
Web Reasoning Using Fact Tagging

Mehdi Terdjimi
Univ Lyon, LIRIS - Université
Lyon 1 - CNRS UMR5205

Villeurbanne, France
mehdi.terdjimi@liris.cnrs.fr

Lionel Médini
Univ Lyon, LIRIS - Université
Lyon 1 - CNRS UMR5205

Villeurbanne, France
lionel.medini@liris.cnrs.fr

Michael Mrissa
Univ Pau & Pays Adour, LIUPPA,

EA3000
Pau, France

michael.mrissa@univ-pau.fr

ABSTRACT

Today’s Web applications tend to reason about cyclic data (i.e.
facts that re-occur periodically) on the client side. Although
they can benefit from efficient incremental maintenance algo-
rithms capable of handling frequent data updates, existing
rule-based algorithms cause successive re-derivations of pre-
viously inferred information. In this paper, we propose an
incremental maintenance approach for rule-based reasoning
that prevents successive re-computations of fact derivations.
We tag (i.e. annotate) facts to keep trace of their provenance
and validity. We compare our solution with the DRed-based
incremental reasoning algorithm and show that it significantly
outperforms this algorithm for fact updates in re-occurring
situations, to the cost of tagging facts at their first inser-
tion. Our experiments show that this cost can be recovered
within a small number of cycles of deletions and reinsertions
of explicit facts. We discuss the utility and limitations of
our approach on Web clients and provide implementation
packages of this reasoner that can be directly integrated in
Web applications, on both server and client sides.

CCS CONCEPTS

� Theory of computation� Semantics and reasoning;
� Computing methodologies� Causal reasoning and
diagnostics; � Information systems�Web applications;
Web Ontology Language (OWL);

KEYWORDS

rule-based reasoning; Web reasoning; incremental fact main-
tenance; fact tagging

ACM Reference Format:
Mehdi Terdjimi, Lionel Médini, and Michael Mrissa. 2018. Web
Reasoning Using Fact Tagging. In The 2018 Web Conference

Companion, April 23–27, 2018, Lyon, France. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3184558.3191615

This paper is published under the Creative Commons Attribution 4.0
International (CC BY 4.0) license. Authors reserve their rights to dis-
seminate the work on their personal and corporate Web sites with the
appropriate attribution. In case of republication, reuse, etc., the follow-
ing attribution should be used: “Published in WWW2018 Proceedings
© 2018 International World Wide Web Conference Committee, pub-
lished under Creative Commons CC BY 4.0 License.”

WWW’18 Companion, April 23–27, 2018, Lyon, France

© 2018 IW3C2 (International World Wide Web Conference Commit-
tee), published under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04..
https://doi.org/10.1145/3184558.3191615

1 INTRODUCTION

Everyday Web applications must dynamically handle various
types of contents generated by users or client sensors. Seman-
tic technologies could improve these applications, but are
currently under-exploited. One reason is that full-fledged se-
mantic stacks are perceived as costly, unreliable server-sided
architectures, in opposition with current (i.e. modular and
client-side) Web design practices [19]. We have addressed
this problem in [18], by proposing HyLAR, a reasoner that
can be both used on the server and client sides. Our goal is
to allow using reasoning for tasks currently located on Web
application clients, that satisfy several conditions. We focus
on datasets of relatively small size (< 50k triples) and target
Web applications based on stable data models (TBoxes) and
more varying model instances (ABoxes). State-of-the-art in
semantic reasoning research work [13] aims at improving rea-
soning through maintenance algorithms such as incremental
reasoning (IR). However, when the updated data is cyclic
(i.e. facts that re-occur periodically), applications should not
only rely on IR to optimize reasoning, as they are regularly
exposed to overheads caused by re-deriving implicit facts
that have been already derived in the past.

In this paper, we propose a maintenance approach inspired
by IR that prevents successive re-derivations by tagging facts
with respect to their provenance and validity. Our solution
includes the following contributions:
∙ Faster deletions using validity tagging. We pro-
vide validity tagging for explicit facts and do not
process overdeletion tasks. Instead, explicit facts are
tagged as invalid at deletion time and as valid at re-
insertion time.
∙ Faster re-insertions using provenance tagging.
We track the provenance of all implicit facts (i.e. all pos-
sible derivations), which avoids having to re-evaluate
them if they are reinserted in the knowledge base.
∙ Reasoning on the Web. We provide a rule-based
reasoner that currently supports a subset of OWL 2
RL rules, usable on both JavaScript-enabled servers
and Web browsers.

This paper is structured as follows. Section 2 formalizes
and highlights the re-derivation overhead problem, in a sce-
nario involving a mobile Web application. Section 3 presents
our contribution with three algorithms: implicit fact tagging,
tag-based KB update and fact selection filtering. Section 4
describes our prototype and enumerates the entailment rules
it is currently capable to handle. Section 5 evaluates our so-
lution by comparing it with IR and discusses the results with
respect to different application settings. Section 6 overviews

https://doi.org/10.1145/3184558.3191615
https://doi.org/10.1145/3184558.3191615

related work on reasoning profiles and optimizations. Sec-
tion 7 concludes and draws perspectives of our work.

2 PROBLEM STATEMENT

Web applications can be subject to frequent updates. Possibly
re-occurring data can be re-inserted or re-deleted, which
can cause significant computational overheads. We illustrate
this issue with the scenario of a mobile Web application
connected to a smart house: Julia uses this application on her
smartphone to automatically regulate her house temperature
when she approaches her house. The application locates her
mobile phone either using its GPS sensor or by recognizing
the network it is connected to. She will be considered close to
her house either if her cell phone GPS coordinates correspond
to her house neighborhood or if she connects the phone to the
house local network. This activates temperature regulation
and deactivates it otherwise. Julia’s proximity from her house
is the re-occurring data: the application infers or not this
information as she moves back and forth with her cell phone,
as she switches on and off the GPS sensor, or as she connects
and disconnects her phone from the house network.

