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Abstract— The increasing volume of data generated by earth
observation programs such as Copernicus, NOAA, and NASA
Earth Data, is overwhelming. Although these programs are
very costly, data usage remains limited due to lack of
interoperability and data linking. In fact, multi-source and
heterogeneous data exploitation could be significantly
improved in different domains especially in the natural
disaster prediction one. To deal with this issue, we introduce
the PREDICAT project that aims at providing a semantic
service-oriented platform to PREDIct natural CATastrophes.
The PREDICAT platform considers (1) data access based on
web service technology; (2) ontology-based interoperability for
the environmental monitoring domain; (3) data integration
and linking via big data techniques; (4) a prediction approach
based on semantic machine learning mechanisms. The focus in
this paper is to provide an overview of the PREDICAT
platform architecture. A scenario explaining the operation of
the platform is presented based on data provided by our
collaborators, including the international intergovernmental
Sahara and Sahel Observatory (OSS).

Keywords-Earth  observation; disaster prediction; data
interoperability; data integration; ontology, service computing;
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In recent years, natural disasters have becoming more
frequent and intense all around the world. The need for
environmental monitoring has involved developments in
information and Earth Observation (EO) programs such as
the Copernicus program [5], the National Oceanic and
Atmospheric Administration (NOAA) [21] and the Sahara
and Sahel Observatory (OSS) [34]. EO programs are used to
observe, monitor and assess the status of, and changes in, the
environment. These systems are becoming increasingly
important so that a vast amount of EO data is collected daily.

INTRODUCTION

978-1-5386-9133-5/18/$31.00 ©2018 IEEE
DOI 10.1109/SOCA.2018.00035

194

These voluminous data could be significantly exploited in
different domains. Examples include economical
applications,  environmental = monitoring,  phenomena
understanding, decision-making during extreme weather
crisis and disaster prediction. Disaster prediction is one of
the most important application of data exploitation. Despite
the availability of large amounts of data, the usage of EO
data is still limited due to the lack of interoperability and
data linking [13]. In fact, the overwhelming amount of data
has worsened heterogeneity problems, as has the types of
observation sources generating data in heterogeneous
formats (databases, files and rasters) and heterogeneous
semantics (synonymy, polysemy, etc...). For instance, in the
sentence “Maps of daily temperature and precipitation are
produced”, an expert would recognize that the observation is
“temperature” but would not be able to determine the details
related to the temperature concept (atmospheric temperature,
sea surface temperature, etc.).

Integrating this huge number of data known as big data is
a real challenge since retrieving EO data from different
sources involves the use of different APIs, if these latter
exist. The issue of managing data derived from EO
programs, in terms of access, pricing, data rights and other
aspects, is commonly difficult. On the one hand, there are
free of charge and open access data. On the other hand, data
can be extracted only after agreeing to specific laws and
regulations. Access to data requires to be user-friendly to
reach common understanding and decision making for
various prediction systems.

Currently, there are several ongoing projects'?3 that are
aiming to solve the integration problem. All these projects

U http://www.i-react.eu/
2 http://beaware-project.eu/
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similarly aim to semantically integrate heterogeneous data
coming from big data sources such as sentinel data, including
data provided by citizens through social media. However,
data storage and management with traditional data
management platforms is difficult [25]. As the number of
data sources and the type of data stores augment, data access
needs to be made easier for better real-time prediction

In this paper, we present the PREDICAT (PREDIct
natural CATastrophes), that aims at providing a semantic
service-oriented platform for data interoperability and
linking in EO and disaster prediction. PREDICAT aims 1) to
integrate EO data coming from several sources such as
NOAA and OSS, including that provided by citizens, 2) to
provide a decision support solution to analyze in real time all
the useful data in order to effectively prevent and/or react
against natural disasters, through semantic linking of
information. The integration is performed at the semantic
level, to ensure semantic interoperability between data and
provide reasoning mechanisms; and at the service layer, by
providing adequate services to access and extract data with
any format or structure, in real-time, in order to guarantee
faster data management. The PREDICAT platform also
tackles data access and storage problems through service
implementation, to hide the heterogeneity of data sources
and allow interoperability between EO data systems. Such
interoperability could help experts to detect possible
disasters through the combination of pieces of knowledge
coming from different sources.
Since data have poor semantics, the main objective of our
platform is to have a global view of all data through
semantic linking of information, and to produce warnings
and real-time decisions to effectively prevent natural
disasters. Furthermore, among other encountered research
problems related to big data domain is the large-scale data
exchange of heterogeneous datasets.

