Automatic K-Resources Discovery for Hybrid Web
Connected Environments

Lara Kallab*t, Richard Chbeirt and Michael Mrissa®
*IUniv Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, 64600, France
Email: *lara.kallab@univ-pau.fr, irichard.chbeir@univ—pau.fr
TNobatek/INEF4, Anglet, 64600, France
Email: lkallab@nobatek.inef4.com
§InnoRenew CoE, Livade 6, Izola, 6310, Slovenia
Email: michael.mrissa@innorenew.eu

Abstract—Recently, RESTful services, designed as resources,
have seen their popularity rising and have shown their potential
in composing reliable Web-scale environments (Web applications,
Web platforms, Web of Things (WoT), etc.). However, discovering
the necessary resources for a composition is becoming more
challenging. This is due to 1) the growing number of published
Web-based resources, and 2) the highly dynamic nature of the
WoT environment, in which smart devices, connected to the Web
platform, are exposed as resources. In this paper, we propose an
automatic resource discovery, applicable in hybrid Web-based
environments providing static linked resources always available
on the Web, and connecting dynamic resources that can be
connected to and removed from the Web at different time periods.
The solution presents an indexing schema that makes resource
discovery process fast, especially in large-scale environments.
Experiments were conducted in different environment setups to
test the effective performance of our approach.

Index Terms—Web Connected Environments; Web of Things;
Dynamic Resource; Semantic Description; Automatic Discovery

I. INTRODUCTION

The Web 4.0 is the newest evolution of the Web paradigm
associated to the Internet of Things (IoT) concept [3], which
refers to the networked interconnection of smart devices
collecting and exchanging data. The Web of Things (WoT) [4]
extends the IoT by integrating devices with the Web in-
frastructure, and exposing them as Web resources follow-
ing the REST (REpresentational State Transfer) architecture
style [18]. REST promotes publishing the functionalities of
Web applications, Web platforms, WoT, etc., as RESTful ser-
vices designed as resources. A resource can be either dynamic,
i.e., connected to and removed from the Web environment at
different time periods, or static, i.e., established to be always
available on the Web. It provides several functions invocable
using the Hypertext Transfer Protocol (HTTP) methods (e.g.,
GET and POST, PUT, and DELETE). However, there are cases
in which a single resource is not sufficient to answer a user
request, and often, combining two or more resources that form
a resource composition, achieves the desired output. Although
many works carried out RESTful service composition [9],
discovering the necessary resources remains a challenge, and
is becoming even more complex due to: 1) the highly dynamic
nature of the WoT resources [6], and 2) the large number of
resources connected to the Web [17]. The dynamic nature and

the huge number of connected resources make their automatic
discovery a necessity. Lately, automatic resource discovery
has emerged as an active research area [21], however, several
challenges still need to be addressed:

e Discover dynamic resources connected at runtime:
With respect to the HATEOAS (Hypermedia as the
Engine of Application State) [18] principle, hypermedia
resources links are included within resources responses,
during their design, to identify the next possible resources
to call based on the current resource state, thus, forming a
graph of linked resources. This allows automated tools to
navigate through resources links to discover the upcoming
appropriate resources. However, the dynamic resources
connected at runtime are not linked to the existing graph
resources, making their discovery a challenging task.

o Identify K-resources: Due to WoT dynamic aspect,
dynamic resources may be unavailable for execution, even
if they were identified during the discovery process. Also,
some resources can be more qualified than others while
answering to user requests. And sometimes, there are
demands that require the coverage of several connected
resources in order to be processed correctly. Thus, finding
K-resources (K € N*) providing the same required func-
tion is important to fulfill more efficiently user requests.

e Make resource discovery process fast: Numerous re-
sources can connect to the Web, forming a large-scale
Web resource environment. This makes resource discov-
ery a complex process, especially when dealing with de-
mands that require fast responses. Therefore, discovering
resources with acceptable delays is necessary to satisfy

user requests in an effective manner.
In the literature, several approaches have proposed machine-

readable REST service descriptions [1][7] to allow automatic
service discovery. However, these descriptions fail in consid-
ering the dynamic aspect of resources. Such aspect is also
not covered in many works related to resource discovery as
in [8][16][S]. Besides, most of the approaches, like [8], do not
allow K-resources discovery for the same required function.

To address the aforementioned challenges, we propose in this
paper a graph-based approach for automating K-Resources
(KR) discovery. Our solution is generic and applicable in

hybrid Web-based environments that provide static linked
resources described through a Hypermedia-based language,
i.e., Hydra vocabulary [20], and connect dynamic resources.
In this work, we define a formal representation that models the
resources (i.e., dynamic and static) with their links into one
single resource graph, and extends Hydra, which is enriched
with semantic annotations (on the resources provided functions
and related links) [7], to allow the description of dynamic
resources. Our approach is able to find K-resources realizing
the same required function, and uses an indexing schema that
maps resources to their functions to make resource discovery
fast, especially in large-scale Web environments. The rest of
the paper is organized as follows. Section 2 presents a scenario
to motivate our work, and discusses the main challenges.
Section 3 gives some preliminaries related to the HATEOAS
principle and Hydra vocabulary. Section 4 presents the related
work, and shows the originality of our approach. Section 5
details our automatic resource discovery solution for hybrid
Web environments. Section 6 evaluates the performance of
the solution. Finally, Section 7 summarizes the work and gives
some future directions.