We use the following formalization, from Motik et al. [13]:
a fact f can be explicit (i.e. provided at startup or update),
implicit (i.e. derived as a rule consequence), or both implicit
and explicit (i.e. explicitly stated and derived). A rule 𝑟 has
an antecedent, conjunction of facts f𝑖, 𝑖 ∈ N) and an implied
consequence (a single fact I); when it applies, the consequence
is derived as an implicit fact: 𝑟 :- f1 ∧ f2 ∧ ... ∧ f𝑥→ I.

Application ontology. Julia’s application in our scenario
uses the following fixed ontology (Classes and Properties)
and entailment rules.

EO1 = :PhysicalAgent rdf:type owl:Class .

EO2 = :User rdfs:subClassOf :PhysicalAgent .

EO3 = :SmartDevice rdfs:subClassOf :PhysicalAgent .

EO4 = :SmartPhone rdfs:subClassOf :SmartDevice .

EO5 = :SmartHome rdfs:subClassOf :SmartDevice .

EO6 = :Location rdf:type owl:Class .

EO7 = :TemperatureStatus rdf:type owl:Class .

Listing 1: Classes

EO8 = :hasLocation rdf:type owl:ObjectProperty

.

EO9 = :hasLocation rdfs:domain :PhysicalAgent .

EO10 = :hasLocation rdfs:range :Location .

EO11 = :hasLocationCloseTo rdf:type

owl:ObjectProperty .

EO12 = :hasLocationCloseTo rdf:type

owl:TransitiveProperty .

EO13 = :hasLocationCloseTo rdfs:domain

:PhysicalAgent .

EO14 = :hasLocationCloseTo rdfs:range

:PhysicalAgent .

EO15 = :hasTemperatureRegulation rdf:type

owl:ObjectProperty .

EO16 = :hasTemperatureRegulation rdfs:domain

:SmartHome .

EO17 = :hasTemperatureRegulation rdfs:range

:TemperatureStatus .

Listing 2: Properties

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 : (?p rdf:type owl:TransitiveProperty)

∧ (?i1 ?p ?i2) ∧ (?i2 ?p ?i3) → (?i1 ?p ?i3)

𝑆𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: (?c1 rdfs:subClassOf ?c2)

∧ (?s rdf:type ?c1) → (?s rdf:type ?c2)

Listing 3: Entailment rules

Application instances and rules. Below are the initial
explicit and implicit facts inferred via the Business Rules
(Listing 4), which drive the application behavior. The set of
initial explicit facts declares Julia, her cell phone, her house
and the instance that activates temperature regulation in
the KB, and assumes that Julia always carries her cell phone
with her. The application can reason about their locations via
𝑟1 (as they are inferred as physical agents), and can switch
on the regulation via 𝑟2.

𝑟1: (?agent :hasLocation

:JuliasHouseNeighborhoodLocation

)

→ (?agent :hasLocationCloseTo :JuliasHouse)

𝑟2: (:Julia :hasLocationCloseTo :JuliasHouse)

→ (:JuliasHouse :hasTemperatureRegulation

:Activated)

Listing 4: Business rules

E1 = :Julia rdf:type :User .

E2 = :JuliasPhone rdf:type :SmartPhone .

E3 = :JuliasHouse rdf:type :SmartHome .

E4 = :Julia :hasLocationCloseTo :JuliasPhone .

E5 = :Activated rdf:type :TemperatureStatus .

Listing 5: Initial explicit facts

I1 = :JuliasPhone rdf:type :SmartDevice .

I2 = :JuliasHouse rdf:type :SmartDevice .

I3 = :Julia rdf:type :PhysicalAgent .

I4 = :JuliasPhone rdf:type :PhysicalAgent .

I5 = :JuliasHouse rdf:type :PhysicalAgent .

Listing 6: Initial implicit facts (inferred instances via
subsumption)

We consider the following 3-steps scenario.
(1) Julia approaches her neighborhood with her cell phone.
The application analyzes the phone GPS coordinates and
adds the explicit fact E6. This allows the reasoner to infer I6
via 𝑟1 and I7 via 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦.

The application then enables temperature regulation as I7
triggers I8 via 𝑟2.

(2) Julia enters her house and cuts off the GPS to save en-
ergy. The phone position becomes unknown. The application
removes E6, which also triggers the removal of I6, I7, I8, and
disables temperature regulation.

(3) Julia connects her phone to the house local network. The
application inserts E7, causing I7 and I8 to be re-derived
respectively via 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 and 𝑟2.

Step 3 highlights the re-evaluation overhead caused by over-
deletion in the IR algorithm: the deletion and reinsertion of
explicit facts leads to the re-derivation of two implicit facts
that have already been derived at first insertion.

3 TAG-BASED INCREMENTAL
MAINTENANCE

To avoid recurrent re-derivations, we propose to keep the
origin of previously obtained inferences so that when already
known facts re-occur, the reasoner can quickly retrieve their
consequences. To do so, it must keep track of all facts, includ-
ing deleted ones, and be able to assess their validity : explicit
facts are tagged as valid/invalid, and implicit fact validity
is retrieved using those of the explicit facts they have been
derived from. When the reasoner receives an INSERT query,
it only runs its inference algorithm on the explicit facts that
have not been inserted before and simply validates the others.
Processing DELETE queries only consists in invalidating the
corresponding facts instead of removing them from the KB
(as done in IR). At SELECT queries, the reasoner queries
the knowledge base and filters the resulting facts according
to their validity.

The speed of this process relies on the principle of storing
explicit fact validity in memory and obtaining implicit fact
validity from simple logic operations on these values: an im-
plicit fact can originate from the disjunction of several sets of
facts (explicit or implicit) that match the antecedent pattern
of a same rule or from multiple rules, and rule antecedents
are defined as conjunctions.

Finally, we introduce a fact forgetting mechanism to avoid
KB inflation: each fact is tagged with the timestamp of
its latest validity update, so that the oldest invalid facts
are asynchronously removed when the KB size reaches a
threshold.