The rest of this paper is organized as follows. In Section
2, we give an overview of existing work on services and
APIs for EO data (section 2.1) and ontology-based prediction
systems (section 2.2). We also expose our motivations and
the main goals of this research (section 2.3). Then in section
3, we present the PREDICAT platform architecture and its
main components. In section 4, we provide a scenario
example demonstrating the applicability of T for the
integration and the management of data. Finally, we
conclude and present our future work in section 5.

IL.

This section presents the background related to EO APIs
and identifies issues of their usage and access (Section 2.1).
Besides, it presents related work on ontology-based
prediction systems (Section 2.2).

A. Services and APIs for EO data

1) EO data: Usually EO data sets are described using
metadata that include information related to the data such as
its collection time, the author or the data source, the file
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size, etc. Initial works have used metadata expressed in
natural language with plain-text [26] [29], which may
involve ambiguous and inaccurate expressions and may
cause low-speed processing problems. As an alternative, the
meteorological and climate scien-tists group proposed to
adopt the binary formats such as the GRidded Binary
(GRIB), the Network Common Data Format (NetCDF) [32]
[33], the Hierarchical Data For-mat (HDF) [3] and the BIL
(Band Interleaved by Line) format for images relating to
soils textures. However, exploiting these data sources is
facing multiple challenges, among them heterogeneity of
data formats (NetCDF, HDF, GRiddedBinay), systems,
platforms and technologies [37]. Besides, these data sources
lack exposing their relat-ed data with enriched-semantics.
The need for homogeneously accessing data sources aims at
facilitating the integra-tion process which consists in the
automated access, exploitation, and reuse of data for disaster
prediction process.

2) EO APIs and RESTful-based services for
interoperability: Some of the EO and meteorological
systems provide their own related APIs for accessing,
retrieving and managing data, others do not. Once APIs are
unavailable, accessing data is not easily performed, as the
user needs to download and store available data (i.e: FTP
files), temporarily in a dedicated storage system. For these
aforementioned issues, we chose to develop a data access
service layer based on services to hide the heterogeneity of
data access techniques. Web services govern the logical
separation of concerns related to data, code and
communication and enable users to perform remote calls
over the Web and manipulate data through dedicated
operations, through Application Programming Interfaces
(APIs). The Open Geospatial Consortium has defined the
OGC GeoAPI Standard [31] [32]. In this API, geospatial
data are searched in a catalog of services via interfaces,
bindings and applications. Another type of data services
manipulating plain-text have been proposed in [26] [29].
This kind of API may cause latency issues when executing
services with an increased volume of exchanged data.
Besides, these services are unable to communicate with
other EO APIs and systems. Furthermore, the Open
Archives Initiative group has created the OpenAPI Initiative
project (OAI) [35], which consists in documenting APIs
using open meta-languages for APIs. This initiative relies
on the specification of REST APIs (REpresentational State
Transfer) [20] creating an open description format for API
services vendor neutral, portable and open to be connected
with other APIs. Our motivation to use REST is to propose
a unified access to the existent APIs and to focus on data-
driven based approach where we will be able to enhance
data through semantics. Furthermore, semantics facilitate
the linking mechanism between re-sources, make
descriptions easily understandable allowing easier searching
capabilities. To reach that, recent studies applied ontology-



based approaches. In the next section, we highlight the
related work to prediction systems and their related
ontology-based approaches

