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Abstract. RESTful services are an attractive technology for designing
and developing web-based applications, as they facilitate reuse, inter-
operability, and loosely coupled interaction with generic clients (typi-
cally web browsers). Building RESTful service composition has received
much interest to satisfy complex user requirements. However, verifying
the correctness of a composition remains a tedious task. In this paper,
we present a formal approach based on Colored Petri Nets (CPNs) to
verify RESTful service composition. First, we show how CPNs are uti-
lized for modeling the behavior of resources and their composition. Then,
we present how this formal model can be used to verify relevant com-
position behavior properties. Our solution is illustrated with a scenario
built upon an energy management web framework developed within the
HIT2GAP H2020 European project3.
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Nets · Composition Properties Verification

1 Introduction

Nowadays, web-based applications provide functionalities as web services, to al-
low for language and platform independence and to improve interoperability with
other services. The REST architectural style [4] has recently become the most
adopted solution for designing and developing web services. This is due to i)
its simplicity and ease of use that make services integration cost-effective, ii) its
single approach that allows the use of generic clients to interact with any REST-
ful APIs, iii) its support for different data formats (e.g., XML and JSON), and
iv) its ability to support caching for better performance and scalability. Hence,
more and more, web-based applications provide functionalities as RESTful ser-
vices that follow the principles of the REST architectural style, also referred to in
this paper as resources. Each resource provides a well-defined functionality that
meets a specific client request. However, answering some requests often requires
the combination of two or more resources, forming a composition.

3 Highly Innovative building control Tools Tackling the energy performance GAP
http://www.hit2gap.eu



Although there have been many contributions related to RESTful service compo-
sition, ensuring the correctness of the composition behavior remains a challenge.
In fact, verifying a composition usually relies on the formal verification of its
behavioral properties [16] (e.g., Reachability, Liveness, and Persistence). Such
verification typically depends on the formal modeling of the composition be-
havior via a modeling language with clear semantics. Several works have been
carried out in this scope. Some RESTful composition approaches are based on
formal languages (e.g., Petri Nets [1] [3], Finite State Machine (FSM) [18], and
Process Algebra [15]), and others rely on services descriptions with embedded
semantics such as in [14]. Although these approaches respect the majority of
REST principles, they mainly contribute in modeling and constructing RESTful
services composition without verifying its correct behavior.
In this paper, we propose a formal language based on Colored Petri Nets [9],
known as CPNs, to model and verify RESTful service composition. The main
contribution of this work is the mapping between CPNs model and RESTful
services, to allow the use of CPNs behavioral properties for verifying RESTful
service composition. Such verification is necessary, in order to avoid incorrect
composition behavior and unecessary execution for an erroneous composition.
CPNs were initially founded to provide design, analysis and verification tech-
niques for concurrent processes behavior. They bring expressiveness in modeling
complex systems, graphical visual notations that aid in following the process
behavior simulation at each step, and more importantly, the ability to validate
and verify the functional correctness of systems behavior [7]. Based on CPNs,
our approach is able to ensure the correctness of a composition through the
verification of the following behavior properties:

- Interoperability, checks if the resources involved into the composition can
be linked together. This is related to data type compatibility between the
linked resources where the output of a resource should be of the same type
of the input of another resource.

- Reachability, is used to verify that the desired final composition state is
reachable from the initial state.

- Liveness, ensures that all resources participating in the composition will be
invoked during composition execution.

- Persistence, is used when parallel resources are executed simultaneously,
and ensures that the occurrence of one resource will not disable another.

The remainder of this paper is organized as follows. Section 2 presents a scenario
to motivate our work, and highlights the research problem we tackle. Section 3
gives a brief description on the principles of RESTful services and the basics
of Colored Petri Nets (CPNs). Section 4 details our CPN-based approach for
verifying RESTful service composition. Section 5 illustrates the proposed solu-
tion within our motivating scenario. Section 6 presents the related work and
highlights the originality of our approach. Finally, Section 7 provides concluding
remarks, and discusses perspectives for future work.



