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Abstract— The increasing volume of data generated by earth 
observation programs such as Copernicus, NOAA, and NASA 
Earth Data, is overwhelming. Although these programs are 
very costly, data usage remains limited due to lack of 
interoperability and data linking. In fact, multi-source and 
heterogeneous data exploitation could be significantly 
improved in different domains especially in the natural 
disaster prediction one. To deal with this issue, we introduce 
the PREDICAT project that aims at providing a semantic 
service-oriented platform to PREDIct natural CATastrophes. 
The PREDICAT platform considers (1) data access based on 
web service technology; (2) ontology-based interoperability for 
the environmental monitoring domain; (3) data integration 
and linking via big data techniques; (4) a prediction approach 
based on semantic machine learning mechanisms. The focus in 
this paper is to provide an overview of the PREDICAT 
platform architecture. A scenario explaining the operation of 
the platform is presented based on data provided by our 
collaborators, including the international intergovernmental 
Sahara and Sahel Observatory (OSS). 

Keywords-Earth observation; disaster prediction; data 
interoperability;  data integration; ontology, service computing; 

I.  INTRODUCTION 
In recent years, natural disasters have becoming more 

frequent and intense all around the world. The need for 
environmental monitoring has involved developments in 
information and Earth Observation (EO) programs such as 
the Copernicus program [5], the National Oceanic and 
Atmospheric Administration (NOAA) [21] and the Sahara 
and Sahel Observatory (OSS) [34]. EO programs are used to 
observe, monitor and assess the status of, and changes in, the 
environment. These systems are becoming increasingly 
important so that a vast amount of EO data is collected daily. 

These voluminous data could be significantly exploited in 
different domains. Examples include economical 
applications, environmental monitoring, phenomena 
understanding, decision-making during extreme weather 
crisis and disaster prediction. Disaster prediction is one of 
the most important application of data exploitation. Despite 
the availability of large amounts of data, the usage of EO 
data is still limited due to the lack of interoperability and 
data linking [13]. In fact, the overwhelming amount of data 
has worsened heterogeneity problems, as has the types of 
observation sources generating data in heterogeneous 
formats (databases, files and rasters) and heterogeneous 
semantics (synonymy, polysemy, etc...). For instance, in the 
sentence “Maps of daily temperature and precipitation are 
produced”, an expert would recognize that the observation is 
“temperature” but would not be able to determine the details 
related to the temperature concept (atmospheric temperature, 
sea surface temperature, etc.). 

Integrating this huge number of data known as big data is 
a real challenge since retrieving EO data from different 
sources involves the use of different APIs, if these latter 
exist. The issue of managing data derived from EO 
programs, in terms of access, pricing, data rights and other 
aspects, is commonly difficult. On the one hand, there are 
free of charge and open access data. On the other hand, data 
can be extracted only after agreeing to specific laws and 
regulations. Access to data requires to be user-friendly to 
reach common understanding and decision making for 
various prediction systems.  

Currently, there are several ongoing projects123 that are 
aiming to solve the integration problem. All these projects 
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similarly aim to semantically integrate heterogeneous data 
coming from big data sources such as sentinel data, including 
data provided by citizens through social media. However, 
data storage and management with traditional data 
management platforms is difficult [25]. As the number of 
data sources and the type of data stores augment, data access 
needs to be made easier for better real-time prediction  

In this paper, we present the PREDICAT (PREDIct 
natural CATastrophes), that aims at providing a semantic 
service-oriented platform for data interoperability and 
linking in EO and disaster prediction. PREDICAT aims 1) to 
integrate EO data coming from several sources such as 
NOAA and OSS, including that provided by citizens, 2) to 
provide a decision support solution to analyze in real time all 
the useful data in order to effectively prevent and/or react 
against natural disasters, through semantic linking of 
information. The integration is performed at the semantic 
level, to ensure semantic interoperability between data and 
provide reasoning mechanisms; and at the service layer, by 
providing adequate services to access and extract data with 
any format or structure, in real-time, in order to guarantee 
faster data management. The PREDICAT platform also 
tackles data access and storage problems through service 
implementation, to hide the heterogeneity of data sources 
and allow interoperability between EO data systems. Such 
interoperability could help experts to detect possible 
disasters through the combination of pieces of knowledge 
coming from different sources. 
Since data have poor semantics, the main objective of our 
platform is to have a global view of all data through 
semantic linking of information, and to produce warnings 
and real-time decisions to effectively prevent natural 
disasters. Furthermore, among other encountered research 
problems related to big data domain is the large-scale data 
exchange of heterogeneous datasets. 