B. Related work on ontology-based prediction systems

Many previous works have discussed why ontology is
needed to solve decision making problems in disaster
prediction systems. Devaraju et al. [7] presented an
ontology-based approach to infer geographical events from
sensor observations, by exploiting the ontological
vocabularies with reasoning and querying mechanisms.
However, this approach does not handle the data integration
issue especially the volume and the variety of data. Llaves et
al. [16] investigates how to infer and represent events from
time series of in situ sensor observations. However, it does
not support either additional sensor data sources nor
additional data formats. Zhong [38] proposed a geo-
ontology-based approach to decision-making in emergency
management of meteorological disasters. It does not include
other disaster types (like hydrological and geophysical
disasters). The previously presented prediction approaches
and several others face many common issues and limitations
over earth observations big data. Most importantly, we
noticed the impact of the huge volume and fast growth of EO
data. Indeed, in the environmental monitoring domain, a
large amount of information about climatological,
meteorological, natural disasters, environmental processes
are generated, which necessitate integration work. Also, the
heterogeneity of EO data formats is a problem. In fact, data
can be represented in different types (unstructured such as
raster images and structured data such as databases). Finally,
EO data integration and linking remain absent, while a good
understanding of environmental phenomena needs collection
and correlation from multiple data sources. For instance,
making decision about floods and understanding this
phenomenon  requires  integrating and  analyzing
infrastructure data, hydrological data, climatological data,
etc.

C. Motivations

Access to EO data needs to be frequent and adequate
means of monitoring EO data vigilance must be established
to improve disaster prediction and management. However,
multiple terms and formats are used describing data.
Moreover, with the exponential amount of EO data, it is
practically impossible to interpret data sources contents.
Hereafter, we illustrate this statement with an example of
two data sources that deal with the same concept (i.e,
precipitation) but with heterogeneous data formats and
access techniques. The first one is the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS)
which is proposed by the international organization (OSS).
This data source provides data about precipitation, either
daily, monthly or dekadly. Moreover, the presented data are
formatted in BIL [6] and data are accessible through
downloadable FTP links [8]. The second data source is the
Current Weather Data [27], enacting the OpenWeatherMap
APIL, proposed by the Open-Weather Company. The user
accesses the API through its URL and obtains JSON-
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encoded weather information (including precipitation) being
given geographic coordinates [27].

In this section, we noticed that for both data sources,
access data techniques are different. For the first one, it
would be mandatory for a user to temporarily store the FTP
file, unzip it and try to understand the data, which are tedious
tasks. And for the second one, data are accessed through the
API URL. Therefore, it is necessary to unify access
techniques and manipulate homogeneous formats. Moreover,
it would be interesting if meaningful information is returned
from both of data sources. More precisely, both data sources
lack machine-readable semantic descriptions related to
precipitation, such as the "observation measurements ", more
information about the "location", the '"clouds", etc.
Otherwise, the user would be interested in obtaining
additional information about the original source of data, or
information related to the air matter composition of clouds.

Besides, our motivation consists in proposing a platform
to seamlessly access and monitor heterogeneous data sources
and integrate data with semantic annotations, in order to
enhance interoperability between data sources and provide
decision support for improving disasters prediction. The
application of the PREDICAT process on the proposed
example, in order to highlight the motivation and the
advantages of the overall architecture design, will be more
detailed in section 4.

III. PREDICAT ARCHITECTURE

Fig.1 presents the global architecture of the PREDICAT
platform and its tiers. The layered architecture is composed
of eight tiers, namely: (1) data collection layer, (2) big data
layer, (3) data access service layer, (4) data processing layer,
(5) semantic layer, (6) data integration layer, (7) application
layer and (8) user interface layer.

A. Data collection layer

This layer encompasses different Web data sources
relevant to earth observations and deals with different data
format types (i.e: BILs, HDFs, NetCDF, etc.). For instance,
CHIRPS uses satellite imagery to create gridded rainfall time
series and data are downloadable via FTP links [6]. While
the OpenWeatherMap, thanks to its current weather data
API, provides the accurate weather for a given location.
Other APIs are provided by the OpenWeatherMap source
rendering 5day/3 hour forecast, 16 day/daily forecast, etc.
NASA AIRS [30] (Atmospheric InfraRed Sounder) is
collecting atmospheric, surface pressure and air quality data.
The storage is essentially done on CMR (Common Metadata
Repository) and the user can search data through the API
CMR OpenSearch. NASA AIRS data are downloadable via a
web link [19], where files are compressed in HDF formats.
The Harmonized World Soil Database (HWSD) [36] is a
raster database combining existing regional and national
soils information worldwide. The HWSD database is
downloadable through a dedicated link [11] where the rasters
soil are formatted in .bil. Most of the data sources detailed in
this layer are pointing to the heterogeneity related to their
software applications and the used storage systems.
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Figure 1. PREDICAT’s layered architecture.