2 Motivating Scenario and Problem Statement

In this section, we present our motivating scenario illustrated in a web-based
building energy management platform that is currently being developed within
a H2020 European project called HIT2GAP.
Recent studies reveal that a huge gap exists between the design specifications and
the operation of buildings energy performance4. This is due to various sources
encountered in building life cycle phases (i.e., inaccuracy of the simulations tools,
poor quality of the used construction equipment, inadequate verification tools,
limited data analysis of the building in operation, etc.). With the aim of reducing
the energy gap, HIT2GAP project provides a web-based energy management
solution for managing the energy behavior of operational buildings. To do so,
HIT2GAP uses mainly a 3 layered architecture as follows :

• Field layer: Includes heterogeneous data sensed from the building (e.g.,
internal temperature, energy consumptions, and other building related in-
formation such as doors and building levels), and from other sources (e.g.,
weather forecasts and occupants).

• Core layer: Contains 1) the HIT2GAP data repository to store the collected
data, 2) a set of basic services (i.e., data preprocessing services used to correct
erroneous data collected from the Field layer), and 3) web APIs through
which third-parties modules access the framework services.

• Management layer: Contains third-parties modules (i.e., Forecasting, Fault
Detection and Diagnosis, Occupants’ Behavior Detection, etc.) developed by
HIT2GAP partners.

HIT2GAP services and modules are encapsulated into RESTful services, called
also resources. Each resource is dedicated to provide a specific functionality that
satisfies a specific building actor request. However, some requests require the
composition of several resources.

Fig. 1: HIT2GAP solution instance deployed in NUIG

To motivate our work, let us consider the case of the teaching and research build-
ing of the National University of Ireland Galway (NUIG), one of the HIT2GAP

4 https://www.designingbuildings.co.uk/wiki/Performance_gap_between_

building_design_and_operation



solution pilot sites. The building manager of NUIG wants to estimate the up-
coming week heating energy consumption of the corresponding building. The
prediction output will help him to anticipate building energy resource needs re-
quired for the resulted consumption, and analyze building energy behavior. To
do so, the building manager will have to invoke several services simultaneously,
embedded as resources, through the web interface of the HIT2GAP instance
deployed for NUIG and illustrated in Figure 1. However, to satisfy his predic-
tion demand properly, the building manager is ought to invoke the required
resources and link them together correctly to reach the desired composition be-
havior. Figure 2 depicts the overall process to be executed for answering the
building manager’s request. It mainly requires the interaction with the following
resources integrated into the HIT2GAP NUIG instance:
1. Data collection resources to collect data required for the prediction process:

(a) Upcoming week predicted internal temperature, which is extracted di-
rectly from the HIT2GAP database

(b) Upcoming week predicted external temperature, which is provided by an
external weather forecast RESTful service

2. Data preprocessing resources that clean the collected data from the external
weather forecast service:
(a) Resource that manages and corrects outliers values, which are data values

outside the range of most of the other values
(b) Resource that manages and corrects empty or missing values retrieved

during certain timestamps
3. Resource responsible for the prediction of the NUIG heat energy consump-

tion. This resource, embedded into the Forecasting module, uses a prediction
model considered already implemented in the module.

Fig. 2: NUIG resources involved in the prediction process

The scenario shows the resources composition needed to satisfy the request at
hand. However, building the composition properly and ensuring its correct be-
havior is a difficult task for the building manager. In fact, several problems may
occur when building and/or executing the composition:

- Non-interoperability: Links between the output of a resource and the in-
put of another may be invalid. This is due to the difference of data types
that each resource handles. For example, the resource responsible for cor-
recting outliers values only processes an array of temperature values whose



data type is “Real”. If it receives values from a previous resource with dif-
ferent data type (e.g., “Integer”), the composition will be erroneous. Such
data type mismatch causes interoperability issues between resources.

- Looping: Starting the composition by collecting the required data (the in-
ternal and external predicted temperature), the process may not reach the
final expected result, which is acquiring the predicted energy heat consump-
tion of the NUIG building. This can be due to an end-loop occurred at a
certain stage during composition execution, such as a loop in the preprocess-
ing resources execution that can prevent the next resources to run.

- Dead resources: A resource, such as the external weather forecast, may
not respond due to some technical problems on its server, and thus the next
related resources involved into the composition process will not be invoked.

- Conflict execution: When dealing with parallel services such as prepro-
cessing resources, a conflict in their execution may occur (deadlock).

To overcome these problems5, we propose a formal language with clear semantics
to model the behavior of RESTful services and verify the correctness of their
composition. Such modeling language should cover the requirements below:

- Support for REST principles: Since HIT2GAP web services follow REST
architecture principles, the formal language should be aligned with the main
principles of REST architectural style. These principles are explained later
in Section 3.1.