In our scenario, when Julia switches the phone GPS off,
the application “loses” its location and asks the reasoner
to remove E6. But the reasoner only invalidates this fact.
Then, the application sends a SELECT query on I8. The

reasoner performs a simple logical operation (explained below)
on I8 causes (E4, E6) that assesses that I8 is invalid, as
E6 is invalid. It then does not return I8. When the phone
connects to the house network, the application creates E7.
The reasoner attaches it as alternative derivation of I7. At
the next SELECT query, it deduces that I8 is valid as I7
is valid, and sends it back to the application. The next
subsections detail the main elements of our Tag-Based (TB)
maintenance approach: validity assessement, fact tagging,
reasoning process and selection tasks.

3.1 Fact validity

Let 𝐹𝑒 and 𝐹𝑖 be respectively the sets of explicit and implicit
facts in the KB. We propose to keep all facts (explicit and
implicit) in the KB until the reasoning process is stopped or
the fact forgetting mechanism triggered, and to assess their
validity instead of removing them at DELETE queries. To
do so, we tag explicit facts with a 𝑣𝑎𝑙𝑖𝑑 boolean indicator:
𝑓𝑒.𝑣𝑎𝑙𝑖𝑑 ∈ B, 𝑓𝑒 ∈ 𝐹𝑒, which is set to true on insertion and
false on deletion. We tag implicit facts with a 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚
indicator that represents the minimal set of disjoint causes
of an implicit fact. We define a cause 𝐶 as a set of explicit
facts that must all be valid to validate an implicit fact1:
𝐶 = {𝑓𝑒 | 𝑓𝑒 ∈ 𝐹𝑒}. Hence, ∀𝑓𝑖 ∈ 𝐹𝑖, 𝑓𝑖.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 =
{𝐶𝑖}, 𝑖 ∈ N/∀𝑥, 𝑦, 0 ≤ 𝑥 < 𝑦 ≤ 𝑖, 𝐶𝑥 ⊈ 𝐶𝑦, 𝐶𝑦 ⊈ 𝐶𝑥.

We provide an 𝑖𝑠𝑉 𝑎𝑙𝑖𝑑() function that checks the valid-
ity of an implicit fact using its 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 tag. It eval-
uates the disjunction between the tag elements and for
each element, the conjunction between the 𝑣𝑎𝑙𝑖𝑑 tags of
the explicit facts referenced in this element: 𝑖𝑠𝑉 𝑎𝑙𝑖𝑑(𝑓𝑖) =
∨𝐶𝑖{∧𝑓𝑒𝑗{𝑓𝑒𝑗 .𝑣𝑎𝑙𝑖𝑑}}, 𝐶𝑖 ∈ 𝑓𝑖.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚, 𝑓𝑒𝑗 ∈ 𝐶𝑖. Im-
plicit fact validity in our temperature regulation scenario is
assessed as follows:

I6.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 = {{E6}}

𝑖𝑠𝑉 𝑎𝑙𝑖𝑑(I6) = E6.𝑣𝑎𝑙𝑖𝑑
I7.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 = {{E4 ,E6,EO12},{E4,E7,EO12}}

𝑖𝑠𝑉 𝑎𝑙𝑖𝑑(I7) = E4.𝑣𝑎𝑙𝑖𝑑 ∧ EO12.𝑣𝑎𝑙𝑖𝑑 ∧
(E6.𝑣𝑎𝑙𝑖𝑑 ∨ E7.𝑣𝑎𝑙𝑖𝑑)

I8.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 = I7.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚

𝑖𝑠𝑉 𝑎𝑙𝑖𝑑(I8) = 𝑖𝑠𝑉 𝑎𝑙𝑖𝑑(I7)

Listing 7: Tagged implicit facts and corresponding
validity assessment

3.2 Implicit fact tagging

Each time an implicit fact is derived, Algorithm 1 is applied
to set its 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 tag. Let 𝐹𝑒 (resp. 𝐹𝑖) be the sets of
explicit (resp. implicit) facts a newly inferred fact 𝑓 have
been derived from. In the general case, the algorithm builds
the set 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠 of resolved explicit causes
by replacing implicit facts with their explicit causes2 and

1To avoid recursion while assessing implicit fact validity, algorithm 2
(see below) only stores explicit facts in causes.
2These implicit facts have been inferred from prior evaluation loops;
hence their derivedFrom tag is already set and stricly composed of
explicit facts.

Algorithm 1 Implicit fact tagging

Require: A newly inferred implicit fact 𝑓 and the sets 𝐹𝑒

(resp. 𝐹𝑖) of explicit (resp. implicit) facts it has been
derived from.

Ensure: 𝑓 carries a 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 tag composed of its ex-
plicit causes only.

1: if 𝐹𝑖 = ∅ then
2: 𝑓.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚← {𝐹𝑒}
3: return 𝑓
4: end if
5: 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠← 𝐹𝑖.𝑓𝑖𝑟𝑠𝑡().𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚
6: for all 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝐹𝑎𝑐𝑡 ∈ (𝐹𝑖 ∖ 𝐹𝑖.𝑓𝑖𝑟𝑠𝑡()) do
7: 𝑡𝑚𝑝← ∅
8: for all 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 ∈ 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠 do
9: for all 𝑒𝑥𝑝𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∈

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝐹𝑎𝑐𝑡.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 do
10: 𝑡𝑚𝑝← 𝑡𝑚𝑝 ∪ {𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 ∪ 𝑒𝑥𝑝𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛}
11: end for
12: end for
13: 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠← 𝑡𝑚𝑝
14: end for
15: if 𝐹𝑒 = ∅ then
16: 𝑓.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚← 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠
17: return 𝑓
18: end if
19: 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠← ∅
20: for all 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 ∈ 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠 do
21: 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠← 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠 ∪ {𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 ∪ 𝐹𝑒}
22: end for
23: 𝑓.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚← 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠
24: return 𝑓

deduplicating these causes (lines 4-10). It then builds the set
𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠 of explicit causes by distributing the initial
set of explicit facts 𝐹𝑒 into 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠 (lines
14-16). It finally sets 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠 as 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 tag of
𝑓 – now tagged with a set of disjoint explicit causes – and
terminates (lines 17-18).

