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Abstract. Wildfire prediction from Earth Observation (EO) data has
gained much attention in the past years, through the development of
connected sensors and weather satellites. Nowadays, it is possible to ex-
tract knowledge from collected EO data and to learn from this knowledge
without human intervention to trigger wildfire alerts. However, exploit-
ing knowledge extracted from multiple EO data sources at run-time and
predicting wildfire raise multiple challenges. One major challenge is to
provide dynamic construction of service composition plans, according to
the data obtained from sensors. In this paper, we present a knowledge-
driven Machine Learning approach that relies on historical data related
to wildfire observations to guide the collection of EO data and to auto-
matically and dynamically compose services for triggering wildfire alerts.
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1 Introduction

Wildfire, or wildland fire, is a regularly spotted critical phenomenon that can
massively damage human lives, infrastructures, agriculture, and forest ecosys-
tems. It has negative implications on air and water quality, and soil integrity.
Recent estimations based on Earth Observation (EO) satellites of the global
burned area is around 420 Mha [9]. Several advances have been made in fire
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observations based on physics-based simulators and remote-sensing technolo-
gies, such as satellites (e.g. NASA TERRA), and fire detection sensors (e.g.
Visible Infrared Imaging Radiometer Suite (VIIRS)), that continuously mon-
itor vegetation distribution and changes. Our PREDICAT (PREDIct natural
CATastrophes) project4, collects EO data from several data sources, such as the
National Oceanic and Atmospheric Administration (NOAA) which focuses on
climate and oceans, and the Observatory of Sahara and Sahel (OSS), which rely
on remote sensing technologies and Internet of Things (IoT) devices for climate
parameters sensing. Exploiting EO data rises multiple challenges, ranging from
data collection through service composition5 to triggering wildfire alerts. The
issue is that triggering wildfire alerts, is generally realized, once the collection of
all the EO data is available. Existing wildfire detection and prediction systems
mainly focus on accurately building feature observations and manually defining
domain-rules. Indeed, several Web service composition approaches have been de-
veloped to implement data collection and trigger alerts, based on optimization,
decision-making methods [10, 12], and semantics [2, 8]. While producing can-
didate solutions, most service composition techniques neglect knowledge from
previously called services or from the application domain. Existing approaches
start from a user request and try to find out a set of optimal services, based
on functional and non-functional parameters. However, the service composition
process for wildfire prediction should be data-driven, which means that the ser-
vice calls alternatives are chosen at run-time depending on the data received
from the previously called services.

Therefore, in this paper, we propose a bottom-up approach to guide the EO
data collection from IoT devices based on a knowledge-driven process, and dy-
namically compose services accessing IoT data for wildfire prediction. We apply
Machine Learning (ML) techniques [1], to guide the service composition process
for EO collection and fire prediction by learning from the data itself and from
historical data related to fire observations. Our solution exploits a service-based
combination of ML and knowledge engineering methodologies, to automatically
and dynamically compose services for wildfire prediction. Our contribution can
be summarized as follows: we describe our knowledge-driven service composition
approach through a system architecture for wildfire prediction, including (1) a
dynamic and knowledge-driven construction of services composition scheme to
organize the flow of services, based on a Prediction Module. (2) a classification
of the EO historical data collections, by a Learning Module. (3) EO data col-
lection, according to the most important feature related to fires to alert the
scientists, by an Awareness Module. (4) the generation of alert risk patterns, by
the Prediction Module. The remainder of this paper is structured as follows: Sec-
tion 2 overviews related works dealing with Web service composition. Section 3
describes the global system architecture for prediction. Section 4 defines the pre-

4 https://sites.google.com/view/predicat/predicat
5 Service composition is the combination of a set of the smallest services forming a

more complex service to meet users’ complex requirements.
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diction flow. Section 5 demonstrates the applicability of our approach. Finally,
we conclude and present our future work in Section 6.