- Data types handling: The ability to handle the types of data flowing be-
tween services (i.e., String, Integer, etc.) allows composition syntax checking
and thus a better management of the links between services.

- Composition behavior verification: In order to verify the correctness
behavior of the composition, the modeling language should be able to verify
the behavior properties considered important to HIT2GAP. These properties
are: Reachability, Liveness, and Persistence.

In order to cope with the requirements mentioned above, we propose in this
paper a formal language based on Colored Petri Nets (CPNs) to model Restful
services and their composition. By using CPNs, our approach is able to handle
data types and thus to check web services data compatibility. Moreover, with
their formal syntax and semantics, they are able to validate the behavior of the
built models through the execution of several verification properties embedded
in open source and well known tools such as the CPN tools. The advantage of
CPNs are detailed more in Section 3.2.

3 Background Knowledge

In this section, we provide the reader with the necessary information to reach a
good understanding of the paper, through a brief reminder on the principles of
REST and on Colored Petri Nets (CPNs).

5 Please note that the service discovery and selection problems are out of the scope of
this paper.



3.1 REST Principles

RESTful services, also called resources, are web services that follow the REp-
resentational State Transfer (REST) software architecture style [4]. A RESTful
service provides a functionality through an abstract resource-oriented view iden-
tified by a Unique Resource Identifier (URI), and invoked via HTTP-based meth-
ods. We list below the main principles of RESTful services, inspired from [11]:
• Resource Oriented and Addressability: Resources are central elements

addressable through their URI. They can be defined as objects with a type
(e.g., JSON, XML, etc.), associated data (e.g., text files, images, etc.), rela-
tionships to other resources (i.e., Forecasting and Energy Management used
in the HIT2GAP project), and a set of methods that operate on it (i.e.,
GET, POST, PUT and DELETE).

• Uniform Interface: Interacting with resources is realized through a uni-
form interface, which provides a set of standard operations (i.e., GET, POST,
PUT and DELETE) implemented by the HTTP protocol. Each method has
a well-defined semantics in terms of its effect on the state of the resource. It
manipulates the resource state that can be transferred from/to clients, and
represented in various types (e.g., JSON, XML, etc.).

• Stateless Communication: Every interaction with a resource is stateless.
This means that each request is handled independently from the other, and
request messages contain all the information that the server needs to process
it. Stateless communication saves energy on the server side, as the state of
the interaction with any client does not need to be stored in memory.

• HATEOAS: Known as Hypermedia As The Engine Of Application State, is
a constraint of the REST paradigm used to provide directions to the client-
agent regarding the next possible operations to be triggered. The principle
is to include within returned server responses, the possible next resources
URIs to follow, based on the current resource state. The methods used to
invoke such resources can also be included.

3.2 Colored Petri Nets

Petri Nets are graphical and mathematical modeling language used to model
distributed systems. They are designed to describe and study information pro-
cessing systems, with concurrent, asynchronous, distributed, non-deterministic,
parallel, and stochastic behaviors [10]. As shown in Figure 3, a Petri Net is
graphically represented by a number of places (represented by circles) occupied
by tokens (represented by black dots), and transitions (represented by rectan-
gles). Transitions and places are connected via arcs. A transition may fire when
each of its input places has at least one token (Figure 3(a)). When it fires, a
token from each of its input places is removed, and a token is placed into ev-
ery output place (Figure 3(b)). The number and position of tokens may change
during the execution of the Petri Net transitions. The assignment of tokens to
places designates a state or a marking of the net.
In ordinary Petri Nets, tokens cannot be distinguished and they are all iden-
tically represented as black dots. However, in more complex applications it is