The rest of this paper is organized as follows. In Section 
2, we give an overview of existing work on services and 
APIs for EO data (section 2.1) and ontology-based prediction 
systems (section 2.2). We also expose our motivations and 
the main goals of this research (section 2.3). Then in section 
3, we present the PREDICAT platform architecture and its 
main components. In section 4, we provide a scenario 
example demonstrating the applicability of T for the 
integration and the management of data. Finally, we 
conclude and present our future work in section 5. 

II. BACKGROUND AND MOTIVATIONS 
This section presents the background related to EO APIs 

and identifies issues of their usage and access (Section 2.1). 
Besides, it presents related work on ontology-based 
prediction systems (Section 2.2). 

A. Services and APIs for EO data 
1) EO data: Usually EO data sets are described using 

metadata that include information related to the data such as 
its collection time, the author or the data source, the file 

                                                                                                  
3 http://eopen-project.eu/ 

size, etc. Initial works have used metadata expressed in 
natural language with plain-text [26] [29], which may 
involve ambiguous and inaccurate expressions and may 
cause low-speed processing problems. As an alternative, the 
meteorological and climate scien-tists group proposed to 
adopt the binary formats such as the GRidded Binary 
(GRIB), the Network Common Data Format (NetCDF) [32] 
[33], the Hierarchical Data For-mat (HDF) [3] and the BIL 
(Band Interleaved by Line) format for images relating to 
soils textures. However, exploiting these data sources is 
facing multiple challenges, among them heterogeneity of 
data formats (NetCDF, HDF, GRiddedBinay), systems, 
platforms and technologies [37]. Besides, these data sources 
lack exposing their relat-ed data with enriched-semantics. 
The need for homogeneously accessing data sources aims at 
facilitating the integra-tion process which consists in the 
automated access, exploitation, and reuse of data for disaster 
prediction process. 

2) EO APIs and RESTful-based services for 
interoperability: Some of the EO and meteorological 
systems provide their own related APIs for accessing, 
retrieving and managing data, others do not. Once APIs are 
unavailable, accessing data is not easily performed, as the 
user needs to download and store available data (i.e: FTP 
files), temporarily in a dedicated storage system. For these 
aforementioned issues, we chose to develop a data access 
service layer based on services to hide the heterogeneity of 
data access techniques. Web services govern the logical 
separation of concerns related to data, code and 
communication and enable users to perform remote calls 
over the Web and manipulate data through dedicated 
operations, through Application Programming Interfaces 
(APIs). The Open Geospatial Consortium has defined the 
OGC GeoAPI Standard [31] [32]. In this API, geospatial 
data are searched in a catalog of services via interfaces, 
bindings and applications. Another type of data services 
manipulating plain-text have been proposed in [26] [29]. 
This kind of API may cause latency issues when executing 
services with an increased volume of exchanged data. 
Besides, these services are unable to communicate with 
other EO APIs and systems. Furthermore, the Open 
Archives Initiative group has created the OpenAPI Initiative 
project (OAI) [35], which consists in documenting APIs 
using open meta-languages for APIs. This initiative relies 
on the specification of REST APIs (REpresentational State 
Transfer) [20] creating an open description format for API 
services vendor neutral, portable and open to be connected 
with other APIs. Our motivation to use REST is to propose 
a unified access to the existent APIs and to focus on data-
driven based approach where we will be able to enhance 
data through semantics. Furthermore, semantics facilitate 
the linking mechanism between re-sources, make 
descriptions easily understandable allowing easier searching 
capabilities. To reach that, recent studies applied ontology-

195



based approaches. In the next section, we highlight the 
related work to prediction systems and their related 
ontology-based approaches 