Two optimizations allow avoiding unnecessary loops: (i) if
no implicit fact is present (i.e. 𝐹𝑖 is empty), the algorithm
sets 𝑓.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 to 𝐹𝑒 and terminates at line 3; (ii) if no
explicit fact is present (i.e. 𝐹𝑒 is empty), the algorithm sets
𝑓.𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 to 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶𝑎𝑢𝑠𝑒𝑠 and terminates
at line 13.

3.3 Enabling tagging in reasoning

The KB update algorithm (Algorithm 2) performs the reason-
ing process while answering INSERT and DELETE queries.
Let 𝑅 be the set of rules and 𝐹+

𝑒 and 𝐹−
𝑒 the sets of ex-

plicit facts to be respectively added and removed (from the
query). It first invalidates the explicit facts to be deleted, and
validates those to be inserted (lines 2-6), so that 𝐹+

𝑒 only
contains new facts to be evaluated at line 7. Hence, for all
deletions and re-insertions, our approach allows to skip the
whole evaluation loop (lines 9-13).

Algorithm 2 Tag-based KB update

Require: Rule set 𝑅, explicit facts 𝐹𝑒, implicit facts 𝐹𝑖,
added explicit facts 𝐹+

𝑒 , removed explicit facts 𝐹−
𝑒

Ensure: The KB updates correspond to the changes caused
by 𝐹+

𝑒 and 𝐹−
𝑒 wrt. 𝑅.

1: 𝐹+
𝑖 ← ∅

2: for all 𝑓𝑎𝑐𝑡 ∈ 𝐹𝑒 do
3: if 𝑓𝑎𝑐𝑡 ∈ 𝐹−

𝑒 then 𝑓𝑎𝑐𝑡.𝑣𝑎𝑙𝑖𝑑← 𝑓𝑎𝑙𝑠𝑒
4: else if 𝑓𝑎𝑐𝑡 ∈ 𝐹+

𝑒 then
5: 𝑓𝑎𝑐𝑡.𝑣𝑎𝑙𝑖𝑑← 𝑡𝑟𝑢𝑒
6: 𝐹+

𝑒 ← 𝐹+
𝑒 ∖ {𝑓𝑎𝑐𝑡}

7: end if
8: end for
9: if 𝐹+

𝑒 ̸= ∅ then
10: 𝐹𝑒 ← 𝐹𝑒 ∪ 𝐹+

𝑒

11: loop
12: 𝐹𝑖 ← 𝐹𝑖 ∪ 𝐹+

𝑖

13: 𝑅𝑘𝑏 ← 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑅𝑢𝑙𝑒𝑆𝑒𝑡(𝑅,𝐹𝑒 ∪ 𝐹𝑖)
14: 𝐹+

𝑖 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑆𝑒𝑡(𝑅𝑘𝑏, 𝐹𝑒 ∪ 𝐹𝑖)
15: 𝐹+

𝑖 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝐹𝑖, 𝐹
+
𝑖)

16: if 𝐹+
𝑖 ⊂ 𝐹𝑖 then break

17: end if
18: end loop
19: end if
20: return 𝐹𝑒 ∪ 𝐹𝑖

For the remaining facts in 𝐹+
𝑒 , the evaluation loop works

very similarly to IR [13]: the reasoner restricts 𝑅 to the set
𝑅𝑘𝑏 of rules that match at least one cause in the updated
KB (𝐹𝑒 ∪ 𝐹𝑖) in 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑅𝑢𝑙𝑒𝑆𝑒𝑡() (line 11), evaluates 𝑅𝑘𝑏

over 𝐹𝑒 ∪ 𝐹𝑖 (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑆𝑒𝑡(), line 12) and loops as long
as new implicit facts are inferred. TB reasoning requires two
additional steps: (i) at each iteration, the 𝑐𝑜𝑚𝑏𝑖𝑛𝑒() function
deduplicates identical facts by concatenating their causes and
removes unnecessary causes3 (line 13), and (ii) when new
implicit facts have been inferred (i.e. in the innermost loop
of the 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝑆𝑒𝑡() function), it calls Algorithm 1 to
set the fact causes in their 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 tags (line 12). After
the evaluation loop, the algorithm terminates and returns
𝐹𝑒 ∪ 𝐹𝑖, that reflects the KB changes, namely the updates in
𝐹+
𝑒 and 𝐹−

𝑒 and the 𝑣𝑎𝑙𝑖𝑑 and 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 tags of facts.

3.4 Fact-filtering

The fact-filtering algorithm (Algorithm 3) is applied after
SELECT queries to filter out valid facts. As these queries
are time-critical for the application and this step represents
an overhead compared to other approaches, this algorithm
must be kept fast. Let 𝐹 be a query result set of facts. The
algorithm performs a single loop over 𝐹 to construct – and
return – the set of valid facts 𝑉 of 𝐹 : 𝑉 = {𝑓𝑒 ∈ 𝐹 ∩
𝐹𝑒/𝐹𝑒.𝑣𝑎𝑙𝑖𝑑 = 𝑡𝑟𝑢𝑒} ∪ {𝑓𝑖 ∈ 𝐹 ∩ 𝐹𝑖/𝑖𝑠𝑉 𝑎𝑙𝑖𝑑(𝐹𝑒) = 𝑡𝑟𝑢𝑒}4.
3For instance, if 𝑓𝑖 can be caused by both 𝑓𝑒1 ∧𝑓𝑒2 and 𝑓𝑒1 ∧𝑓𝑒2 ∧𝑓𝑒3,
only the former conjunction is stored as a cause.
4For the sake of understandability, the algorithm comprises an
ℎ𝑎𝑠𝑇𝑎𝑔() function to filter explicit from implicit facts. This function
is not implemented in practice.

Algorithm 3 Tag-based KB filtering

Require: 𝐹 a set contaning explicit and implicit facts from
a SELECT query answer.