Moreover, data collection speed is variant in real-time,
impacting on the update frequencies and the very rapid data-
processing. The aim of this layer is to identify each source,
describing its name, its features and its contents. Thus,
facilitating the access when data are fetched form big data
layer. Nevertheless, mining this large amount of data may
consider a homogenized access without storing or replicating
data temporarily. For all these encountered issues, we will
present in the following sections the proposed solutions.

B. Bigdata layer

Since heterogeneous data sources generate large data
types at unprecedented rate, they are stored in different
dedicated storage systems as discussed in the previous layer.
In this layer EO data are considered as raw data stored in
different kind of structures related to the storage system of its
source. Moreover in the big data scope [9], access to these
data sources becomes a difficult task. Therefore, there is an
urgent need for mechanisms providing a granular access to
massive datasets. These large number of datasets in the big
data field, may be subject to uncertainty, where data
attributes are constructed using computational methods for
collection mechanisms which are also subject to failure.
These computational and statistical methods are covering the
forecasting mechanisms or collecting sensor data. Therefore,
data representations could vary from a data source to the
other, causing untrustworthiness and contradictory meaning
of data. Besides, the challenges of this layer relate to the
access and the extraction of accurate EO data among the
numerous datasets, in real-time, knowing the high update
frequency changes. In addition, next layers try to unify data
representations, where EO data will be rapidly and easily
accessed through their dedicated storage systems. Otherwise,
EO data will be fetched and accessed through services
detailed in the next layer namely service layer.

Another challenging aspect for the PREDICAT
architecture is how to interpret these datasets in order to get
insightful  information for environmental disasters'
prediction. Next sections provide details on the management
of these datasets.

C. Service layer
This layer encompasses two sub-layers:
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1) Data acces service implementation: This layer deals
with the implementation of services using the RESTful
architectural style [4], [17], [20] and empowering these
services with semantic descriptions about the services
content and their related data. Thus, enabling to bridge the
different  knowledge  representations  across  the
heterogeneous multi-sources, detecting cross-processes
relations and allowing reusability of services [24] across
web-applications. In order to implement RESTful data
access services, we have respected the set of best practices
proposed in [3] such as, resources identification, resources
manipulation using representations, and the usage of the
Hypermedia HATEOAS mechanism. Following these
recommendations, a set of RESTful services are developed
using NetBeans as an Integrated Development Environment
installed on a 64 bits machine. These services are then
enriched with semantic annotations with linked data making
them machine-readable and promoting the interoperability
between heterogeneous resources. In order to set up these
semantic annotations with linked data, our choice was set on
Hydra Core Vocabulary [12], since it is a powerful
vocabulary enabling the creation and management of
Hypermedia-Driven APIs. The access to these APIs is
detailed in the next sub-section.

2) Service access data API: The implemented services
are published in a dedicated registry that defines standard
API to ease the search of the annotated services description.
Incoming requests are originated from PREDICAT users
(i.e., OSS engineers, earth observation engineers or a simple
user/citizen), which express their desired concepts (such as,
temperature, precipitation, etc.), that should be matched
with concepts in the registry. The semantic matching is
based on user keywords provided as inputs to search on the
registry. If there is a matching, the service URL or the list of
sorted services is returned. This is achieved based on a
matched score [22]. The next section focuses on semantic
schemas related to the EO data, accessed by services access.

D. Semantic layer

This layer consists of 3 components, i.e., Modular
Environmental Monitoring Ontology (MEMOn), source and
service ontologies.

1) The Modular Environmental Monitoring Ontology
(MEMOn): Several works proposed ontologies for the
environmental monitoring domain, discussed in [18]. To
address their problems, we propose MEMOn, a modular
ontology for the environmental monitoring field, based on
the upper level ontology Basic Formal Ontology (BFO) [2]
and other existing ontologies such as the Common Core
Ontologies (CCO), the Semantic Sensor Netowork ontology
(SSN) and the ENVironment Ontology (ENVO).