B. Related work on ontology-based prediction systems 
Many previous works have discussed why ontology is 

needed to solve decision making problems in disaster 
prediction systems. Devaraju et al. [7] presented an 
ontology-based approach to infer geographical events from 
sensor observations, by exploiting the ontological 
vocabularies with reasoning and querying mechanisms. 
However, this approach does not handle the data integration 
issue especially the volume and the variety of data. Llaves et 
al. [16] investigates how to infer and represent events from 
time series of in situ sensor observations. However, it does 
not support either additional sensor data sources nor 
additional data formats. Zhong [38] proposed a geo-
ontology-based approach to decision-making in emergency 
management of meteorological disasters. It does not include 
other disaster types (like hydrological and geophysical 
disasters). The previously presented prediction approaches 
and several others face many common issues and limitations 
over earth observations big data. Most importantly, we 
noticed the impact of the huge volume and fast growth of EO 
data. Indeed, in the environmental monitoring domain, a 
large amount of information about climatological, 
meteorological, natural disasters, environmental processes 
are generated, which necessitate integration work. Also, the 
heterogeneity of EO data formats is a problem. In fact, data 
can be represented in different types (unstructured such as 
raster images and structured data such as databases). Finally, 
EO data integration and linking remain absent, while a good 
understanding of environmental phenomena needs collection 
and correlation from multiple data sources. For instance, 
making decision about floods and understanding this 
phenomenon requires integrating and analyzing 
infrastructure data, hydrological data, climatological data, 
etc. 

C. Motivations 
Access to EO data needs to be frequent and adequate 

means of monitoring EO data vigilance must be established 
to improve disaster prediction and management. However, 
multiple terms and formats are used describing data. 
Moreover, with the exponential amount of EO data, it is 
practically impossible to interpret data sources contents. 
Hereafter, we illustrate this statement with an example of 
two data sources that deal with the same concept (i.e, 
precipitation) but with heterogeneous data formats and 
access techniques. The first one is the Climate Hazards 
Group InfraRed Precipitation with Station data (CHIRPS) 
which is proposed by the international organization (OSS). 
This data source provides data about precipitation, either 
daily, monthly or dekadly. Moreover, the presented data are 
formatted in BIL [6] and data are accessible through 
downloadable FTP links [8]. The second data source is the 
Current Weather Data [27], enacting the OpenWeatherMap 
API, proposed by the Open-Weather Company. The user 
accesses the API through its URL and obtains JSON-

encoded weather information (including precipitation) being 
given geographic coordinates [27]. 

In this section, we noticed that for both data sources, 
access data techniques are different. For the first one, it 
would be mandatory for a user to temporarily store the FTP 
file, unzip it and try to understand the data, which are tedious 
tasks. And for the second one, data are accessed through the 
API URL. Therefore, it is necessary to unify access 
techniques and manipulate homogeneous formats. Moreover, 
it would be interesting if meaningful information is returned 
from both of data sources. More precisely, both data sources 
lack machine-readable semantic descriptions related to 
precipitation, such as the "observation measurements ", more 
information about the "location", the "clouds", etc. 
Otherwise, the user would be interested in obtaining 
additional information about the original source of data, or 
information related to the air matter composition of clouds. 

Besides, our motivation consists in proposing a platform 
to seamlessly access and monitor heterogeneous data sources 
and integrate data with semantic annotations, in order to 
enhance interoperability between data sources and provide 
decision support for improving disasters prediction. The 
application of the PREDICAT process on the proposed 
example, in order to highlight the motivation and the 
advantages of the overall architecture design, will be more 
detailed in section 4. 

III. PREDICAT ARCHITECTURE 
Fig.1 presents the global architecture of the PREDICAT 

platform and its tiers. The layered architecture is composed 
of eight tiers, namely: (1) data collection layer, (2) big data 
layer, (3) data access service layer, (4) data processing layer, 
(5) semantic layer, (6) data integration layer, (7) application 
layer and (8) user interface layer. 