II. MOTIVATING SCENARIO AND CHALLENGES

Our motivating scenario is illustrated through a Web-based
management platform currently being developed under the
scope of HIT2GAP' H2020 European project, which aims
at reducing the energy gap in smart buildings [10]. More
technically, the platform provides static resources for: collect-
ing heterogeneous on-site data (e.g., internal temperature and
energy consumption), preprocessing the collected data (e.g.,
outliers correction and data alignment), and analyzing the data
(e.g., energy prediction and energy model calibration).

Each resource provides a set of functions invocable using
HTTP methods. Following HATEOAS [18], HIT2GAP static
resources are linked together based on their provided func-
tions defined in a function graph (cf. Definition 1), forming
a resource oriented directed graph. The links between the
resources are included in each resource description, which
is expressed in Hydra [20] and registered in a triplestore-
based repository. To increase the quality of the collected and
processed data, HIT2GAP is designed to be an open and dy-
namic environment that allows ad-hoc connection of external
resources (e.g., mobile phones and tablets) at runtime. Such
resources, mainly exposed by building occupants devices, can
be connected at different time periods. The external resources,
accessible through public Unified Resource Identifiers (URIs),
are not registered into the repository given their dynamic
aspect. Thus, HIT2GAP follows a hybrid architecture that
copes with registered and non-registered resources. Several
requests occur in HIT2GAP. For example, we consider the case
of the building manager of one of the pilot sites, who needs
to predict the heating energy consumption of a specific zone
of his building (e.g., his office), for the upcoming 2 hours. To

Highly Innovative building control Tools Tackling the energy performance
GAP: http://www.hit2gap.eu

satisfy his demand, it is important to identify the resources that
fulfill his prediction need. However, several challenges arise
to discover the required resources, as showsn in Figure 1:

e Discover external resources: The dynamic nature of the
HIT2GAP environment, in which external resources can
be added and removed dynamically, makes it difficult for
the building manager to identify the suitable resources
answering his request. This is also a complex task even
for the automated tools that navigate through resources
links to identify the next resources to call, since dynamic
resources are not linked to the existing static resources.
Thus, to identify both dynamic and static resources (e.g.,
a resource provided by the smart-phone of the building
manager to capture the ambient temperature, and an
energy consumption prediction resource embedded within
HIT2GAP platform), it is important to link them in a
single resource model. This requires a semantic approach
to allow automatic resource discovery.

@ Dynamic Resource,

& Connection

e ol Dynamic Resource
Disconnection

‘P%
%'QG

é &% = &

hit

res; | [res3| [resj

Function Graph

P User Request (@)
g
——p

[~ R
]
K-Resources 1 Resource Registration

HIT2GAP resjy |resf,| [resf,
User static resource (res®)

Figure 1: Resource discovery process in HIT2ZGAP

resj| [resi| [res{ HiT2GAP

Resource
Repositol

[res3| [res§| [resy

o Identify K-resources providing the same required
function: When a dynamic resource, exposed by the
building manager smart-phone for collecting the ambient
temperature, is identified during resource discovery, it
may be disconnected due to a restart operation occurred
to the smart-phone. Thus, the provided function by the
resource will not be covered. At the same time, another
mobile phone can expose a resource that collects the
ambient temperature more efficiently. And in some cases,
the coverage of several resources at once, as collecting the
temperature of a big building zone from different loca-
tions, is necessary. For these reasons, finding K-resources
providing the same required function is essential.

e Speed-up resource discovery: Finding suitable resources
in a huge Web environment with an acceptable response
time, is important to answer user request efficiently. As
such, the faster the energy consumption prediction of
a building is, the quicker the analysis of the predicted
results are, and thus, the performance of systems and
devices installed within the building are well managed.
Therefore, speeding-up resource discovery within large
Web environments, is necessary.

To cope with these challenges, we propose a solution for
the discovery of static resources supporting HATEOAS, and
connected dynamic resources. This is done by 1) modeling the
resources in a single resource graph, and 2) adapting graph
algorithms to explore Hydra-based resource descriptions en-
riched by semantic annotations, and identify suitable resources

answering to user request. Our solution discovers K-resources
for the same required function, and uses an indexing schema
defined to identify the most appropriate resources from which
the discovery graph algorithms will start their search.