2 Related work

Web service composition for IoT environments has been often employed to ac-
cess multiple IoT devices [18, 19]. Authors in [21] proposed a distributed social
network approach for IoT management and service composition. An agent-based
middleware was proposed in [22], to handle service composition of logistics ser-
vices in IoT. Asghari et al. [20] proposed a systematic literature review on service
composition approaches in IoT. They aimed to analyze and categorize IoT ser-
vice composition methods into two main categories focusing on functional and
non-functional properties. Other efforts were oriented towards semantic Web
service composition [8], [2], [3], and QoS-aware web service composition [10–
12]. Many approaches employed Evolutionary Computing (EC) to automate the
generation of composition solutions and the optimization of the QoS web service
composition by handling the large search spaces of services. Genetic Algorithm
(GA) is used in [10], to propose a composition solution. Genetic Programming is
employed in [13] and [11] to find near-optimal solutions using a fitness function.
Although these solutions are a promising direction, efforts are still needed for en-
forcing composition constraints and also, for optimizing the quality of solutions.
Another group of approaches for Qos-aware Web service composition employ
the Particle Swarm Optimisation (PSO), which searches for near-optimal solu-
tions by avoiding producing invalid solutions [12]. All these QoS-aware service
composition approaches do not consider the semantic matchmaking quality of
service compositions. Therefore, another group of researches focused on the se-
mantic Web service composition using ontology-based semantics, such as OWL-
S, WSML, and SAWSDL [14], to semantically represent the knowledge conveyed
in these Web services [5]. To sum-up, although a large number of approaches
for semantic web service composition and QoS-aware service composition exist,
they all propose solutions based on the expression of a user query and not on
domain knowledge. Furthermore, these approaches do not dynamically adapt the
composition schema when new knowledge is learned, to guide the data collection
process in a knowledge-capable manner.

3 System Architecture for Prediction

Figure 1 depicts our layered prediction system architecture [4] that includes five
layers: Semantic layer, Knowledge layer, Application layer, Service Composition
layer, and Service layer. The Semantic layer contains the domain and source
ontologies. It aims to semantically describe the domain services and their re-
lated data sources. Hence, the domain ontology represents the environmental
domain concepts related to services for EO data collection. Furthermore, the
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source ontology represents the quality of the data sources accessed by their re-
lated services6. The Knowledge layer consists of collecting the EO data from
diverse environmental data sources, provided by the OSS. The environmental
data sources include data from several devices (i.e: sensors, connected objects,
satellites, etc.). In our case, the knowledge-base contains the main features of
interest of the environmental domain related to the fire occurrences.
The Application layer which constitutes the main focus of this paper, sums-up
our vision of how to predict wildfire occurrences based on knowledge and learn-
ing methodologies. The Application layer uses the EO data from the knowledge-
base. This layer encompasses the Prediction Module, which is composed of two
sub-modules: the Learning Module and the Awareness Module. The Prediction
Module produces alert risk patterns. The Learning Module builds the prediction
model by applying a classification ML algorithm. It takes as inputs the set of
features of interest that shapes the fire (i.e: temperature, wind speed, humid-
ity, wind direction, etc.) and produces as output the class of fire danger (i.e:
Moderate, Low, High, Very High, Extreme, Catastrophic, etc.). The supervised
ML algorithm in the Learning Module generates the decision tree (DT), which
is the fire prediction model. This model determines the danger classes of fire,
in the leaf-nodes of the DT. The Awareness Module handles the search for the
important features and the traversal branches of the generated DT. It consists
of traversing all the necessary branches of the DT, from the important feature
node till the leaf-node determining the danger class fire. The first step in the
Awareness Module is to determine the most important feature, upon a classifica-
tion task of all the features of interest. The most important feature is determined
by computing the highest score among all the features of interest based on RF
feature selection method. More details about this method are given in section
5.1. In the Service layer, the most important feature is mapped to an abstract
service, which is a class interface representing its functionality and designed in-
dependently from particular implementations of services. The abstract service of
the most important feature is then mapped to its service instance. This service
is invoked, executed, and returns a value. The returned service value is then,
compared to the node threshold of the most important feature. Upon this com-
parison, the set of the traversed branches, from the most important feature node
to the leaf-node, is determined, as a second step in the Awareness Module. The
set of the traversed branches determines whether to traverse the left sub-tree
or the right sub-tree of the most important feature node. Thus, the traversed
path is guided by the most important feature. If the most important feature is
present in multiple nodes in the prediction model, then, we have multiple paths
traversing each of these nodes. Hence, we have multiple services composition
schemas in the Service Composition layer, each of which is built according to
the following processes. Each node in the constructed path traversing the most
important feature node are mapped to abstract services. These abstract services
constitute one of the abstract composition scheme, in the Service Composition

6 Qualities of the data sources and services are out of the scope of this paper.
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layer. In order to instantiate these services, within the Service layer, the Features
Matching Module, maps each abstract service representing a feature node, with
its suitable service description from the service registry. Thus, all the abstract
composition schema in the Service Composition layer are mapped to schema
composition with concrete services. In fact, the service registry encompasses ser-
vices descriptions expressed semantically as detailed in our previous work [6].
Thus, all the invoked services from the service registry, in the Service layer, are
enhanced with EO linked-data. The orchestration of these services execution
follows the ordered set of decision nodes traversed from the root until the leaf-
node, and passing by the most important feature node. Otherwise, each value of
a feature node is determined by the execution of the suitable environmental Web
service accessing to its related environmental data source within the PREDICAT
project.