A. Data collection layer 
This layer encompasses different Web data sources 

relevant to earth observations and deals with different data 
format types (i.e: BILs, HDFs, NetCDF, etc.). For instance, 
CHIRPS uses satellite imagery to create gridded rainfall time 
series and data are downloadable via FTP links [6]. While 
the OpenWeatherMap, thanks to its current weather data 
API, provides the accurate weather for a given location. 
Other APIs are provided by the OpenWeatherMap source 
rendering 5day/3 hour forecast, 16 day/daily forecast, etc. 
NASA AIRS [30] (Atmospheric InfraRed Sounder) is 
collecting atmospheric, surface pressure and air quality data. 
The storage is essentially done on CMR (Common Metadata 
Repository) and the user can search data through the API 
CMR OpenSearch. NASA AIRS data are downloadable via a 
web link [19], where files are compressed in HDF formats. 
The Harmonized World Soil Database (HWSD) [36] is a 
raster database combining existing regional and national 
soils information worldwide. The HWSD database is 
downloadable through a dedicated link [11] where the rasters 
soil are formatted in .bil. Most of the data sources detailed in 
this layer are pointing to the heterogeneity related to their 
software applications and the used storage systems. 
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Figure 1.  PREDICAT’s layered architecture. 

Moreover, data collection speed is variant in real-time, 
impacting on the update frequencies and the very rapid data-
processing. The aim of this layer is to identify each source, 
describing its name, its features and its contents.  Thus, 
facilitating the access when data are fetched form big data 
layer. Nevertheless, mining this large amount of data may 
consider a homogenized access without storing or replicating 
data temporarily. For all these encountered issues, we will 
present in the following sections the proposed solutions. 

B. Big data layer 
Since heterogeneous data sources generate large data 

types at unprecedented rate, they are stored in different 
dedicated storage systems as discussed in the previous layer. 
In this layer EO data are considered as raw data stored in 
different kind of structures related to the storage system of its 
source. Moreover in the big data scope [9], access to these 
data sources becomes a difficult task. Therefore, there is an 
urgent need for mechanisms providing a granular access to 
massive datasets. These large number of datasets in the big 
data field, may be subject to uncertainty, where data 
attributes are constructed using computational methods for 
collection mechanisms which are also subject to failure. 
These computational and statistical methods are covering the 
forecasting mechanisms or collecting sensor data. Therefore, 
data representations could vary from a data source to the 
other, causing untrustworthiness and contradictory meaning 
of data. Besides, the challenges of this layer relate to the 
access and the extraction of accurate EO data among the 
numerous datasets, in real-time, knowing the high update 
frequency changes. In addition, next layers try to unify data 
representations, where EO data will be rapidly and easily 
accessed through their dedicated storage systems. Otherwise, 
EO data will be fetched and accessed through services 
detailed in the next layer namely service layer. 

Another challenging aspect for the PREDICAT 
architecture is how to interpret these datasets in order to get 
insightful information for environmental disasters' 
prediction. Next sections provide details on the management 
of these datasets. 

C. Service layer 
This layer encompasses two sub-layers: 

1) Data acces service implementation: This layer deals 
with the implementation of services using the RESTful 
architectural style [4], [17], [20] and empowering these 
services with semantic descriptions about the services 
content and their related data. Thus, enabling to bridge the 
different knowledge representations across the 
heterogeneous multi-sources, detecting cross-processes 
relations and allowing reusability of services [24] across 
web-applications. In order to implement RESTful data 
access services, we have respected the set of best practices 
proposed in [3] such as, resources identification, resources 
manipulation using representations, and the usage of the 
Hypermedia HATEOAS mechanism. Following these 
recommendations, a set of RESTful services are developed 
using NetBeans as an Integrated Development Environment 
installed on a 64 bits machine. These services are then 
enriched with semantic annotations with linked data making 
them machine-readable and promoting the interoperability 
between heterogeneous resources. In order to set up these 
semantic annotations with linked data, our choice was set on 
Hydra Core Vocabulary [12], since it is a powerful 
vocabulary enabling the creation and management of 
Hypermedia-Driven APIs. The access to these APIs is 
detailed in the next sub-section. 