Fig. 3: Example of a single Petri Net Fig. 4: Example of a Colored Petri Net

useful to allow the distinction between tokens and assign them some informa-
tion. For these reasons, Colored Petri Nets (CPNs) combine the strengths of
ordinary Petri Nets with the strengths of high-level programming languages [5],
to allow handling data types and manipulating data values. In fact, within CPNs,
each token can have a data type called a token color. Each color can be of a sim-
ple type (i.e., String, Integer, Boolean, etc.) or a complex type (i.e., array of
String and Integer values). In addition, tokens with assigned colors can contain
values. Normally, places in CPNs contain tokens of one type. An example of a
CPN illustrating a temperature unit conversion is shown in Figure 4. As it is
illustrated, the first input place holds a record type data containing 2 variables
of String and Integer type respectively (one denoting the unit of measurement of
the current temperature value, and the other the actual measured temperature
value). The other input place holds a String type data representing the desired
temperature unit of the Integer output place value.
Using CPNs makes our modeling approach independent from the data serializa-
tion format (i.e., XML, JSON, etc.), and has the potential to handle and show
explicitly data types in the composition. Moreover, CPNs are able to analyze
the modeled composition and investigate its performance by making simulations
of the composition process and verify several behavioral properties (e.g., Reach-
ability, Liveness and Persistence). These analysis can lead to important insights
into the behavior of the composition and help in ensuring the correctness of
its design. As such, the validation process for example can aid in preventing
from having a dead transition that can block the execution of other transitions
(Liveness), or guaranteeing that the desired final system state will be reached
(Reachability). Formally, a CPN is defined as follows [13]:

Definition 1 - CPN = (Σ, P, T, A, C, G, E, I), where:

– Σ is a finite set of non-empty types, called color sets

– (P ∪ T,A) forms a directed graph, where:

• P (the set of places) and T (the set of transitions) are disjoint sets, such
that P ∩ T = ∅

• A ⊆ (P × T ) ∪ (T × P ) is the set of arcs, such that places are only
connected to transitions, and vice versa

– C : P → Σ is the color function that maps places to elements of Σ

– G : T → B associates a precondition g (a boolean expression) to each transi-
tion. g should be evaluated to true for T execution.



– E : A→ Expr6 associates an expression E(a) to each arc a. E(a) is used to
define input-output behavior of arcs, and may include variables such that:
• Each variable in E(a) has a type in Σ
• ∀a ∈ A, C(E(a)) = C(p), with p is the place connected to a

– I is the initialization function that maps each place p ∈ P with an expression
such that I(p) is associated to the type C(p)

4 CPN-based Approach for RESTful Service Composition

4.1 Resource Generic Interface

One of the key requirements of our modeling approach is to be aligned with
REST principles. Therefore, it is essential to define the generic REST interface
of a resource before presenting the interfaces of the resources involved in our mo-
tivating scenario. Generally, REST interface describes the required URI, HTTP
method, query parameters7, and responses of a resource. Responses includes:

– A list of the next resources to follow with the method used to invoke them.
In this paper, the list can be empty when there are no resources to call.

– HTTP status code to indicate the query result. Such as, HTTP ‘200 OK’
code denoting that the request has succeeded, and HTTP ‘201 Created’ code
designating that the request has been fulfilled and a new resource is created.

– The information provided by the resource, when it is available.

4.2 Interfaces of the Motivating Scenario Resources

In this paper, we restricted ourselves to the required interfaces in the motivating
scenario, to ease the illustration of our approach. Table 1 lists the URIs of the
composition scenario resources, and Table 2 defines their required interfaces.

Table 1: URIs of the prediction process resources

Id URI
1 http://www.hit2gap.eu/predictions/pred-internal-temp
2 http://www.weatherforecast.com/forecast/external-temp
3 http://www.hit2gap.eu/missing-data-manager
4 http://www.hit2gap.eu/outliers-data-manager
5 http://www.hit2gap.eu/missing-data-corrected
6 http://www.hit2gap.eu/outliers-data-corrected
7 http://www.hit2gap.eu/predictions/pred-heat-consumption
8 http://www.hit2gap.eu/predictions/heat-consumption

URI 1 is called with GET to collect the predicted internal temperature accord-
ing to 2 parameters: startdate and enddate, denoting the prediction time range
requested by the building manager. The required data is retrieved directly from
the HIT2GAP database, and considered as preprocessed data. The array ‘PrInT-
emp’ in the responses represents the predicted internal temperatures.