Ensure: The returned set is composed of valid facts.
1: 𝑉 ← ∅
2: for all 𝑓 ∈ 𝐹 do
3: if ((ℎ𝑎𝑠𝑇𝑎𝑔(𝑓, 𝑣𝑎𝑙𝑖𝑑) and 𝑓.𝑣𝑎𝑙𝑖𝑑) or (𝑖𝑠𝑉 𝑎𝑙𝑖𝑑(𝑓))

then 𝑉 ← 𝑉 ∪ {𝑓}
4: end if
5: end for
6: return 𝑉

4 IMPLEMENTATION

Our approach targets a particular working context: OWL
reasoning embedded in Web applications. This differs from
traditional setups where regular OWL (e.g. Pellet5) or rule-
based (e.g. RDFox6 or CHR7) reasoners can be found. Hence,
we implemented our approach in HyLAR8 [17], a rule-based
reasoner that includes both the IR algorithm from [13] and
our tag-based algorithms: update (Algorithms 1 and 2) and
selection (Algorithm 3) from Section 3. It currently processes
the following subset of OWL 2 RL rules [12] (section 4.3):

𝑅𝑠𝑢𝑏 = {scm -sco , cax -sco , scm -spo , prp -spo1}
(𝑆𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
𝑅𝑡𝑟𝑎𝑛𝑠−𝑖𝑛𝑣 = {prp -trp , prp -inv1 , prp -inv2}
(𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝐼𝑛𝑣𝑒𝑟𝑠𝑒)
𝑅𝑒𝑞𝑢𝑖𝑣 = {cax -eqc1 , cax -eqc2 , prp -eqp1 , prp -eqp2}
(𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒)
𝑅𝑒𝑞𝑢𝑎𝑙 = {eq-rep -s, eq-rep -p, eq-rep -o, eq-trans}
(𝑆𝑎𝑚𝑒𝐴𝑠)
𝑅𝑎𝑙𝑙 = 𝑅𝑠𝑢𝑏 ∪ 𝑅𝑡𝑟𝑎𝑛𝑠−𝑖𝑛𝑣 ∪ 𝑅𝑒𝑞𝑢𝑖𝑣 ∪ 𝑅𝑒𝑞𝑢𝑎𝑙

Listing 8: HyLAR’s sets of rules

We restrained to these rules as they seemed to us of rea-
sonable complexity (regarding the fact that applications are
supposed to perform reasoning tasks on diverse clients) whilst
corresponding to the needs of “average” Web applications
(i.e. manipulating typed objects – instances – and inherit-
ing their properties from classes). However, this set of rules
can be extended: the reasoner similarly processes entailment
and business rules, application developers can add entail-
ment rules among business logics ones, without modifying
the reasoner package itself. HyLAR also supports consistency
checking in both IR and TB algorithms. Entailment rules
involving disjointness, complementness or type checking can
be provided as built-in rules using the ”false” fact as con-
sequence. HyLAR handles this fact as any other and uses
TB maintenance approach to efficiently perform rule-based
consistency checking. HyLAR runs on both server (Node.js9

5.1.1) and client (Browserify10) sides, which allows its integra-
tion into frameworks designed to optimize reasoning process
location, such as [18]. HyLAR benefits from JavaScript’s

5http://pellet.owldl.com/
6https://www.cs.ox.ac.uk/isg/tools/RDFox/
7http://chrjs.net/
8https://www.npmjs.com/package/hylar
9https://nodejs.org
10http://browserify.org/

asynchronous patterns (promises, callbacks), Web workers
(on browsers) and event emitters (on Node.js), allowing for
background task processing. It is composed of the modules
depicted in Figure 1.

Figure 1: HyLAR global architecture.

∙ Controller: handles ontology loading (parsing and
classification) and querying requests: inferences on IN-
SERT and DELETE queries (using IR or tag-based
algorithms) and filtered SELECT queries for tag-based
reasoning.
∙ Parsing Interface: integrates rdf-ext’s RDF/XML
parser and SPARQL.js11 library, and is able to convert
triples (as described in RDF Interfaces 1.012) into turtle
(for direct triplestore insertion/deletion) and facts (for
reasoning).
∙ Storage Manager: based on rdfstore.js13 [7], this
module handles ontology loading, updates and queries.
∙ Reasoner: holds and processes rules using a pattern
matching mechanism; its engine both includes an in-
cremental and a tag-based algorithms.
∙ Dictionary: indexes all triples registered in the store
and their representations as facts in the KB; this ac-
celerates validity checking at selection time.
∙ Logics: contains first-order logic operations: fact in-
stantiation, fact tagging, fact merging (𝑐𝑜𝑚𝑏𝑖𝑛𝑒()), and
rule restriction (𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑅𝑢𝑙𝑒𝑆𝑒𝑡()).

5 EVALUATION

We evaluate our tag-based algorithm by comparing it to
Motik et al.’s incremental reasoning (IR) algorithm based
on DRed, described in the Delta-Reasoner [13]. We chose to
compare those algorithms on the same implementation rather
than comparing them on different applicative solutions: our
goal is not to provide the fastest reasoner, but rather to offer
an optimal solution for maintaining datasets incrementally in
Web browsers using JavaScript. We evaluate these algorithms
for ontology classification and initial insertion, insertion of
new triples, deletion, insertion of known triples and selection.
The three latter represent Web applications cycles as illus-
trated in Section 2. We run each algorithm in Google Chrome
v.54.0.2840.99, on a Lenovo Ideapad 700-15ISK (Intel Core
i5-6300HQ @2.3GHz - 4GB RAM).

11https://github.com/RubenVerborgh/SPARQL.js
12http://www.w3.org/TR/rdf-interfaces/#triples
13Rdfstore.js is a graph store implementation with sup-
port for SPARQL 1.0 and 1.1/Update. Available at
https://github.com/antoniogarrote/rdfstore-js

5.1 Datasets and rules

We generated 3 datasets (O1, O2 and O3) using the Lehigh
University Benchmark (LUBM) [5]. They are based on the
Univ-Bench Ontology14 schema, which has 𝒜ℒℰℋℐ+ expres-
sivity and contains 36 SubClassOf, 6 EquivalentClasses, 5
SubObjectPropertyOf, 1 TransitiveObjectProperty, 21 Ob-
jectPropertyDomain, 18 ObjectPropertyRange and 4 Dat-
aPropertyDomain axioms, as well as 43 Class Assertions,
25 Object Property Assertions and 7 Data Property Asser-
tions15. O1, O2 and O3 contain respectively 8824, 7394, and
5759 triples, and correspond to the initial insertion. The
evaluation uses the same rule sets as in Section 4.