(" Disaster Module Temporal Module Environmental material Module
Disaster oceurs_on Temporal region - Environmental material
/ \  oectus / il N
; magma| water soil
Natural disaster  man made disaster | Date || Period ; 4 I )
1 t | Environmental Process dule w{ | Geospatial Module |
flood deforestation v
realized in , i
) process | has input
Sensor & Sensing Module
Sensing system / ,,,,I,, N ‘ cnvironmental | geospatial
climatological || gcophysical eature SRSl
someE ! process process I
satellite | — . S E—
1 N geographic ‘ geopolitical
— volcanic activi feature eotifyisy)
| Temperature sensor | observed by 57
o occusin |
[ observation & Measurement Motute| | ) (| mfrastructure Modute [ 1), [ Subduction (0 <—|
zone
Measurement  has observed pl‘opcrty\ i
il Observation Tocated i
~ hydraulic || transportation
Broperty, | infrastructure || infrastructure
Measurement_Unit| | _Soil f
" of Temperature | | Temperature | humidity dam canal
4 has measurement unit_| has quality

——p subClassOf  ——p Other object Property

Figure 2. View of the MEMOn modules.

The proposed ontology consists of eight main modules
covering the subdomains of environmental monitoring field,
namely observation and measurement module, sensor and
sensing module, disaster module, environmental process
module, environmental material module, infrastructure
module, temporal module and geospatial module, as
illustrated in Fig.2. These modules incorporate all the
different kinds of information entities handling all types of
emergency situation, e.g., flooding, earthquakes, etc., spatial
and temporal information, and sensing and observation
information that are of importance to the environmental
monitoring domain. The links between modules cover the
relationships between sensing entities, observation entities
and environmental events that they may cause, and also
relationships arising from the fact that infrastructure objects
like bridges, tunnel and dams could participate in
environmental hazard factors. The main objectives of
MEMOn ontology are 1) to share information in an environ-
mental domain in a common vocabulary, 2) to ensure the
semantic interoperability between heterogeneous sources
and 3) to support the integration and linking of data together
in order to build a global interactive network that permits to
better understand environmental dynamics and natural
phenomena. MEMOn was evaluated using quality metrics
based on a set of criteria such as completeness, clarity,
interoperability, etc. This evaluation was a worthwhile task
since it permits to consider MEMOn as a high-quality
ontology.

2)  Source ontology: The vision of PREDICAT is to
combine data generated from multiple monitoring systems
such as Copernicus, OSS and NOAA and data provided by
citizens. For rea-sons of data quality control and certainty, it
is necessary to keep track of the provenance of the data. The
provenance information in the environmental monitoring
field is important since this information permits to assess
data reliability and can be useful in decision-making. Thus,
we propose to develop an ontology to represent such
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additional information of data. The sources ontology will
include information about the immediate source of data,
some measure of its authenticity or credibility, its relation to
other data sources either they shared common products or
not and the products it provides. The remaining entities in
the sources ontology are created to encode relationships
among sources and products given that a product may be
derived from one or more other sources (e.g., precipitation
data of a given region might be extract-ed from both OSS
and NOAA sources).

3) Service ontology: The main purpose of service
ontology is to enable the semantic representational
knowledge inherent to services and their related
relationships. The proposed ontology is managed through a
dedicated framework that features different modules and
interfaces, among which we cite the reasoner module. The
latter relies on semantic relationships among services to
perform inferences. These inferences are driven by rules,
generating service composition schema and retrieving a
newly inferred knowledge on services. For instance,
consider two RESTful services S1 for querying temperature
and S2 for querying precipitation. If the temperature value is
around 15° and the value for precipitation is higher than
70mm then these two services should be complemented by
the RESTful service S3 for querying the wind speed. The
service ontology is subject to further work extensions taking
into account services quality metrics to enhance service
composition definition. Besides, it should be improved to
consider interoperability issue between data access services.
In fact, most of the times services are not compatible with
each other. This makes interoperability a major issue for a
successful data access service composition. Moreover, in
order to execute services access to extract data, performance
is handled by the next section discussing the data processing
layer.

E. Data processing layer

The data processing layer deals with the services
execution schema related to the user inquired concepts.
Moreover, this layer tackles the following problems such
that; reducing time-consuming processes, time-responses to
fasten predictions and reducing costly-consuming bandwidth
for requests. In fact, this layer uses the reasoner module and
adds a new one named a decision maker. The latter takes as
input the matched list of services for each concept and
presents as an output the chosen service or combines it with
others to compose a new service, based on its highest score
of matching. It performs this task for each inquired concept
mentioned in the user query. Besides, based on the service
ontology as well as the selected services the reasoner
proposes an orchestration schema for services accessing data.
The main usage of the reasoner and the decision maker in the
PREDICAT architecture is to select the viable service
corresponding to the user request, thus, reducing the
consumed response time and satisfying the user needs.