Fig. 1. The Prediction System Architecture.

4 The Wildfire Prediction Flow

Figure 2 presents the proposed prediction flow related to wildfire alerts along
with its different phases. In fact, the novelty of our proposed flow is that it allows
to trigger alerts to scientists, transparently and without any human intervention
nor a user request. The first phase in this flow is to collect the EO data stored in
the knowledge-base. 1-EO data-acquisition phase is realized by the IoT devices
that belong among others to the OSS system. The second phase consists in 2-
Data Preparation, which takes as input the data from the knowledge-base and
splits it into two sets: the training data-set and the testing data-set. The Model
Input Data consists of the set of features of interest, to which is applied the ML
algorithm. The third phase is 3-Prediction Model Building one, which consists
of performing the ML algorithm and produces the prediction model, which is
the decision tree (DT). This phase relates to the Learning Module, detailed in
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the previous section. A DT is a tree structure that consists of multiple internal-
nodes and leaf-nodes [15]. Each internal node represents a single category; each
branch of a node represents one possible value or a set of possible values of the
category, and each leaf-node represents a class label. DT uses a tree structure
to represent the rules between independent and dependent variables. Each node
has a threshold compared with (i.e: <=, >).
The Random Forest (RF) ML classifier is an ensemble learning method devel-
oped by constructing multiple DTs [16]. In the training process, an RF applies a
bagging technique to bootstrap instances and selects a random subset of features.
A set of DTs is then constructed based on each set of bootstrap instances with
a subset of features. Once the set of trees is constructed, a prediction regarding
unseen samples can be generated by selecting the majority class of individual
trees. Once the prediction model is generated, all the needed features of interest
defined in the decision nodes are ready to be extracted. In the fourth phase 4-
Prediction Model Deployment, each extracted feature of interest represents an
abstract service that will be part of the abstract composition schema. The design
of the abstract service composition schema is handled by the Awareness Module
which is detailed in section 5.1. Furthermore, it is worthy to note that we can
have multiple designed abstract composition schema as far as there are multiple
nodes representing the most important feature of interest in the DT, determined
by the Awareness Module, and guiding the EO data collection in the model pre-
diction generated upon the Prediction Model Building Phase. See section 5.1 for
additional details given in the presented algorithms. A Feature matching process
is applied to each extracted feature, and which is mapped to an abstract service.
The list of services along with their related descriptions are stored in a service
registry. In the fifth 5-Service Composition phase, each abstract service is instan-
tiated and executed. This execution is handled by the Composition Execution
Engine. The orchestration of the execution of these services follows the order of
traversing the decision nodes defined by the traversal algorithm, in the Awareness
Module. Otherwise, each executed decision node, based on its value, determines
which next decision node and its service instance to be executed. Furthermore,
the execution of multiple instantiated composition schema is realized in parallel.
Upon the execution of the schema composition, an alert is then, transmitted to
the scientist.

5 Implementation and Evaluation

In this section, we present the feasibility of our fire model prediction in the
guidance of the building of the service composition scheme. In particular, we
demonstrate the effectiveness of our model. First, we provide an implementation
example of our model with the Random Forest (RF) algorithm to perform the fire
prediction. Then, we provide some algorithms showing details of the DT traversal
from the most important feature of interest in the model prediction, which will
guide the search for the rest of the features, in the tree. Thus, the generated
paths across the DT are mapped to service composition schemas. Second, we
focus on the evaluation of our built-model, by comparing it with other classifier
algorithms, through the examination of the different performance indicators’.
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Fig. 2. The Prediction Flow.

5.1 Implementation

As aforementioned, we focus the implementation details on the two supervised
classifiers: The Random Forest (RF) and the Decision Tree (DT). We used the
built-in implementation of the RF and the DT algorithms, from the free software
ML library “sklearn”. Furthermore, we used Python programming language for
the implementation and the “export graphviz” module for the visualization of
the generated DT in both classifiers. Each generated DT represents the fire model
prediction. We, then, provide an evaluation based on performance indicators to
choose the relevant classifier. In the following, we first introduce the used data-
sets, then, present the implementation results.