III. PRELIMINARIES

REST [18] has recently become a popular choice for de-
signing Web services, due to several factors, such as client
and server separation, Web services visibility, reliability and
scalability [2]. REST services are resources identified by URIs
that can be invoked using HTTP methods (e.g., GET, POST,
PUT, and DELETE) to provide specific functions. Several
principles [18] are to be considered while implementing REST
services. HATEOAS, the last feature of REST, is a constraint
that consists in including within resource response message,
the set of resources URIs that can be called next, based on
the current resource state. Although HATEOAS is still rarely
used [13], our work supports it, as it allows generic clients
(typically Web browsers) to dynamically navigate to the next
appropriate resources. Several languages exist to describe re-
sources while supporting HATEOAS, e.g., HAL? and SIREN?.
In our work, we use Hydra [20], a lightweight vocabulary that
defines fundamental concepts to describe RESTful services in
a machine understandable form. Hydra is expressed via JSON-
LD (JavaScript Object Notation for Linked Data) specification,
which decouples the resource serialization format from the
communication format between the server and the clients.
JSON-LD is an easy to learn and simple format that maps
resources properties, e.g., their provided functions, to concepts
defined in existing data models (e.g., ontologies), allowing
resources to be effectively exploited by automated tools. An
example of a resource description expressed using Hydra
in JSON-LD is available online?, showing resource links
annotated using semantic relation types, i.e., “isSimilar” and
“isComplementary” [7].

IV. RELATED WORK

Our work relates to Web resource description and Web
resource discovery research areas. Next, we highlight the most
interesting works in these fields.

A. Resource Description

The authors in [22] enrich resources descriptions with
semantic annotations for more autonomous Web service uti-
lization. The descriptions are expressed using OpenAPI ser-
vice format(https://www.openapis.org/). Though it enables a
generic and automatic client service interaction, the work
covers the resources callable via ”’GET” method. In the future,
the authors will consider the rest of HTTP verbs, and explore
the integration of their method with approaches as Hydra.

The Resource Linking Language (ReLL) [1] is a model that
allows providers to represent RESTful services, with emphasis
on the hypermedia characteristic and linked data. Despite from

Zhttp://stateless.co/hal_specification.htm]
3https://sookocheff.com/post/api/on-choosing-a-hypermedia-format/
“https://tinyurl.com/y8c6cy20

being a rich data format that provides a formal definition of
resources and links, it does not support the dynamic aspect of
resources and link them to the existing related resources.

In [7], a resource is attached to a Hydra-based descriptor
that mainly includes i) the HTTP operation used to invoke the
resource, ii) the necessary inputs and the provided outputs,
and iii) information about other related resources. Semantic
annotations are integrated into these descriptors in [8], on the
resources HTTP operations, and their links to other resources,
to automate the resource discovery process. However, the
descriptions represent only static resources. In our work, we
extend Hydra to describe both static and dynamic resources.

B. Resource Discovery

In [8], a resource discovery approach is proposed. It uses a
BFS-based algorithm to discover resources, and explores the
semantically annotated resource descriptions defined in [7] to
determine if a resource suits the required functions. Apart from
discovering only static resources, the discovery process finds
one resource for each required function, and thus, prevents the
identification of other resources providing similar functions.
This is an important criteria to consider in dynamic Web envi-
ronments, as it is possible to identify more qualified resources
to answer user request, and substitute resources in case of
non-availability. Moreover, the proposed discovery algorithm
requires a given initial resource URI from the end user in
order to be able to crawl the resource graph. Such task is not
obvious for non-expert users. In our work, end-users express
their demands simply through a single function selected from a
given list. Also, our solution allows the use of different graph-
based algorithms (i.e., BFS and DFS) to traverse the resource
graph, and optimizes resource discovery using an indexing
schema that maps resources to their provided functions.

In [16], a Web service description and interaction approach
for automatic Web service discovery called RESTdesc, is
proposed. The approach is based on Notation3 RDF (Resource
Description Framework) syntax to describe REST services,
and uses operational semantics of Notation3 in order to allow
a flexible discovery. Although, it respects the HATEOAS prin-
ciple, the description does not allow the discovery of dynamic
resources. Moreover, the solution is used to crawl the related
resources without identifying more than one resource for a
required task, and depends from a complex logic language,
Notation3, which is a superset of RDF. Notation3 is difficult
to use, even for expert users, compared to Hydra (the language
adopted in our solution) that is expressed through JSON, a
comprehensible and easy to learn format for humans.

Focused on hypermedia, a service description model is
proposed in [5] allowing the generation of a graph that
captures state transitions in an activity layer, as well as
resources, transitions, and response semantics in a semantic
layer. However, the method uses a resource language that does
not support dynamic resources. Moreover, the solution requires
that the user knows the Schema.org data model, which has
been extended with a set of concepts to semantically annotate

Algorithm
type

Algorithms
Library

Discovery Process

Optimizer
o p |Starting

resources|

Resources
B

{00

User Request Analyzer| 00~ i00r
requested \Dependent, K
function || FG @’j functions Iresources
(f) of f

Basic discovery

Figure 2: Framework overview for K-resources discovery

resources descriptions. Also, user needs are expressed through
a graph query that requires knowledge from end-users.
Dynamic resource discovery is an active research area in
other domains, as sensor networks [19][12], and fog comput-
ing [14][11]. However, these solutions mainly focus on the
discovery of dynamic resources exposed by mobile devices
that communicate with their existing neighbors, independently
from their provided functions. Contrary to such approaches,
our work is based on the functional aspect of the resources,
which are linked together through semantic links according to
their provided functions. Also, our solution combines existing
linked resources (established to be always available on the
Web) and connected dynamic resources into one single graph
model, thus, allowing the discovery of both resource types.