2) Service access data API: The implemented services 
are published in a dedicated registry that defines standard 
API to ease the search of the annotated services description. 
Incoming requests are originated from PREDICAT users 
(i.e., OSS engineers, earth observation engineers or a simple 
user/citizen), which express their desired concepts (such as, 
temperature, precipitation, etc.), that should be matched 
with concepts in the registry. The semantic matching is 
based on user keywords provided as inputs to search on the 
registry. If there is a matching, the service URL or the list of 
sorted services is returned. This is achieved based on a 
matched score [22]. The next section focuses on semantic 
schemas related to the EO data, accessed by services access. 

D. Semantic layer 
This layer consists of 3 components, i.e., Modular 

Environmental Monitoring Ontology (MEMOn), source and 
service ontologies. 

1) The Modular Environmental Monitoring Ontology 
(MEMOn): Several works proposed ontologies for the 
environmental monitoring domain, discussed in [18]. To 
address their problems, we propose MEMOn, a modular 
ontology for the environmental monitoring field, based on 
the upper level ontology Basic Formal Ontology (BFO) [2] 
and other existing ontologies such as the Common Core 
Ontologies (CCO), the Semantic Sensor Netowork ontology 
(SSN)  and the ENVironment Ontology (ENVO). 
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Figure 2.  View of the MEMOn modules. 

The proposed ontology consists of eight main modules 
covering the subdomains of environmental monitoring field, 
namely observation and measurement module, sensor and 
sensing module, disaster module, environmental process 
module, environmental material module, infrastructure 
module, temporal module and geospatial module, as 
illustrated in Fig.2. These modules incorporate all the 
different kinds of information entities handling all types of 
emergency situation, e.g., flooding, earthquakes, etc., spatial 
and temporal information, and sensing and observation 
information that are of importance to the environmental 
monitoring domain. The links between modules cover the 
relationships between sensing entities, observation entities 
and environmental events that they may cause, and also 
relationships arising from the fact that infrastructure objects 
like bridges, tunnel and dams could participate in 
environmental hazard factors. The main objectives of 
MEMOn ontology are 1) to share information in an environ-
mental domain in a common vocabulary, 2) to ensure the 
semantic interoperability between heterogeneous sources 
and 3) to support the integration and linking of data together 
in order to build a global interactive network that permits to 
better understand environmental dynamics and natural 
phenomena. MEMOn was evaluated using quality metrics 
based on a set of criteria such as completeness, clarity, 
interoperability, etc. This evaluation was a worthwhile task 
since it permits to consider MEMOn as a high-quality 
ontology. 

2) Source ontology: The vision of PREDICAT is to 
combine data generated from multiple monitoring systems 
such as Copernicus, OSS and NOAA and data provided by 
citizens. For rea-sons of data quality control and certainty, it 
is necessary to keep track of the provenance of the data. The 
provenance information in the environmental monitoring 
field is important since this information permits to assess 
data reliability and can be useful in decision-making. Thus, 
we propose to develop an ontology to represent such 

additional information of data. The sources ontology will 
include information about the immediate source of data, 
some measure of its authenticity or credibility, its relation to 
other data sources either they shared common products or 
not and the products it provides. The remaining entities in 
the sources ontology are created to encode relationships 
among sources and products given that a product may be 
derived from one or more other sources (e.g., precipitation 
data of a given region might be extract-ed from both OSS 
and NOAA sources). 

3) Service ontology: The main purpose of service 
ontology is to enable the semantic representational 
knowledge inherent to services and their related 
relationships. The proposed ontology is managed through a 
dedicated framework that features different modules and 
interfaces, among which we cite the reasoner module. The 
latter relies on semantic relationships among services to 
perform inferences. These inferences are driven by rules, 
generating service composition schema and retrieving a 
newly inferred knowledge on services. For instance, 
consider two RESTful services S1 for querying temperature 
and S2 for querying precipitation. If the temperature value is 
around 15° and the value for precipitation is higher than 
70mm then these two services should be complemented by 
the RESTful service S3 for querying the wind speed. The 
service ontology is subject to further work extensions taking 
into account services quality metrics to enhance service 
composition definition. Besides, it should be improved to 
consider interoperability issue between data access services. 
In fact, most of the times services are not compatible with 
each other. This makes interoperability a major issue for a 
successful data access service composition. Moreover, in 
order to execute services access to extract data, performance 
is handled by the next section discussing the data processing 
layer. 