F. Data integration layer

The objective of data integration is to combine a large
amount of data coming from various heterogeneous sources
into a single consistent and global view of the data. One of
the main problems of the data integration is the data
heterogeneity. This variety can come from the structure
and/or the format of the data and the vocabulary used to
index the data. In general, each source has its specific
characteristics. Several approaches have been proposed to
cope with large-scale heterogeneous data integration [1],
[15], [23]. Although the benefits of these approaches are
obvious, modeling, linking and integrating EO data in such a
way that capture the different representations of spatial and
temporal contexts of observations that could be more
explicitly modeled to improve data analysis still remains as a
question.

As an alternative to these approaches to cope with this
problematic, we propose to integrate all data sources to a
common and global view with the target of augmenting the
interconnections among data. The objective of this layer is
not to copy and/or store data. In contrast, our aim is to
virtually integrate and link heterogeneous data via the
integration of their metadata. The proposed approach
performs three steps which are extracting relevant entities
from metadata, applying a virtual semantic annotation on the
data and expanding the spatial and temporal contexts by
relationships containing in MEMOn that supports flexible
contextual spatial construction in terms of places,
relationships between different representations of place and
contextual temporal construction in terms of different
representations related to a temporal setting. Finally, it stores
the extracted and enriched information in a global RDF
format. This latter offers a form of integration and query for
the following layer.

G. Application layer

The application layer consists in two components, i.c.
learning component and pre-diction component. The goal of
the first one is to execute predictive models that learn from
existing data to predict future trends, outcomes and
behaviors. It takes the global RDF store as input and then
generates new relations that helps to deduce knowledge and
improve the performance of awareness. The prediction
component handles the real time data and takes into
considerations the inferred knowledge from the previous
component to provide early warnings and decision support.
Prediction systems have improved in recent years but they
are not perfect yet. Early detection of natural disasters is still
a need. In this layer, standard and rule-based reasoning
would be employed (OWL reasoners and SWRL rule engine

[10]).
H. User interface layer

PREDICAT wusers such that EO engineers or even
ordinary users may have the possibility to query earth
observations through the user interface layer. This layer is a
front-end interface allowing to dialog with the PREDICAT
architecture. In fact, the queried data sources will be
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displaying their related resulted data to end-users through
this interface.

IV. EXEMPLAR USE CASE

The goal of this section is to provide an exemplar use
case (see Fig 3) to illustrate how PREDICAT platform would
accommodate a big data integration and give a decision-
support for disaster predictions. Through our platform, two
scenarios can be drawn. The first one illustrates the process
after the detection/arrival of new EO data. The PREDICAT
platform starts with implementing RESTful services to
access the multi-source data from the Big data layer, if they
are inexistent in the service registry. The RESTful services
implementation is realized for each requested observation, in
a way that a RESTful service can access and has the capacity
to retrieve data from all sources generating this type of
observation. Then, the semantic layer enhances the services
with semantic enhancements thanks to the ontology
repository (MEMOn, source ontology and service ontology),
discussed previously. For example, the source ontology will
link the observation "precipitation" with its originated data
source OSS(CHIRPS) and its features, and the observation
"temperature" with its originated data source the
OpenWeatherMap and its features. Both sources and their
characteristics are identified in the data collection layer and
are mapped into the source ontology. Moreover, RESTful
services are annotated with the Hydra vocabulary, thus
generating Hydra annotated services descriptions.
Afterwards, obtained data is fed into the data processing
layer, which is responsible of the orchestration of services,
when a service may compose with other services. Then, the
outputted data is fed into the data integration layer which
performs three steps. First, it extracts relevant information
(such as temporal and spatial information) from metadata.
Second, it links the observed properties extracted from the
data such as precipitation and temperature with each other on
the basis of object properties contained in the ontology
repository and expands the spatial and temporal contexts by
relationships defined in MEMOn. For instance, Paris is
linked with its geographic coordinates in such a way that the
system extracts all data in Paris with all different spatial
representations. Finally, it stores the extracted and enriched
information in a global RDF format. The obtained RDF store
will contain all the necessary metadata and relationships
required by the learning component in the application layer,
in order to generate implicit knowledge. Indeed, based on the
knowledge already contained in the learning component and
the new data extracted from data sources, the learning engine
explicits implicit knowledge and infer new knowledge which
will be used later by the prediction engine.