6 Expr is a mathematical expression that will not be detailed further here due to space
limitation

7 Parameters are to be encoded in the URI or in the message body according to the
HTTP format



URI 2 is invoked using GET to collect the predicted external temperature accord-
ing to the same 2 parameters of the previous URI. The required data is retrieved
from an external weather forecast resource. The array ‘PrExTemp’ represents the
predicted external temperature. After data retrieval, URI 3 is invoked through
POST to correct the missing values presented in the array ‘PrExTemp’, and URI
4 is called to correct the outliers values presented in the array ‘PrExTemp’.
Through GET, URI 5 is called to retrieve the modifications applied on the
predicted external temperature values obtained from the URI 3 (missing data
manager). The ‘#dataset’ represents the id of the preprocessed data, modified
by URI 3. The array ‘CorrMPrExTemp’ contains the modifications applied on
the predicted external temperatures.
Using GET, URI 6 is called to retrieve the modifications applied on the predicted
external temperature values obtained from the URI 4 (outliers data manager).
Similar to the previous step, the ‘#dataset’ represents the id of the preprocessed
data, modified by URI 4. The array ‘CorrOPrExTemp’ contains the modifica-
tions applied on the predicted external temperatures.
In our composition scenario, we considered that the merging of both URI 5 and
URI 6 outputs, is being held on the client side to obtain the preprocessed exter-
nal predicted temperatures array: [CorrExTemp{date, temp}].
URI 7 is invoked with POST to predict the energy heat consumption based on i)
the startdate and the enddate, representing the prediction period range, and ii)
the predicted internal temperatures with the preprocessed external temperature
values previously collected. And finally URI, 8 is called using GET to retrieve
the predicted heat energy consumptions obtained from the URI 7 and repre-
sented by ‘#dataset’. The array ‘PrHeatEngCons’ in the responses contains the
predicted values of the heat energy consumption.

Table 2: Interfaces of the resources involved in the prediction process

URI HTTP Verb Parameters Responses

1 GET
startdate=dd/mm/yyyy
enddate=dd/mm/yyyy

200 OK
[PrInTemp{date, temp}]
{(POST, URI7)}

2 GET
startdate=dd/mm/yyyy
enddate=dd/mm/yyyy

200 OK
[PrExTemp{date, temp}]
{(POST, URI3), (POST, URI4)}

3 POST [PrExTemp{date, temp}] 201 Created
{(GET, URI5)}

4 POST [PrExTemp{date, temp}] 201 Created
{(GET, URI6)}

5 GET #dataset
200 OK
CorrMPrExTemp{date, temp}]
{(POST, URI7)}

6 GET #dataset
200 OK
[CorrOPrExTemp{date, temp}]
{(POST, URI7)}

7 POST

startdate=dd/mm/yyyy
enddate=dd/mm/yyyy
[PrInTemp{date, temp}]
[CorrExTemp{date, temp}]

201 Created
{(GET, URI8)}

8 GET #dataset
200 OK
[PrHeatEngCons{date, HeatEngCons}]
{ }



4.3 Colored Petri Nets-based Formal Composition Model

As stated in Section 3.1, a resource can be invoked through HTTP methods
to provide a specified functionality. It is published by a service provider, and
located on a specific server. An exposed resource r, has a set of inputs, a set of
outputs, and a function assigned to it. In our modeling approach, a resource can
be atomic or composed. In the CPN model, we define i) an atomic resource as a
single CPN with a single transition, input and output places, and ii) a composed
resource as a set of linked CPN representing linked resources.
Before we formally define a resource, we define below the following sets:

– DataType = {BasicT ∪ ExtendedT} is the date types supported by a re-
source, such that:
• BasicT = {String, Integer, Real, Boolean, Date, etc.}, denotes the ba-

sic data types known in programming languages
• ExtendedT = {Req, Status} denotes the extended data types defined to

meet resources requirements
– Req = (HTTP x U) is the set of HTTP requests sent to the URIs, where:
• HTTP = POST|PUT|DELETE|GET|HEAD|PATCH|CONNECT|OPTIONS|TRACE is the

set of HTTP methods used to invoke the URIs
• U is a set of URIs based on the standard RFC3986 8

– Status = (Code, Desc) denoting the status of the resource response, where:
• Code ⊆ N∗ denotes the HTTP response status code
• Desc represents the description of the HTTP code (e.g., ’Created’, ’OK’)

Definition 2 - A RESTful resource r is defined as r = (URI , N), where URI
is the URI associated to r, and N = (Σ,P, T,A,C,G,E, I) is a CPN such that:

– Σ ⊆ DataType, denoting the set of data types that the resource can process
– P is a finite set of input and output places of the resource, where:
• P = PIn ∪ POut

• PIn =
⋃N∗

i=1 {pini} |
⋃N∗

n=1 rn.PIn, such that:

◦
⋃N∗

i=1 {pini}, denotes the set of input places of an atomic resource.
Each resource requires one input place, representing the request sent
to it. Other input places can be defined according to the resources
needs, such as the resources parameters.