5.2 Practical evaluation

We ran 5 evaluation tasks: classification and initial dataset
insertion (CLASSIF+INIT), insertion, deletion, re-insertion
and selection for both IR and TB algorithms16. Inserted and
deleted data have also been generated with LUBM and con-
tain 500 triples. Each task applies the five rule sets described
above. Our results are depicted in Figure 2. Processing times
for each task are written in milliseconds. This table also
shows the time difference betweeen IR and TB (Diff.), as well
as the performance of TB (Perf.), i.e. the percentage of time
gained if using our solution instead of IR, for a particular
task. The “10 CYCLES” column sums the results for (i) clas-
sification and initial insertion, (ii) insertion, and ten cycles of
(iii) deletion and (iv) re-insertion. Such cycles correspond to
applicative scenarios such as the one described in Section 2.
Classification and initial insertion. As expected, TB
maintenance does not outperform IR for these tasks, as it
adds the cost of tagging facts. Although the number of rules
and the size of the schema influence these results (e.g. O1
is more costly on TB as it is more expressive), RL profile
reasoners do not target large classification tasks (an OWL-EL
reasoner would probably be more suitable). Moreover, in Web
applications, the classification and initial dataset insertion
usually involve shared data and their results can therefore be
computed on a server and cached for all clients. As tagging
time is related to the number of triggered rules and their
possible recursivity, its overhead is reduced for already closed
datasets.
First insertion. Again, it takes longer for TB maintenance
to perform a first insertion due to the additional tagging
step. In this case, we can note that the instance number and
the expressivity influences the results, as all facts - including
instances - have to be tagged while firstly inserted in the
ontology. Results show that this overhead varies according to
the number of activated rules (i.e. the number and variety
of OWL constructs).
Deletion. As expected, deletion is much (more than 50%)
faster on TB maintenance, as IR over-deletion is replaced with

14http://swat.cse.lehigh.edu/onto/univ-bench.owl
15Metrics provided by Protégé 5.0.0 - http://protege.stanford.edu/
16The TB fact forgetting algorithm that prevents KB inflation is not
evaluated, as it is performed asynchronously during idle time.

a single iteration over the KB. Instance numbers significantly
affect processing times in both algorithms.
Re-insertion. Re-inserting the same triples is also much
faster on TB maintenance, as re-inserted triples do not have
to be re-evaluated. TB performs particularly well with high
expressivity (such as transitivity + inverse and equivalence
rules). As in the deletion process, the number of instances is
the most influential parameter.
Selection. Selections in IR are straightforward and give sta-
ble processing times. They are slower on TB maintenance
as our algorithm checks the validity of each fact returned
by the KB. With respect to IR, TB maintenance could then
significantly impact SELECT queries with high numbers of
triples or highly interrelated datasets. However, SELECT
operations are much faster than the previous ones. Hence, de-
spite its important value in percentage, this overhead sounds
acceptable in terms of absolute times (about twenty millisec-
onds), as it only corresponds to a couple of frame rates of
the most performant Web applications.
Multiple cycles. Here, we can see all the interest of our
approach: the initial tagging cost at classification and first
insertion is re-gained along deletions/re-insertion cycles. Due
to space limitation, we only show figures for 10 cycles. How-
ever, for all situations in our evaluation, TB maintenance
outperforms the given IR implementation from 4 cycles, and
its gain in total computing time exceeds 50% for 100 cycles.

5.3 Evaluation synthesis

This evaluation shows that TB maintenance outperforms this
implementation of the IR algorithm when data are being
cyclicly deleted and reinserted into the reasoner, despite its
cost on first insertions and selections. For applications going
through hundreds of such cycles, TB maintenance can repre-
sent a massive performance improvement. This approach can
particularly fit applications that rely on constantly changing
data. For instance, context-aware applications that take adap-
tation decisions according to environmental (sensor) data can
now integrate their own Web-based reasoner, process these
data in Web clients and behave autonomously.

5.4 Discussion

Inserting a fact in a KB requires performing a transitive
closure of the graph. The number of times a rule-based rea-
soner executes the rule evaluation loop depends on the data
and on the expressivity of the used DL17. As tag-based is
a maintenance approach, it does not aim at reducing the
whole reasoning process complexity, but at performing it as
rarely as possible. Hence, it can be considered as “storing”
the reasoning complexity in causes to avoid recomputing
it at deletions and rederivations. However, our evaluations
show that in a common use case, it keeps affordable. We
then propose a method to ensure its cost stay limited. In
order to limit both the number of causes and the inflation of

17It is said to be EXPTIME-complete in |𝐾𝐵| with 𝒮ℋℐ𝒬 [9], and
even untractable with other DLs [2] for tasks such as satisfiability or
subsumption.

http://protege.stanford.edu/

Sheet1 (evaluations.ods) 25/07/2017, 10:27:37

Page 1 / 1

IR CLASSIF+INIT INSERT DELETE RE-INSERT SELECT 10 CYCLES
O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3

982 942 21 20 14
969 767 924 743 21 15 15

374 343 287 710 836 724 323 344 338 24 18 18
336 465 389 638 849 743 291 385 383 29 25 21

28 25 18

TB CLASSIF+INIT INSERT DELETE RE-INSERT SELECT 10 CYCLES
O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3

827 738 665 798 656 675 39 30 25
-173 -52 -331 -8 2 144 631 544 -18 -10 -11

-97 -4 -1 -34 -1 61 75 72 15 49 45 -86 -50 -79 34 59 55
802 674 589 533 676 649 558 41 28 27

-93 -101 -17 -59 -35 887 434 275 185 -20 -13 -12
-93 -2 -3 -1 -6 -5 57 73 67 39 30 25 -95 -87 -80 37 51 45

375 344 360 154 187 222 180 215 247 41 32 30
-22 -71 -5 -1 -1 -73 556 649 502 143 129 91 -17 -14 -12
-1 -5 -25 78 78 69 44 38 27 -71 -78 -67 56 56 49

408 480 454 160 164 241 175 168 267 46 29 33
-247 -143 -72 -15 -65 478 685 502 116 217 116 -17 -4 -12