V. AUTOMATIC K-RESOURCES DISCOVERY SOLUTION

In this section, we present our solution to discover auto-
matically K-resources (static and/or dynamic) responding to
user request. The latter is expressed through a single desired
function, f (such as “EDP” referring to the Energy Demand
Prediction function). f is selected from a generated list of
functions that can be provided by the available resources
connected to the Web environment at the current instant.

A. Framework Overview

Before elaborating on our approach framework, we define a
function graph, FG, containing the functions provided by the
available connected resources, RES, and their dependencies (if
they exist). FG is a directed acyclic graph, such that:
Definition 1: FG = (F, O), where:
e F is the set of all the functions provided by RES.
Formally, F={f;} / f; € res and res € RES

e O = {<} is a binary order relation on F. Such binary
relation is a subset of F x F linking two functions when
one precedes another in the ordering. As such, if f;
precedes fo, it is denoted as f; < f5. FG can also include
functions that are not dependent of any other, we refer to
these functions as “terminal”.

Figure 2 shows the solution framework adaptive to discover
K static and/or dynamic resources necessary to answer the user
requested f, with f € F. When the Request Analyzer (RA)
component receives f, it finds the set of functions F° (F°C
F) required to realize f. Resource search consists in finding
the available connected Web resources matching F’. For this
aim, we first represent all resources (static and dynamic) into
one single graph, denoted as RG (cf. Definition 2), which
originally contains linked static resources. To add the dynamic

resources in RG, we define a virtual resource, vres, for each
function f in F, and link it to the existing static resources
realizing the same function. Each vres holds the connected
dynamic resources answering its correspondent function (this
facilitates the integration of new functions exposed by dynamic
resources in the environment). Using the RG stored in a Web-
based Repository, the Discovery Process (DP) component runs
a graph algorithm to identify the resources matching F’. The
algorithm type is specified by the solution administrator from
a library of graph-based algorithms. In this work, BFS and
DFS have been implemented. Resource discovery can be 1)
basic, where the algorithm starts crawling RG from the root,
or 2) enhanced, where the algorithm starts RG traversal from
resources pointed by a defined indexing schema presented
in the Optimizer component. Such schema is built using the
functions dependencies defined in FG, and the set of available
linked resources described with Hydra. The indexing schema,
which maps the resources to their provided functions (cf.
Definition 6), returns the appropriate resources from which the
discovery algorithm will begin its search, instead of traversing
the resources of RG starting from the root graph.

B. Static and Dynamic Resource-based Graph

With respect to HATEOAS, Web resources are linked to-
gether, forming a resource graph, RG. Initially, RG contains
static resources established to be always available on the
Web. However, the Web is a hybrid environment that allows
connecting dynamic resources. Given their dynamic aspect,
these resources are not linked to RG, thus, making their
discovery a challenging task. To address this challenge, we
define a virtual resource, vres, for each function f in F. A
vres can be permanent, vresP, or temporary, vrest. The vres?
holds the connected dynamic resources realizing its related
function that exists in F, and is linked to the static resources
providing that same function via the “isSimilar” relation. As
such, if a static resource provides both f; and fo, it will be
linked to the virtual resources, vres) and vresh, defined for
each of these functions respectively. And, when a dynamic
resource, res?, providing f is connected, it will be included in
the vresP defined for f. Thus, we obtain a resource oriented
directed graph, RG, combining dynamic and static resources.
Generally, the functions of a connected dynamic resource are
selected by the resource provider from a list containing the
existing functions, F. However, if res® realizes a function that
is not included in F, it will be added in a temporary virtual
resource, vrest, defined specifically to the new function. vres®
disappears when all of its related dynamic resources are
disconnected, contrary to the vres?, which is always present
in RG. vres! is linked to vresP through “isRelated” relation.
Such linking is based on the dependencies between vres? and
vrest related functions®. Figure 3 shows an example of the
relations between the different type of resources based on

SCurrently the new functions are added randomly in FG. Their real
dependencies with other functions will be explored in subsequent work

— = “Contains” relation

» = order function relation “<”
«w:» = “isRelated” relation
“isSimilar” relation
O permanent virtual resource
<> =temporary virtual resource
res‘= dynamic resource and res’= static resource

Figure 3: An example model of the relations between the resources

the dependencies of the functions® required to realize “EDP”.
Formally, RG is defined as:

Definition 2: RG = (Root, RES, REL, f, g, t), where:

e Root is the set of any resource, res, that is not being
pointed by any other resource in the graph. In this work,
such set is formed by static resources.

e RES is the set of all the static, dynamic, and virtual
resources connected to the Web environment.