In the second scenario, the user expresses in a query the
desired observations (such as the temperature and the
precipitation in Paris in 2018), through the PREDICAT user
interface layer. The PREDICAT platform starts with
searching and invoking RESTful services to access the
multi-source data from the Big data layer. If necessary, it
may invoke other services through the process of service
composition.
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Figure 3. An exemplar use case of the PREDICAT platform.

At the same time, the user query is transmitted to the
data integration layer in the form of a SPARQL query to
interrogate the global RDF store and extract all knowledge
and relationships related to the observations contained in the
user query. From the result of this step and according to the
rules contained in the learning layer, the platform executes a
prediction process. For example, let us suppose that in the
data integration layer, a heavy rainfall phenomenon which
has occurred in 2018 in Paris is in relation with precipitation
and temperature data observed in the same location and the
same period of time. Then, on the basis of knowledge
inferred from the learning engine the prediction engine
predicts floods. As a result of the query submitted by the
user: precipitation and temperature data in Paris, the
PREDICAT platform provides all the data related to Paris,
even if the spatial context representations in the data from
OSS (CHIRPS) and OpenWeatherMap are different (country
name or geographical coordinates) and an implicit
knowledge which is flood warning.

V.

In this paper, we proposed a semantic service-oriented
platform to PREDIct natural CATastrophes. The
PREDICAT platform aims at integrating and processing a
large-scale heterogeneous big data generated from multiple
sources, including that provided by citizens in order to
provide decision support to effectively prevent against
natural disasters. The contributions of our approach deal with
1) the use of ontologies to support semantic interoperability
2) the implementation of services that facilitate data access
and extraction 3) the proposal of a data integration layer that
ensures a global vision of EO data and its related spatio-
temporal contextual information and 4) the proposal of a
decision support system which allow predicting natural
disasters. This work is still in progress. As future work, we
intend to deal with data coming from social media such as
twitter and real time messages sent by first responders or
people in danger (including images and video). However, to
use this data, it should be first analyzed by the respective
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analysis software. This step should also be considered. Then,
we plan to deal with quality metrics related to services and
data integration. On the one hand, services will be hosted and
managed by a service provider consumed by EO customers.
Moreover, quality measurements will improve the selected
services for a better disaster prediction. On the other hand,
computing the precision, accuracy, scalability and other
measurements as data integration evaluation metrics will be
necessary to demonstrate the effectiveness of our approach.

ACKNOWLEDGMENT

This work was financially supported by the “PHC
Utique” program of the French Ministry of Foreign Affairs
and Ministry of higher education and research and the
Tunisian Ministry of higher education and scientific research
in the CMCU project number 17G1122.

REFERENCES

Abbes, H., &Gargouri, F.: Big data integration: A MongoDB
database and modular ontologies based approach. Procedia Computer
Science, 96, 446-455 (2016).

Arp, R., Smith, B., Spear, A. D.: Building ontologies with basic
formal ontology. MitPress.(2015)

Bemers-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific
American (Sci.Am), 284 (5), (May 2001), pp. 34-43

Biilthoff, F., Maleshkova, M.: RESTful or RESTless — Current State

of Today’s Top Web APIs. The Semantic Web: ESWC 2014 Satellite
Events, pp, 64-74 (2014).

(1]

[2]
[3]
[4]

[5] Copernicus program homepage,http://www.copernicus.eu/, last
accessed 2018/06/29
[6] DATA CHIRPS Homepage, http://chg.geog.ucsb.edu/data/chirps/,

last accessed 2018/07/17

Devaraju, A., Kuhn, W., Renschler, C.:A formal model to infer
geographic events from sensor observations. International Journal of
Geographical Information Science, 1-27 (2015).

(7]

[8] FTP CHIRPS Products,
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/, last
accessed 2018/07/17

[9] Geppa, A., Linnenlueckeb, M.K., O’Neilla, T.J., Smith, T.: Big data

techniques in auditing research and practice: Current trends and
future opportunities. Journal of Accounting Literature (2018)
[10] Horrocks, L, et al.: Swrl: A semantic web rule language combining
owl and ruleml. W3C Member submission, (21), 79. (2004).