◦
⋃N∗

n=1 rn.PIn, denotes the set of input places of a composite resource

• POut =
⋃N∗

i=2 {pouti} |
⋃N∗

n=1 rn.POut, such that:

◦
⋃N∗

i=2 {pouti}, represents the set of output places of an atomic re-
source. Each resource requires two output places, denoting respec-
tively the status response code and the set of the HTTP requests that
can be sent to the next possible URI resources. Other places can be
defined according to the resources needs, such as resources output
results.

◦
⋃N∗

n=1 rn.POut, denotes the set of output places of a composite re-
source

8 https://www.ietf.org/rfc/rfc3986.txt



– T = t |
⋃N∗

i=1 ri.T . t represents the functionality of an atomic r, whereas the
union of T sub-resources represents the functionality of a composite resource.

– A is a finite set of arcs linking input places to transitions and transitions to
output places, such that: P ∩ T = P ∩A = T ∩A = φ

– C is a color function. It associates a type from Σ to each place, where:

• ∃p ∈ PIn, such that C(p) ∈ Req

• ∃p1, p2 ∈ POut, such that C(p1) ∈ Status, and C(p2) ∈ Req

– G is a guard function. It maps the transition t ∈ T to a boolean guard
expression g. The resource can only be executed if g is evaluated to true.

– E is an arc expression function. It maps each arc a ∈ A into an expression
that may include variables.

– I is an initialization function that associates places to initial values

Based on our defined CPN formal model for RESTful service composition, we
represent formally the composed resource resulted from the HIT2GAP prediction
scenario depicted in Figure 5. Such formal language can be directly applicable
to other scenarios and represent the corresponding web services as long as they
are RESTful.

H2G EnergyHeatPrediction = (URI, N), where URI is the address associ-
ated to the composition and N = (Σ,P, T,A,C,G,E, I) is a CPN such that:

– Σ =
⋃8

i=1 ri.Σ with ri denoting the resources involved in the prediction
process, and where:

• ri.Σ ⊆ DataType, designates the data types handled by the resources
participating into the composition

– P = PIn ∪ POut, where:

• PIn =
⋃8

i=1 ri.PIn, such that:
◦ r1.PIn = r2.PIn = r3.PIn = r4.PIn = {pin1, pin2}, denoting that

each of these resources has 2 inputs.
◦ r5.PIn = r6.PIn = r8.PIn = {pin1}, denoting that each of these

resources has 1 input.
◦ r7.PIn = {pin1, pin2, pin3}, denoting that this resource has 3 inputs.

• POut =
⋃8

i=1 ri.POut, such that:
◦ r1.POut = r2.POut = r5.POut = r6.POut = r8.POut = {pout1, pout2,
pout3}, denoting that each of these resources has 3 outputs.

◦ r3.POut = r4.POut = r7.POut = {pout1, pout2}, denoting that each of
these resources has 2 outputs.

– T =
⋃8

i=1 ri.T , with ri.T = t denoting the specific functionality provided
by each resource.

– A is a finite set of arcs linking input places to transitions and transitions to
output places, such that: P ∩ T = P ∩A = T ∩A = φ.

– C is a color function. It associates a type from Σ to each place, where:

• ∃p ∈ PIn, such that C(p) ∈ Req
• ∃p1, p2 ∈ POut, such that p1 6= p2, C(p1) ∈ Status, and C(p2) ∈ Req

– G is a guard function. It maps the transition t ∈ T to a boolean guard
expression g.



– E is an arc expression function. It maps each arc a ∈ A into an expression
that may include variables.

– I is an initialization function that associates places to initial values

We note that the composition URI is given after the verification of composition
behavior that will be discussed in the following section.