RES = RES® URESP U RESV, with:

o RESS={resj.y}, is the set of static resources
o RESD={Tes§ieN}, is the set of dynamic resources
o RESV=VRESY U VREST, is the set of
permanent and temporary virtual resources, with
VREST={vrest.} and VREST={vres!_}

e REL = RUC UT, is the set of relations linking the
resources to each other, where:

o R refers to the relations used to link static resources
to other resources, i.e., static or permanent virtual.
R = {~, <}, where ‘~’ denotes “isSimilar” relation,
and ‘<’ denotes “isComplementary” relation

o C refers to the “contains” relation, such that C = {€}.
It is used to link virtual resources to dynamic resources

o T refers to the “isRelated” relation used to link per-
manent virtual resources to temporary ones, such that
T={=}

e f is the function linking static resources together, and
static resources to permanent virtual resources using R,
such that f: RESS % RESS|RESS VREST

e g is the function relating virtual resources to dynamic
resources, using C, with g:RESY S RESP

e t is the function relating permanent virtual resources to

VREST

A resource, res, can be static, dynamic or virtual (permanent
or temporary), and is defined as:

Definition 3: res = res® | res?® | vresP | vres
Each static/dynamic resource is formally represented as:

Definition 4: res®'4 : <id, F, L -, where:

e id, refers to the URI Web address used to invoke resl?

. . T
temporary ones, using T, with t:VREST —
t
SATC (Air Temperature Collection), MVD (Missing Values Detection),

OVD (Outliers Values Detection), MVI (Missing Values Interpolation), OVI
(Outliers Values Interpolation), and CTC (Climate Temperature Collection)

{"@context": "http://www.h2g.eu/context.jsonld",
"@id": "http://www.h2g.eu/resdesc/vresp-getairtem",
"entrypoint":

"@context": "http://www.h2g.eu/context.jsonld",
"http://www.h2g.eu/vresp-getairtem"”, | "@id": "http://www.h2g.eu/resdesc/resd-getairtem",
method": "GET", "function": "ATC"}, : "http://www.h2g.eu/resd-getairtem",

"GET",

"h2g:startdate", "h2g:enddate"],
ema:DateTime", "schema: Float"],
"function": "ATC"

"member": [{"@id":
"Link": [{

"http://h2g.eu/resd-getairtem"}]}, "metl

"entrypoint": "http:
"method": "GET"

H
"relationType": "isRelated","function": "HC"}]} [}

(a) Virtual resource description (b) Dynamic resource description

Figure 4: Extended Hydra vocabulary

o F = U?:*r {f;}, designates the set of functions provided
by res®l9, such that f; = (n,1,0,m):
- n,is the name of the function
-I= U 1 {ini}, is the set of the function inputs
-0= Uz—l {out;}, is the set of the function outputs
- m € {POST, PUT, DELETE, GET, HEAD, PATCH, CONNECT,

OPTIONS, TRACE}, is the HTTP verb used to call f;

e L refers to the set of linked resources (if they exist) to
res®l?. It is always Null for re§d, however, it can be
defined for each res® as L = Ui.\]:l {l;}, where:

l; = (res.f, r), with res.f is the function provided by
the linked res, such that res = res®|vres?, and r € R
A permanent/temporary virtual resource is defined as:
Definition 5: vresPI* : <id, f, D,L -, where:
e id, refers to the URI Web address used to invoke vres
and access its correspondent dynamic resources
e f = (n,GET) refers to the function related to vres, with:
- n is the name of the function defined for vres
- GET refers to the HTTP verb used to call vres
e D = designates the set of dynamic resources supporting
the same function defined for vres, with D={resf€N},
resd en € RESP, and vres C D
o L refers to the set of linked resources (if they exist) to
vresPlt, Tt is always Null for vrest, however, it can be
defined for each vres? as L = UiN=1 {l;}, where:
o l; = (vrest.f, r), such that vres’.f is the function
provided by the linked vres!, and r € T
Based on the definitions, we extended Hydra to describe
dynamic and virtual resources, as shown in Figure 4. Figure
4-a presents the description of a vres (vresP or vrest), where
the “Link” field exists only for a vresP. In the descriptions,
the term “Operation” denotes the provided function by the
resource, and the term “function” refers to a function defined
in FG. The inputs and outputs of an operation are included
in the “expects” and “returns” fields respectively. They are
represented as key:value pair, where key is the term mapped
to a specific data model, and value is the concept to which
each input and output is referring to.

C. Indexing Schema for an Enhanced Resource Search

Exploring graphs like the Web environment requires graph
traversal algorithms that traverse RG nodes (i.e., resources)
to find the appropriate ones realizing user request. The most
popular algorithms are Depth First Search (DFS) and Breadth
First Search (BEFS) [15]. We conducted several tests to compare
both BFS and DFS. The results’ show that the performance

"Test results are available online: https://tinyurl.com/y7dq4yqk

of each algorithm depends on the functions distribution and
the localization of the requested function in FG. Originally,
the resource discovery algorithm starts from RG root, leading
to a huge response time when dealing with large graphs. To
optimize the time of the resource discovery, we define an
indexing schema, 1dS, as shown in Figure 5. The schema
maps the resources (i.e., RES?®, and VREST if they exist) to
their provided functions. RES® provide the initial functions
in FG, while VREST answer newly added functions. In the
schema, each function is represented by an index x € N having
a signature (fsignature) that includes the functions indices
required to realize it. And, each resource is referenced by a
value y € N having a signature (rsignature) consisting of the
reference values of the resources linked to it. IdS is a two
dimensional space that is formally defined as:

Definition 6: 1dS = (o, d1, d2), where:

e 0 is the origin positioned at (0, 0). It denotes a special
resource containing RES®, and VREST (when they
exist). o denotes also an empty function realized by
RES?® and VREST.