Data-sets. We used data7 related to weather recorded by the OSS as a set
of inputs and stored in the knowledge-base. In particular, we used hourly data
recorded between 1st November 2017 and 31st March 2019. This period of time
includes a wide range of temperature (◦C), relative humidity (%), wind speed
(km/h), wind direction (◦) and, drought factor values relevant to fire weather
considerations. Furthermore, we used the McArthur Forest Fire Danger Index
(FFDI) and its rating namely, the fire danger rating scale for forest (FFDR) as
output used by our ML algorithm. The fire danger index is determined by the cal-
culation of the FFDI according to the equation defined in [17]. FFDR is defined
by the following classes: catastrophic (>100), extreme (75–99), severe (50–75),
very high (25–49), high (12–24), and low-moderate (0–11). All these classes are
considered as output to the ML algorithm and stored in the knowledge-base.
We considered about 1500 tuples in our knowledge-base when performing the
ML algorithm. We split the data-set into 70% for training and 30% for testing.
Furthermore, in order to avoid overfitting and determine the optimal model per-
formances, we used the “GridSearchCV” function from the “sklearn” library, to

7 https://docs.google.com/spreadsheets/d/1v-46-KMHtErt3IGigFsusk7Fnp61DKvctMs9KMH_

a-E/edit?usp=sharing
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tune the model hyperparameters for both RF and DT classifiers. It consists in
using a subset of the training collection as a validation dataset. We considered
the following hyperparameters. For cv=5 in the DT classifier: max depth=10,
criterion=‘entropy’ and, min samples split=2. For cv=3 in the RF classifier: cri-
terion=‘gini’, max depth=10 and, n estimators=90. Furthermore, we used the
Amicus fire knowledge-base8, which is a free suite of tools to simulate the cal-
culation of the FFDI index.

Learning Module. As aforementioned, the main objective of this module is to
learn from the EO data itself and the historical EO data collected by the IoT
devices. This module generates the fire model prediction. For the construction of
the latter, we chose two decision tree algorithms: the Random Forest (RF) [16]
and the Decision Tree (DT) [15]. This choice is explained by the fact that the
decision tree algorithms are effective in that they provide human-readable rules
of classification. We performed tests on both classifiers to choose the relevant
one. Section 5.2 provides evaluation details. After performing an ML classifier
algorithm, an extraction of the produced fire model prediction decision tree is
depicted in Figure 3. Each classifier produces a fire model prediction, each of
which represents a decision tree (DT).

Fig. 3. Extraction from the decision tree.

Awareness Module. The Awareness Module encompasses two algorithms: the
first one determines the most important feature which indicates its impact on the
model compared to the rest of the features, and the second one determines the
path to traverse in the DT, from the most important feature node till the leaf-
node containing the fire danger class. Figure 4 depicts the relative important
features, taking into consideration the set of the used features. We observed
that the drought factor feature (DF) has the highest importance value. This
value is determined by at first, applying the RF feature selection method [7],
which produces a list of scored features within the prediction model. This list is

8 https://research.csiro.au/amicus/
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denoted “L” int the Algorithm 1. Second, by applying the maximum equation on
these values to determine the most important feature in our model prediction.
Algorithm 19 is a pseudo-code presenting details about determining the most
important feature, which is the feature DF in our model prediction. Furthermore,
once the most important feature is determined, the idea is to map the feature
tag to its suitable service. This service is executed in order to have the DF value.
According to the returned value by the DF service, the DF node will guide the
tree traversal to search for the other features in the DT.

Algorithm 1 CMIF+ES.
Begin
Let L ← Search for features importance //List of the important features
DF ← max

i∈L
{importance(i)} //The most important feature in our model prediction

Val ← Execute the Service Having DF as a tag//Exec of the important Feature service
End.

Fig. 4. The set of the important features in the fire model prediction.