[11] http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-
database/HTML/
[12] Hydra Core  Vocabulary = Homepage, https://www.hydra-

cg.com/spec/latest/core/#hydra-at-a-glance, last accessed 2018/07/17

Kadadi, A., Agrawal, R., Nyamful, C., Atig, R.: Challenges of data
integration and interoperability in big data./EEE International
Conference on Big Data (Big Data), Washington, DC, pp. 38-40
(2014).

Kaisler, S., Armour, F., Espinosa, J. A., Money, W.,: Big data: issues
and challenges moving forward. In: 6th Hawaii international
conference on system sciences (HICSS), 995-1004 (2013).

Knoblock, C. A., Szekely, P.: Exploiting Semantics for Big Data
Integration. Al Magazine, 36(1) (2015).

Llaves, A., Kuhn, W.: An event abstraction layer for the integration
of geosensor data. International Journal of Geographical Information
Science (2014).

Luo, Y., Puyang, T., Sun, X., Shen, Q., Yang, Y., Ruan, A., Wu, Z.:
RestSep: Towards a Test-Oriented Privilege Partitioning Approach

[13]

[14]

[15]

[16]

[17]



[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

for RESTful APIs. IEEE 24th International Conference on Web
Services, 548-555 (2017)

Masmoudi, M., Ben Abdallah ben Lamine, S., BaazaouiZghal, H.,
Karray M.H., Archimede, B.: An ontology-based monitoring system
for multi-source environmental observations. 22* International
Conference on Knowledge-Based and Intelligent Information &
Engineering Systems (2018) (To appear).

NASA EarthData Near Real Time
https://earthdata.nasa.gov/earth-observation-data/near-real-
time/download-nrt-data/airs-nrt, last accessed 2018/07/17

Neumann, A., Laranjeiro, N., Bernardino, J.: An Analysis of Public
REST Web Service APIs. IEEE Transactions on Services Computing
(2018).

NOAA homepage, http://www.noaa.gov/

Data,

Purohit, L., Kumar, S.: Web Service Selection Using Semantic
Matching. Proceedings of the International Conference on Advances
in Information Communication Technology & Computing (2016)
Salmen, D., Malyuta, T., Hansen, A., Cronen, S., Smith, B.:
Integration of intelligence data through semantic enhancement
(2011).

Selvakumar, G., kaviya, B.J.: A Survey on RESTful web services
composition. International Conference on computer Communication
and Informatics (ICCCI), (2016), pp, 1-4.

Siddiqa, A., Karim, A., Gani, A.: Big data storage technologies: a
survey. Frontiers of Information Technology &  Electronic
Engineering, 18(8), 1040-1070(2017).

The Critical Zone Observatories Homepage,
http://czo.colorado.edu/html/research.shtml, last accessed 2018/07/17
The Current OpenWeatherMap APIL Homepage,
https://openweathermap.org/current, last accessed 2018/07/17

201

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

The Geoapi Homepage, http://www.geoapi.org/, last accessed
2018/07/17
The Geoinformatics for Geochemistry System Homepage,

http://www.earthchem.org, last accessed 2018/07/17

The NASA APIs Homepage, https://earthdata.nasa.gov/api, last
accessed 2018/07/17

The 0GC Public Engineering Report,
https://portal.opengeospatial.org/files/?artifact_id=61224, last
accessed 2018/07/17

The Opengeospatial Homepage,
http://www.opengeospatial.org/standards/netcdf, last accessed
2018/07/17

The Opengeospatial White Paper,
http://docs.opengeospatial.org/wp/16-019r4/16-019r4.html, last

accessed 2018/07/17

The Sahara and Sahel
online.org/en

Observatory homepage,http://www.oss-

The W3C Recommendation Homepage for Data on the Web,

https://www.w3.org/TR/dwbp/#documentYourAPI, last accessed
2018/07/17
The World Soil Database homepage,

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-
database/HTML/HWSD_Data.html?sb=4, last accessed 2018/07/17
Vitolo, C., Elkhatib, Y., Reusser, D., J.A. Macleod, C., Buytaert,
W.:Web technologies for environmental Big Data, Environmental
Modelling and Software 63, elsevier (2015), 185-198

Zhong, S., Fang, Z., Zhu, M., & Huang, Q.: A geo-ontology-based

approach to decision-making in emergency management of
meteorological disasters. Natural Hazards,89(2), 531-554 (2017).