e d;={x} is the abscissa axis values referring to the indices
of the functions F. Each x has a fsignature, such that:

o fsignature = {2'}, with xX’€ dj, X’#x, and 3 x’€ fsig-
nature such that x’.fsignature=2 denoted as “terminal”.

e dy={y} is the ordinate axis values referring to RES® and
VREST. Each y has a rsignature, such that:

o rsignature={y’}, with y’€ dy and y’#y

Semantic Link Indexing Schema

[6] 14

[6] 12

[8,11,13]
[9,11,13]
[3,5,6,9,11,13]
[8,10]

Resources

7
6
[2] 5

[11,13] 4 ®

[4,7] 3
[3,5,6,9] 2
[11,13] 1 ®
0
°©0 1 2 3 4 5 & 7 8 9 10 1

Functions
[2] (23] [24] [1,23,4,56]

Functional l
Dependence rrr @

Figure 5: The indexing schema linking resources to their functions

In Figure 5, f7 is preceded by 6 functions, [1,2,3,4,5,6]. Based
on the analysis of these functions signatures, f; and f, are
terminals. The resources realizing such two functions are r1,
r9, T4, and 77 (circled in red), and will act as initial resources
from which the discovery algorithm will begin its process,
instead of starting from the graph root. The construction of IdS
requires 1) the definition of FG to get the functions with their
correspondent signatures, and 2) the existence of linked RES®
and VREST (if they exist) described with Hydra to get their
provided functions with their related resources (if defined).
The performance evaluation of IdS construction® show that the
response time and memory usage increase with the evolution
of both functions and resources numbers. Such evolution is
huge when the number of functions and resources is high.

8The evaluation results are available online: https:/tinyurl.com/ydbaubtp

Thus, updating the IdS dynamically without regenerating it
again is an improvement that we seek to do in the future.

D. Automatic K-Resources Discovery Process

Our discovery solution identifies static and/or dynamic
resources, and adapts several graph-based algorithms for RG
traversal. The algorithm to be used is given as input to the
resource discovery process based on a library of algorithms
(i.e., BFS or DFS in this work), which will be extended in
future works. The discovery process uses an integer variable,
K, defined by the solution administrator, to represent the
maximum number of discovered resources realizing similar
functions. Algorithm 1 presents the pseudo code of the defined
discovery process having the following entry data:

— algoType (string): denotes the algorithm type to be used

— F’ (array of string): F’C F, contains the requested func-
tion f and the functions that precedes f in FG

— Id (array of string): refers to the resource(s) id(s) from
which the specified algorithm type starts its process

— K (integer): refers to the maximum number of discovered
resources providing similar functions

The output is the discovered array, containing the pairs [f,
id] that correspond to the discovered resources matching each
function f € F’. Based on the given algoType, the discovery
process runs the corresponding algorithm (runAlgoType())
that explores RG starting from the resources included in the Id
array. currentld refers to the resource that is being processed,
which is initially the first resource of the Id array. For each
unvisited resource, the algorithm gets the relative Hydra de-
scription through getDesc() (line 7). If the operation function
matches one of the functions in F’ using the functionMatch()
(line 9), the algorithm checks whether the resource is virtual or
static (lines 10 to 16). When it is virtual, the ids of the dynamic
resources included in the description (line 12) are inserted
with their relative function in the discovered array. When it is
static, the corresponding resource id is stored in the discovered
array with the relative function (line 16). If the number of the
discovered resources realizing the current function is equal
to K (lines 13 and 17), the function is removed from F’.
Such number is calculated using the resFound() that we
implemented apart. To explore other resources, the algorithm
follows the resource semantic annotated links (lines 19 to 21).
The resToExplore and visited arrays refer, respectively, to the
set of resources ids that will be explored next, and to the ids
of the resources already crossed. The algorithm keeps running
until F’ is empty, denoting that K-resources realizing each
required function in F’ are discovered.

VI. EVALUATION AND DISCUSSION

In this section, we evaluate the performance of our solution
in different function and resource graphs topologies, by vary-
ing, for example, the number of functions and the number of
resources providing, each, one function included in FG. In the
tests, we focus on studying our approach in 2 different forms:
1) basic, where the search starts from the graph root of RG,
and 2) enhanced, where the search starts from the resource(s)

Algorithm 1: Pseudo code of the automatic KR discovery
process

1 visited, currentld : array of string

2 currentld = id[0]

3 runAlgoType(): // the execution of the algorithm corresponding to the given algoType
4 while not F’.empty() do

5 if not currentld in visited then

6 visited.insert(currentld)

7 Descriptor desc = getDesc(currentld) foreach operation in desc.Operation do
8 foreach fin F’ do

9 if functionMatch(operation.function, f) then
10 if not desc.RESD.empty() then
1 foreach adhoc in desc.RESD do
12 discovered.insert([f, id])
13 if resFound(discovered, f) = K then
14 P remove(f)
15 else
16 discovered.insert([f, currentId])
17 if resFound(discovered, f) = K then
18 F.remove(f)
19 foreach link in desc.Link do
20 if (link.relationType = isSimilar or link.relationType = isComplementary or

link.relationType = isRelated) then
21 resToExplore.insert(link.entrypoint) // stores the resources linked to the current
traversed resource

22 currentld = resToExplore.select() // selects the next resource to explore
23 else
24 L currentld = id.next()

25 return discovered;

pointed by IdS, without considering the best algorithm type
to use at each function graph topology (this will be done
in another work). Therefore, we only show the experiments
using one algorithm type, i.e, the BFS. To consider worst case
scenarios, the tests consist of dynamic resources providing
functions existing in FG, regardless of whether they were
originally defined or newly added.