E. Data processing layer 
The data processing layer deals with the services 

execution schema related to the user inquired concepts. 
Moreover, this layer tackles the following problems such 
that; reducing time-consuming processes, time-responses to 
fasten predictions and reducing costly-consuming bandwidth 
for requests. In fact, this layer uses the reasoner module and 
adds a new one named a decision maker. The latter takes as 
input the matched list of services for each concept and 
presents as an output the chosen service   or combines it with 
others to compose a new service, based on its highest score 
of matching. It performs this task for each inquired concept 
mentioned in the user query. Besides, based on the service 
ontology as well as the selected services the reasoner 
proposes an orchestration schema for services accessing data. 
The main usage of the reasoner and the decision maker in the 
PREDICAT architecture is to select the viable service 
corresponding to the user request, thus, reducing the 
consumed response time and satisfying the user needs. 
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F. Data integration layer 
The objective of data integration is to combine a large 

amount of data coming from various heterogeneous sources 
into a single consistent and global view of the data. One of 
the main problems of the data integration is the data 
heterogeneity. This variety can come from the structure 
and/or the format of the data and the vocabulary used to 
index the data. In general, each source has its specific 
characteristics. Several approaches have been proposed to 
cope with large-scale heterogeneous data integration [1], 
[15], [23]. Although the benefits of these approaches are 
obvious, modeling, linking and integrating EO data in such a 
way that capture the different representations of spatial and 
temporal contexts of observations that could be more 
explicitly modeled to improve data analysis still remains as a 
question.  

As an alternative to these approaches to cope with this 
problematic, we propose to integrate all data sources to a 
common and global view with the target of augmenting the 
interconnections among data. The objective of this layer is 
not to copy and/or store data. In contrast, our aim is to 
virtually integrate and link heterogeneous data via the 
integration of their metadata. The proposed approach 
performs three steps which are extracting relevant entities 
from metadata, applying a virtual semantic annotation on the 
data and expanding the spatial and temporal contexts by 
relationships containing in MEMOn that supports flexible 
contextual spatial construction in terms of places, 
relationships between different representations of place and 
contextual temporal construction in terms of different 
representations related to a temporal setting. Finally, it stores 
the extracted and enriched information in a global RDF 
format. This latter offers a form of integration and query for 
the following layer. 

G. Application layer 
The application layer consists in two components, i.e. 

learning component and pre-diction component. The goal of 
the first one is to execute predictive models that learn from 
existing data to predict future trends, outcomes and 
behaviors. It takes the global RDF store as input and then 
generates new relations that helps to deduce knowledge and 
improve the performance of awareness. The prediction 
component handles the real time data and takes into 
considerations the inferred knowledge from the previous 
component to provide early warnings and decision support. 
Prediction systems have improved in recent years but they 
are not perfect yet. Early detection of natural disasters is still 
a need. In this layer, standard and rule-based reasoning 
would be employed (OWL reasoners and SWRL rule engine 
[10]). 

H. User interface layer 
PREDICAT users such that EO engineers or even 

ordinary users may have the possibility to query earth 
observations through the user interface layer. This layer is a 
front-end interface allowing to dialog with the PREDICAT 
architecture. In fact, the queried data sources will be 

displaying their related resulted data to end-users through 
this interface. 

