Jun Liu. Food supply chain traceability scheme based on blockchain and epc technology. In
International Conference on Smart Blockchain, pages 32—-42. Springer, 2019.

8. Nattawat Khamphakdee, Nunnapus Benjamas, and Saiyan Saiyod. Performance evaluation of big data technology on designing
big network traffic data analysis system. In 2016 Joint 8th International Conference on soft computing and Intelligent Systems
(SCIS) and 17th International Symposium on Advanced Intelligent Systems (ISIS), pages 454-459. IEEE, 2016.

9. M Vinod Kumar and NCS Iyengar. A framework for blockchain technology in rice supply chain management. Adv. Sci. Technol.
Lett, 146:125-130, 2017.

10. Francesco Longo, Letizia Nicoletti, Antonio Padovano, Gianfranco d’Atri, and Marco Forte. Blockchain-enabled supply chain:
An experimental study. Computers & Industrial Engineering, 136:57-69, 2019.

11. Malte Moser. Anonymity of bitcoin transactions. In Miinster Bitcoin Conference (MBC), Miinster, Germany, July 2013.

12. Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system. Bitcoin.—URL: https://bitcoin. org/bitcoin. pdf, 4,
2008.

13. Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck. Blockchain. Business & Information Systems Engineering,
59(3):183-187, 2017.

14. Alex Pazaitis, Primavera De Filippi, and Vasilis Kostakis. Blockchain and value systems in the sharing economy: The illustrative
case of backfeed. Technological Forecasting and Social Change, 125:105-115, 2017.

15. Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy. Towards blockchain-based auditable storage and
sharing of iot data. In Proceedings of the 2017 on Cloud Computing Security Workshop, pages 45-50, 2017.

16. Feng Tian. An agri-food supply chain traceability system for china based on rfid & blockchain technology. In 2016 13th
international conference on service systems and service management (ICSSSM), pages 1-6. IEEE, 2016.

17. loakeim Tzoulis and Zaharoula Andreopoulou. Emerging traceability technologies as a tool for quality wood trade. Procedia
Technology, 8:606-611, 2013.

18. Shangping Wang, Yinglong Zhang, and Yaling Zhang. A blockchain-based framework for data sharing with fine-grained access
control in decentralized storage systems. leee Access, 6:38437-38450, 2018.

12

19.

20.

S. Aslam et al.

Martin Westerkamp, Friedhelm Victor, and Axel Kiipper. Blockchain-based supply chain traceability: Token recipes model
manufacturing processes. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Comput-
ing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 1595-1602. IEEE, 2018.

Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to protect personal data. In 2015 IEEE Security and
Privacy Workshops, pages 180-184. IEEE, 2015.

	A RESTful Privacy-aware and Mutable Decentralized Ledger