-83 -7 -5 -21 -3 -17 75 81 68 40 56 30 -59 -16 -57 34 54 42
45 36 28

-402 -358 -552 -247 -57 611 508 -17 -11 -10
-96 -7 -8 -19 -11 -3 73 75 73 44 27 26 -61 -44 -56 55 54 51

Rsub 2 593 4 477 3 565 1 325 1 181 2 124 2 953 2 372 1 287 1 219 34 235 48 202 40 656
Rtrans-inv 2 224 4 129 3 204 1 139 1 561 2 155 1 592 1 110 30 073 35 888 27 321
Requiv 1 760 1 526 1 043 12 464 13 669 11 950
Requal 2 218 3 565 2 734 11 844 16 370 14 383
Rall 3 837 5 716 4 505 2 967 2 282 1 944 6 202 5 308 3 987 2 737 2 282 1 988 96 194 83 898 66 199

Rsub 5 121 4 650 3 617 1 313 1 333 1 179 22 684 19 923 18 196
Diff. -2 528 1 297 2 215 1 707 11 551 28 279 22 460
Perf. (%)
Rtrans-inv 4 302 4 222 3 305 1 156 1 028 18 958 17 630 15 017
Diff. -2 078 1 566 1 059 11 115 18 258 12 304
Perf. (%)
Requiv 1 782 1 597 1 048 5 497 5 961 6 098
Diff. 6 967 7 708 5 852
Perf. (%)
Requal 4 050 3 812 2 877 7 808 7 612 8 411
Diff. -1 832 4 036 8 758 5 972
Perf. (%)
Rall 7 510 6 118 4 863 3 519 2 529 2 001 1 652 1 346 1 074 1 541 1 671 1 480 42 959 38 817 32 404
Diff. -3 673 4 550 3 962 2 913 1 196 53 235 45 081 33 795
Perf. (%)

Figure 2: Evaluation results

the knowledge base size (which is higher in TB maintenance
as explicit facts are not removed), we suggest to limit the
number of explicit facts. Our underlying hypothesis is that
our reasoner targets Web applications that can run on small
devices such as smartphones. It is not intended for storing
application history but to receive facts that will trigger rules
at the application level. In our scenario, the phone GPS co-
ordinates are raw numeric values. They are not inserted “as
is” in the reasoner but are transformed into facts that fit the
application requirements (the phone is located in the house
neighborhood). In these conditions, client-side reasoning can
save both Web application developers’ time while construct-
ing their datasets (by using regular Semantic Web modeling
tools), and bandwidth (by leaving saturation and decision
processes up to the clients). Using a known set of explicit
tags, TB reasoning allows application designers to first-insert
and delete these facts at bootstrap or asynchronously, to
pre-compute the tagging step and ensure performance at
runtime.

6 RELATED WORK

6.1 OWL profiles and Web reasoning

OWL 2 profiles18 help adjusting the trade-off between expres-
sivity and efficiency. Each profile (EL, QL, RL) has its own
specificities and targets different reasoning tasks. Reasoning
tasks differ in terms of data, query and taxonomic complex-
ity [12]. The choice of the appropriate OWL profile is crucial
to reduce reasoning overheads, but not always sufficient as
reasoners mostly rely on materialization (e.g. pre-compute
and store inferences [14]) which is computationally intensive.
EL is suitable for very large TBoxes and would not fit Web

18http://www.w3.org/TR/owl2-profiles/

applications such as the one we describe in Section 2 as we
expect their ABoxes to be heavier than their TBoxes. QL is
appropriate for applications that manipulate high volumes of
instances. It relies on query rewriting, which is not appropri-
ate for Web applications that require fast query answering
such as in our scenario. RL is more suitable, as it allows all
axioms to be represented as logical implications and rules to
be constructed as needed: to enable reasoning about OWL
constructs, one can define both entailment rules correspond-
ing to the expressive power expected for the application, and
application-specific rules. RL reasoners can involve a large
amount of explicit facts [11], and inferences are pre-computed
and explicitly stored, so that queries can be answered simply
by querying the store [8]. This makes this profile suitable
Web applications that require flexibility and need fast query
answering.

6.2 Incremental reasoning in RL

Web applications also need to handle numerous data updates.
Reasoners embedded in those applications can then rely
on IR [13] to avoid entire recomputations. Several improve-
ments of IR currently exist. The fact-dependency tracking
from [4] is similar to our 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 tagging. However,
unlike their solution, we track references of facts and pro-
vide improved query answering through validity checking
in comparison to their query reformulation. The counting
method [6] also tracks alternative derivations for each fact
but does not support recursive rules. However, even counting
algorithms that support recursion such as in [1] do not reduce
the re-insertion cost as alternative derivations are not explic-
itly stated but rather counted. Nowadays, most incremental
maintenance algorithms are based on Gupta et al.’s delete-
rederive (DRed) [6]. DRed improves performance as it ensures

that the rules apply only to modified facts and thus prevents
complete and successive recalculations of the KB on each
update. The solution presented in [10] relies on DRed for the
classification task, but it exclusively targets ℰℒ+ ontologies
with complex and changing TBoxes to tackle re-classification
issues, which differs from our approach. In [15], Motik et al.
tackle the derivation redundancy issue encountered in the
overdeletion step using a semi-naive materialization approach
that combines backward and forward (BF) chaining. This
improvement however still relies on rule matching and evalua-
tion at deletion, whereas our solution avoids overdeletion and
re-derivation. They implemented this approach in the RDFox
triplestore [16] that targets highly scalable applications. Yet,
the HyLAR Reasoner is a JavaScript solution that targets
Web browsers, which is currently not possible with RDFox.
Hence, we did not compare those two reasoners. Nor did we
compare BF with TB because the complex data structures
used in BF (several rules bodies that would be duplicated into
annotated queries) are not efficient in JavaScript (they actu-
ally perfom worse than regular IR). The Constraint Handling
Rules [3] language also allows efficient rule-based reasoning
and has been implemented in JavaScript. Unfortunately, it
is not able to keep track of inferences, which prevents our
fact-tagging approach to be used on this reasoner.