A. Environment Setups

The function and resource graphs are based on simulations
that are dynamically generated, using several criterion, i.e.,
number/order of functions, number/type of resources, and
number of resources (K) providing the same function. This
is done to study our approach in different functions/resources
graphs topologies. In the tests’, conducted on a Linux Debian
(64 bits) virtual machine, with 1 dedicated Intel® Core™ i7-
46000 CPU @ 2.10GHz 2.70GHz processor and 1 GB RAM,
we show the algorithm response time (in milliseconds) based
on an average of 5 sequential executions.

B. Evaluation

Due to the lack of standard benchmark to evaluate the
related work [8][16][5], we propose in this paper, the following
aspects for our resource discovery approach evaluation:

e Dynamicity: the ability to identify appropriate resources
for a user request in a dynamic environment connecting
both dynamic and static resources

e Multiplicity: the ability to discover K-resources respond-
ing to the same required function

o Efficiency: the ability to identify suitable resources in a
large Web environment with acceptable response time

e Scalability: the ability to identify resources in large
graphs containing resources that provide numerous dif-
ferent functions

9The prototype code is available online: http://tinyurl.com/y7e78n24

(a) Dynamicity

3500 3259
3000
2500
2000
£ 1500
" 1000
500

2363

1667

e (ms)

[200, 0] [150, 50] [100, 100] [50, 150]

[0, 200]

[Number of res®, Number of res®]

% Basic ™ Enhanced

(b) Multiplicity
4000
3500
3000
2500
S 2000
E
£ 1500
1000
500

3740
3395 3411 3479 3501 3531 3559 3601 36 3714)

1 2 3 4 5 6 7 8 9 10
Number of Similar Resources, K

7 Basic ™ Enhanced

(c) Efficiency

10000000
1000000
100000
10000
1000

100

10

1

746547 1195747

Time (ms)

200 2000 4000 6000 8000 10000
Number of Resources

Basic ™ Enhanced

(d) Scalability

10000000
1000000
100000
10000
1000

100

10

989815 1001286 1279287

Time (ms)

Number of Functions

Basic ® Enhanced

Figure 6: Performance results

For each aspect, we generated results by running the basic
and the enhanced search forms of the BFS algorithm. For
the dynamic aspect, the tests were executed on 5 resource
graphs containing, each, 200 resources, based on a FG with 20
ordered functions. The number of dynamic and static resources
varies from a graph to another with the variation of K. As such,
the graph consisting of 200 static resources ([200,0]), contains
10 resources (K=10) for each function in FG. However, graph
[100,100] includes 5 static and dynamic resources (K=5 for
each type) realizing the same function. The aim of the tests
was to find 1-resource for each function required to answer
“EDP”. Figure 6-(a) shows that the presence of dynamic
resources reduces the response time of the resource discovery
in both algorithm forms. This is explained by the existence of
virtual resources from which the algorithm can access several
dynamic resources realizing the same function at once. For
the multiplicity aspect, we built a graph of 400 resources
(200 static and 200 dynamic), and run our tests while varying
K. Figure 6-(b) shows that the response time increases with
the evolution of K in both algorithm forms. This is due to

the additional resources that the discovery process will have
to find realizing a single required function. However, the
results are more satisfactory using the enhanced search. For
the efficiency aspect, Figure 6-(c) shows that the response
time of the enhanced search is better than the basic one, when
increasing the number of resources from 200 to 10000'°. This
highlights the utility of the indexing schema in large Web
graphs. As for the scalability aspect, we fixed the number
of resources to 10000, and varied the number of functions
(from 50 to 2000). In the first 3 tests, RG graphs consist
of K dynamic and static resource for each function, with K
decreasing from 100, 10, and 5 respectively. In the rest 2 tests,
K is defined unequally between static and dynamic resources
of the RG graphs. As such, when the number of functions is
2000, RG graph includes 2 dynamic resources (K=2) and 3
static resources (k=3) for each function. Figure 6-(d) shows
an increase in the response time with the evolution of the
functions number with the basic search. This is due to the
variety of resources providing numerous functions that are
different from the required ones. However, the response time
decreases in the enhanced search. This is explained by the
reduction of the number of resources providing the necessary
functions related to user request, since the functions number
increases while the total resources number is fixed.