IV. EXEMPLAR USE CASE 
The goal of this section is to provide an exemplar use 

case (see Fig 3) to illustrate how PREDICAT platform would 
accommodate a big data integration and give a decision-
support for disaster predictions. Through our platform, two 
scenarios can be drawn. The first one illustrates the process 
after the detection/arrival of new EO data. The PREDICAT 
platform starts with implementing RESTful services to 
access the multi-source data from the Big data layer, if they 
are inexistent in the service registry. The RESTful services 
implementation is realized for each requested observation, in 
a way that a RESTful service can access and has the capacity 
to retrieve data from all sources generating this type of 
observation. Then, the semantic layer enhances the services 
with semantic enhancements thanks to the ontology 
repository (MEMOn, source ontology and service ontology), 
discussed previously. For example, the source ontology will 
link the observation "precipitation" with its originated data 
source OSS(CHIRPS) and its features, and the observation 
"temperature" with its originated data source the 
OpenWeatherMap and its features. Both sources and their 
characteristics are identified in the data collection layer and 
are mapped into the source ontology. Moreover, RESTful 
services are annotated with the Hydra vocabulary, thus 
generating Hydra annotated services descriptions. 
Afterwards, obtained data is fed into the data processing 
layer, which is responsible of the orchestration of services, 
when a service may compose with other services. Then, the 
outputted data is fed into the data integration layer which 
performs three steps. First, it extracts relevant information 
(such as temporal and spatial information) from metadata. 
Second, it links the observed properties extracted from the 
data such as precipitation and temperature with each other on 
the basis of object properties contained in the ontology 
repository and expands the spatial and temporal contexts by 
relationships defined in MEMOn. For instance, Paris is 
linked with its geographic coordinates in such a way that the 
system extracts all data in Paris with all different spatial 
representations. Finally, it stores the extracted and enriched 
information in a global RDF format. The obtained RDF store 
will contain all the necessary metadata and relationships 
required by the learning component in the application layer, 
in order to generate implicit knowledge. Indeed, based on the 
knowledge already contained in the learning component and 
the new data extracted from data sources, the learning engine 
explicits implicit knowledge and infer new knowledge which 
will be used later by the prediction engine. 

In the second scenario, the user expresses in a query the 
desired observations (such as the temperature and the 
precipitation in Paris in 2018), through the PREDICAT user 
interface layer. The PREDICAT platform starts with 
searching and invoking RESTful services to access the 
multi-source data from the Big data layer. If necessary, it 
may invoke other services through the process of service 
composition. 
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Figure 3.  An exemplar use case of the PREDICAT platform. 

 At the same time, the user query is transmitted to the 
data integration layer in the form of a SPARQL query to 
interrogate the global RDF store and extract all knowledge 
and relationships related to the observations contained in the 
user query. From the result of this step and according to the 
rules contained in the learning layer, the platform executes a 
prediction process. For example, let us suppose that in the 
data integration layer, a heavy rainfall phenomenon which 
has occurred in 2018 in Paris is in relation with precipitation 
and temperature data observed in the same location and the 
same period of time. Then, on the basis of knowledge 
inferred from the learning engine the prediction engine 
predicts floods. As a result of the query submitted by the 
user: precipitation and temperature data in Paris, the 
PREDICAT platform provides all the data related to Paris, 
even if the spatial context representations in the data from 
OSS (CHIRPS) and OpenWeatherMap are different (country 
name or geographical coordinates) and an implicit 
knowledge which is flood warning. 

V. CONCLUSION 
In this paper, we proposed a semantic service-oriented 

platform to PREDIct natural CATastrophes. The 
PREDICAT platform aims at integrating and processing a 
large-scale heterogeneous big data generated from multiple 
sources, including that provided by citizens in order to 
provide decision support to effectively prevent against 
natural disasters. The contributions of our approach deal with 
1) the use of ontologies to support semantic interoperability 
2) the implementation of services that facilitate data access 
and extraction 3) the proposal of a data integration layer that 
ensures a global vision of EO data and its related spatio-
temporal contextual information and 4) the proposal of a 
decision support system which allow predicting natural 
disasters. This work is still in progress. As future work, we 
intend to deal with data coming from social media such as 
twitter and real time messages sent by first responders or 
people in danger (including images and video). However, to 
use this data, it should be first analyzed by the respective 

analysis software. This step should also be considered. Then, 
we plan to deal with quality metrics related to services and 
data integration. On the one hand, services will be hosted and 
managed by a service provider consumed by EO customers. 
Moreover, quality measurements will improve the selected 
services for a better disaster prediction. On the other hand, 
computing the precision, accuracy, scalability and other 
measurements as data integration evaluation metrics will be 
necessary to demonstrate the effectiveness of our approach. 
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