7 CONCLUSION

This paper addresses the issue of overdeleting and re-deriving
facts in DRed Incremental Reasoning (IR). We propose a Tag-
Based (TB) incremental maintenance approach that improves
the DRed-based Incremental Reasoning (IR) overdeletion and
re-derivation steps with three algorithms: implicit fact tag-
ging, tag-based update and fact-filtering. The first two are
executed to update the KB and the third to filter valid facts
out of SELECT query results. Our approach targets Web
applications that face multiple cycles of data deletions and
reinsertions. Our complexity analysis shows that, to the initial
cost of fact tagging at first insertion and validity assessment
at selection, the complexity of re-insertion and deletion oper-
ations drops to linear, regardless of the reasoning conditions.
Evaluation results show that the cost of TB maintenance is
slightly higher for first insertions and for selections, but out-
performs an implementation of IR at deletion and reinsertion.
This cost is also re-gained within a few cycles.

In order to stimulate the adoption of semantic technologies
in the Web community, it is implemented in the HyLAR
reasoner, that proposes both IR and TB algorithms and
is available as server-side (Node.js) or client-side (Bower)
packages. HyLAR ships with a basic set of entailment rules
that can be extended or reduced according to applications
needs, and can be integrated with other tools, such as popular
JavaScript frameworks, as well as our reasoning location
adaptation framework [18].

As future work, we will extend the set of built-in OWL
rules and stream reasoning capabilities to deal with larger
datasets, and explore pattern mining techniques to discretize
frequent sets of causes to reduce the KB size. We also plan
to provide SWRL support in the reasoner to easily integrate

it with authoring tools, such as Protégé19, to foster Semantic
Web application adoption.

ACKNOWLEDGEMENT

This work is supported by the French ANR (Agence Nationale
de la Recherche) under the grant number <ANR-13-INFR-
012>.

REFERENCES
[1] Hasanat M Dewan, David Ohsie, Salvatore J Stolfo, Ouri Wolfson,

and Sushil Silva. 1992. Incremental database rule processing in
PARADISER. Journal of Intelligent Information Systems 1, 2
(1992), 177–209.

[2] Francesco M Donini. 2003. Complexity of reasoning. In The
description logic handbook. Cambridge University Press, 96–136.

[3] Thom Frühwirth. 2015. Constraint handling rules-what else?. In
International Symposium on Rules and Rule Markup Languages
for the Semantic Web. Springer, 13–34.

[4] François Goasdoué, Ioana Manolescu, and Alexandra Roatis. 2013.
Efficient query answering against dynamic RDF databases. In
Proceedings of the 16th International Conference on Extending
Database Technology. ACM, 299–310.

[5] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A
benchmark for OWL knowledge base systems. Web Semantics:
Science, Services and Agents on the World Wide Web 3, 2
(2005), 158–182.

[6] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva
Subrahmanian. 1993. Maintaining views incrementally. ACM
SIGMOD Record 22, 2 (1993), 157–166.

[7] Antonio Garrote Hernández. [n. d.]. A JavaScript RDF store and
application library for linked data client applications. Citeseer.

[8] I Horrocks and PF Patel-Schneider. 2010. Knowledge Representa-
tion and Reasoning on the Semantic Web: OWL. (2010).

[9] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. 2005. Data
complexity of reasoning in very expressive description logics. In
IJCAI, Vol. 5. 466–471.

[10] Yevgeny Kazakov and Pavel Klinov. 2013. Incremental reasoning
in OWL EL without bookkeeping. In The Semantic Web–ISWC
2013. Springer, 232–247.

[11] Markus Krötzsch. 2012. OWL 2 Profiles: An introduction to
lightweight ontology languages. Springer.

[12] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu,
Achille Fokoue, Carsten Lutz, et al. 2009. OWL 2 web ontology
language: Profiles. W3C recommendation 27 (2009), 61. https:
//www.w3.org/TR/owl2-profiles/

[13] Boris Motik, Ian Horrocks, and Su Myeon Kim. 2012. Delta-
reasoner: a semantic web reasoner for an intelligent mobile plat-
form. In Proceedings of the 21st international conference com-
panion on World Wide Web. ACM, 63–72.

[14] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks.
2015. Combining rewriting and incremental materialisation main-
tenance for datalog programs with equality. arXiv preprint
arXiv:1505.00212 (2015).

[15] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2015.
Incremental Update of Datalog Materialisation: the Backward/-
Forward Algorithm. In Proc. AAAI.

[16] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu,
and Jay Banerjee. 2015. RDFox: A Highly-Scalable RDF Store.
In The Semantic Web - ISWC 2015. Vol. 9367. Springer Inter-
national Publishing, 3–20.

[17] Mehdi Terdjimi, Lionel Médini, and Michael Mrissa. 2015. Hy-
LAR: Hybrid Location-Agnostic Reasoning. In ESWC Developers
Workshop 2015. 1.

[18] Mehdi Terdjimi, Lionel Médini, and Michael Mrissa. 2016. Hy-
LAR+: Improving Hybrid Location-Agnostic Reasoning with In-
cremental Rule-based Update. In WWW’16: 25th International
World Wide Web Conference Companion.

[19] Ruben Verborgh, Miel Vander Sande, Pieter Colpaert, Sam Cop-
pens, Erik Mannens, and Rik Van de Walle. 2014. Web-Scale
Querying through Linked Data Fragments. In LDOW (CEUR
Workshop Proceedings), Vol. 1184. CEUR-WS.org.

19http://protege.stanford.edu/

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
http://protege.stanford.edu/

	Abstract
	1 Introduction
	2 Problem statement
	3 Tag-based Incremental Maintenance
	3.1 Fact validity
	3.2 Implicit fact tagging
	3.3 Enabling tagging in reasoning
	3.4 Fact-filtering

	4 Implementation
	5 Evaluation
	5.1 Datasets and rules
	5.2 Practical evaluation
	5.3 Evaluation synthesis
	5.4 Discussion

	6 Related work
	6.1 OWL profiles and Web reasoning
	6.2 Incremental reasoning in RL

	7 Conclusion
	References