Figure 6-(a) results highlight the benefit of defining virtual
resources containing dynamic resources realizing the same
function. It facilitates and speeds-up the access to K-resources
at once during resource discovery. The tests in Figures 6-(b), 6-
(c) and 6-(d) show that the time curve in both algorithm forms
generally increases with the evolution of the functions number,
the resources number, and the similar resources number, K.
Except for the scalability aspect, and with the enhanced search,
the time curve decreases. This is due to the fixed number
of resources while increasing the number of the provided
functions, which leads to a decrease in the number of resources
providing the required functions necessary to realize user
request. Our experiments prove that using our indexing schema
optimizes resource discovery in all graphs setups. This can be
seen through the difference between the results of the basic and
the enhanced searches, especially when the resources number
is high (10000 resources) as shown in Figures 6-(c) and 6-(d).

VII. CONCLUSION

This paper presents an automatic resource discovery ap-
proach for hybrid Web environments providing linked static
resources and connecting dynamic resources. The solution uses
an original indexing schema that enhances resource search
in large environments, and discovers K-resources realizing
the same required function. Experiments were conducted to
evaluate our solution on 4 aspects: Dynamicity, multiplicity,
efficiency, and scalability. In the future, we plan to study the
solution performance in more complex setups (e.g., varying si-
multaneously the number of resources and provided functions),
and test it in a real environment. Also, we aim to integrate

10Each graph contains the same exact number of static/dynamic resources

other graph algorithms, and propose dynamically the most
suitable one according to the current function graph topology.
Moreover, we seek to study the measures that define the
dependencies between the new and the existing functions, and
update the indexing schema dynamically without regenerating
it from scratch every time.

ACKNOWLEDGMENT

HIT2GAP project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement N° 680708. The authors acknowledge
that the development work is carried out in a complementary
manner with SIBEX: a French project funded by the Energy
Transition Institute INEF 4.

REFERENCES

[1] Rosa Alarcon and Erik Wilde. From restful services to rdf: connecting
the web and the semantic web. arXiv preprint arXiv:1006.2718, 2010.

[2] Subbu Allamaraju. Restful web services cookbook: solutions for improv-
ing scalability and simplicity. ” O’Reilly Media, Inc.”, 2010.

[3] Fernando Luis Almeida. Concept and dimensions of web 4.0. Interna-
tional Journal of Computers & Technology, 16(7):7040-7046, 2017.

[4] Payam Barnaghi, Amit Sheth, and Cory Henson. From data to actionable
knowledge: Big data challenges in the web of things [guest editors’
introduction]. IEEE Intelligent Systems, 28(6):6-11, 2013.

[5] Alarcon Rosa et al. Rest web service description for graph-based service
discovery. In ICWE, pages 461-478. Springer, 2015.

[6] Aziez Meriem et al. Service discovery for the internet of things: Com-
parison study of the approaches. In Control, Decision and Information
Technologies (CoDIT), 2017, pages 0599-0604. IEEE, 2017.

[7] Bennara Mahdi et al. An approach for composing restful linked services
on the web. In Proceedings of the 23rd International Conference on
World Wide Web, pages 977-982. ACM, 2014.

[8] Bennara Mahdi et al. Semantic-enabled and hypermedia-driven linked
service discovery. In MEDI, pages 108—117. Springer, 2016.

[9] Garriga Martin et al. Restful service composition at a glance: A survey.
Journal of Network and Computer Applications, 60:32-53, 2016.

[10] Lara Kallab et al. Hit2gap: Towards a better building energy manage-
ment. Energy Procedia, 122:895 — 900, 2017. {CISBAT} 2017.

[11] Liu Wei et al. Adaptive resource discovery in mobile cloud computing.
Computer Communications, 50:119-129, 2014.

[12] Marin-Perianu Raluca et al. Prototyping service discovery and usage in
wireless sensor networks. In 32nd IEEE Conference on Local Computer
Networks (LCN 2007), pages 841-850. IEEE, 2007.

[13] Neumann Andy et al. An analysis of public rest web service apis. IEEE
Transactions on Services Computing, 2018.

[14] Rejiba Zeineb et al. F2c-aware: Enabling discovery in wi-fi-powered
fog-to-cloud (f2¢) systems. In 2018 6th IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering (MobileCloud),
pages 113-116. IEEE, 2018.

[15] Russell Stuart Jonathan et al. Artificial intelligence: a modern approach,
volume 2. Prentice hall Upper Saddle River, 2003.

[16] Verborgh Ruben et al. Description and interaction of restful services for
automatic discovery and execution. In AFMS 2011, 2011.

[17] Wang Jian et al. A web service discovery approach based on common
topic groups extraction. IEEE Access, 5:10193-10208, 2017.

[18] Roy T Fielding. Architectural styles and the design of network-
based software architectures. University of California, Irvine Doctoral
dissertation, 2000.

[19] Simon Jirka, Arne Broring, and Christoph Stasch. Discovery mecha-
nisms for the sensor web. Sensors, 9(4):2661-2681, 2009.

[20] Markus Lanthaler and Christian Giitl. Hydra: A vocabulary for
hypermedia-driven web apis. LDOW, 996, 2013.

[21] Debajyoti Mukhopadhyay and Archana Chougule. A survey on web
service discovery approaches. In ICCSEA, pages 1001-1012. Springer,
2012.

[22] Cong Peng and Guohua Bai. Using tag based semantic annotation to
empower client and rest service interaction. In COMPLEXIS 2018, pages
64-71, 2018.