Then comes the generation of the tree traversing the DF node which is com-
posed on the one hand, of the path departing from the DF node to the root, and
on the other hand, of the sub-tree of the DF node. To do so, Algorithm 2 reuses
from Algorithm 1 the most important feature (e.g: DF) and its related value
‘Val’. As a first step, in order to search for the DF node in the DT, the algorithm
determines the nearest node to the root whose feature is DF. Furthermore, it
generates the path from the DF node to the root. As a second step, according to
the returned value ‘Val’, this latter is compared to the ‘DF Threshold’ indicated
in the chosen DF node in the DT. Thus, the algorithm decides which sub-tree
to extract (i.e: the left sub-tree or the right sub-tree). Afterwards, the path and
the sub-tree are merged to generate the tree that traverses the DF node. In fact,
the DF node, according to its value, guides the ordered connections to the root
and to the leaf-nodes. Thus, the DF node impacts on the dynamic generation of
the service composition scheme. In case if we have multiple DF nodes in the DT,
then we have multiple paths traversing each of these nodes. Therefore, we present
Algorithm 3, which defines a pseudo-code managing the generation of multiple
paths traversing the multiple DF nodes in the DT. This algorithm reuses the
generated binary decision tree of the model prediction and the extracted sub-tree

9 Computing the most important feature and executing its service.
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Algorithm 2 Construction of the tree: path departing from the important fea-
ture to the root and, the sub-tree of the important feature.
Input: Tree //The generated decision tree of the model prediction
Output: Tree //Concatenation of the path departed from the important feature to the root and
its extracted sub-binary tree
Begin
Node ← Nearest Node to the root whose feature is DF
Path ← Path from DF to the root
if (DF Threshold ≤ Val) then SubTree ← Left SubTree of DF

else SubTree ← Right SubTree of DF
end if
Tree ← Path + SubTree //Fusion of the path and the sub-tree
return Tree
End.

determined according to the DF value in Algorithm 2. The idea, when having
multiple DF nodes in the DT, is to only prune the extracted sub-tree from the
binary tree and return the new tree. This way, the other non extracted sub-tree
will be used, or another path traversing another DF node will be used. The sub-
tree pruning is realized ‘i’ times until reaching a ‘Stop Condition’. The value
of the ‘Stop Condition’ (e.g: 10) is to be fixed at the beginning of the experi-
mentation by the experimental user of the PREDICAT platform, to define the
maximum number of service composition schemas supported to be run in paral-
lel depending on the capacity of the PREDICAT platform. The generated paths
constitute the possible constructed abstract service composition schemas. The
execution of these composition schema is realized in parallel by instantiating the
services at run-time. An alert is, then, triggered. In the next section, we provide
the evaluation of the fire prediction model based on comparative performance
measures computed from both previously detailed classifiers.

Algorithm 3 Generating multiple paths traversing multiple DF nodes.
Input: Binary Tree //The generated DT of the model prediction from Algorithm 2
Stop Condition←10//10 supported generated paths to be executed in parallel in the platform
Output: Tree //The generated tree
Begin
Repeat
Tree ← Binary Tree \{SubTree(i)} //Generate a new tree by eliminating the subTree of the
important feature extracted in Algorithm 2
Until (i > Stop Condition) //Stop Condition is to be fixed limiting the number of the generated
//paths traversing the important feature DF.
return Tree
End.

5.2 Evaluation metrics

Several metrics for the evaluation of the performance of the classifier from the
literature can be used. In our experiments, we considered four commonly used
metrics, which are accuracy, precision, recall, and f1-score. These latter are in-
dicators to measure the performance of our prediction models.
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Table 1. System Performance Measures

ML Classifier Accuracy % Precision Recall
Random Forest 86 0.862 0.862
Decision Tree 84.06 0.840 0.840

Fig. 5. Classes of fire danger chart.

To assess the evaluation of our fire prediction model, we used the most two
popular ML classifiers which allow evaluating the RF classifier against the Deci-
sion Tree classifier. Moreover, we used performance measures computed for both
ML classifier models. Furthermore, we considered the classes: Catastrophic, Ex-
treme, and Severe as the most important classes of fire danger triggering alerts,
and we measured the f1-score related to these classes, for each of the classifiers.
According to results in Figure 5, we noticed that f1-score values in the RF clas-
sifier, all the danger classes advance those in the Decision Tree classifier. These
results related to the most important danger classes show relevant values for
prediction. Moreover, according to our experiments on our fire prediction model
generated by the RF classifier, in Table 1, showed a high accuracy value, which
is in advance to the one in the Decision Tree classifier.

6 Conclusion

In this paper, we proposed an approach that combines ML and knowledge-driven
engineering to dynamically compose services from sensor data for wildfire pre-
dictions. The predicted alerts help scientists to anticipate and to manage fire
in threatened areas. We evaluated our wildfire model prediction through several
experiments, which showed relevant values with respect to the most important
classes of fire danger. Future work includes exploring optimal services compo-
sition along with optimal services selection based on the quality of data and
quality of services.
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