4.4 Composition Properties

One of the main advantages of modeling RESTful services with CPNs format is
the ability to analyze several behavioral properties of the composition. Mapping
RESTful services and composition to CPNs with some extensions allows the
execution of the algorithms related to CPNs properties. These algorithms that
are used to check behavior properties in Colored Petri Nets still apply in our
extended formal model, as it will be shown in this section.
To face the problems that may occur during composition execution, as it is pre-
sented in section 2, four properties have been considered important to verify in
the HIT2GAP project: Reachability, Liveness, Persistence [10], and Interoper-
ability. In the Reachability, Liveness, and Persistence definitions below, we use
(N, M0) to denote a Petri Net, N, with its initial Marking, M0. The Petri Net
marking, M, designates the state of the net, which corresponds to the assign-
ment of tokens to places. The initial marking M0 designates the availability of
some data (tokens) in the input places of one or more resources involved in the
composition, before launching the composition execution.

Definition 3 - Reachability - A marking Mn is reachable from M0 in a Petri
Net N, if there exists a sequence of transitions firings from M0 to Mn.

One of the challenges in the composition process is to make sure that the final
desired state is reachable from the initial state. In the prediction scenario, the
desired final result is the predicted energy heat consumption, which is generated
as an output from URI 8. To verify that the result is reached from the execution
of data collection resources: URI 1 and URI 2, we use the Reachability graph.

Definition 4 - Reachability Graph (RG) - It is a set of all the reachable
markings of a Petri Net represented as nodes. The nodes are connected with arcs
designating the firing of a transition.

The Reachability graph algorithm, inspired from [10], is described as follows:

Algorithm 1 Reachability Graph

1: label the initial marking M0 as the root and tag it “new’
2: while “new” markings exists do
3: select a new marking M
4: if no transitions are enabled at M, tag M “dead-end’
5: while there exist enabled transitions t at M do
6: obtain the marking M’ that results from firing t at M
7: if M’ does not appear in the graph, add M’ and tag it “new’
8: draw an arc with label t from M to M’ (if not already present)

In our scenario, the Reachability property is true when: ∃ M0 and ∃ M ∈ RG
as the end node, with M designating the final desired state.



Definition 5 - Liveness - A Petri Net (N, M0) is considered to be Lk-live if
every transition t in the net is Lk-live. t is said to be:

• L0-live, if it can never be fired in any firing sequence. In this case the tran-
sition t is considered deadlocked.
• L1-live, if it can be fired at least once in some firing sequence
• L2-live, if it can fire arbitrarily often
• L3-live, if it can fire infinitely often
• L4-live, if it may always fire

Another challenge in our composition is to verify that the resources involved in
the composition process will eventually be executed at least once. If for exam-
ple, the preprocessing resources responsible of correcting erroneous data are not
executed, the prediction resource will predict the building heat energy consump-
tion based on inaccurate data. This will affect negatively the prediction results
quality. Therefore L1-live was our main focus, to ensure that all CPN transitions
will eventually be fired by progressing through further allowed firing sequences.
We note that transition firing depends on the availability of tokens (data) in all
its input places. Thus, a resource can be executed only if its input places contain
the required data which are: HTTP VERB, URI, and some parameters (when
it is necessary).
In our composition, a transition t is L1-live when: ∃ M0 and ∀ t ∈ T in N , t ∈
RG. If not, t is considered dead.
By verifying both the Reachability and Liveness properties, we can be sure that
the composition scenario contains no loop and all resources receive the required
input in order to be executed.

Definition 6 - Persistence - A Petri Net (N, M0) is considered persistent if
for any two enabled transitions the firing of one will not disable the other.

The notion of Persistence is useful in the context of parallel resources and is
related to conflict-free nets. It is important in our composition scenario to make
sure that the execution of the parallel data preprocessing resources, will be
done with no conflicts. With CPN, the Persistence property is automatically
guaranteed. In fact, parallel resources execution is done in any order, and no
execution will disable the other.
As for the Interoperability, by definition the CPN formalism put the following
as a constraint: ∀a ∈ A : [C(E(a)) = C(p)]. This means that the CPN workflow
execution will not be possible unless data flowing to and from a place are of
the same type. We note that data flowing to a place correspond to a transition
output, while data flowing from a place denotes the input of the next transition.

5 Experimental Illustration

We illustrate our proposed CPNs-based formal composition approach in our pre-
diction scenario using the CPN tools9, one of the most known tools for editing,

9 http://cpntools.org



simulating, and analyzing Colored Petri Nets models. It provides a graphical
user interface (GUI) with tool palettes and marking menus, to build the CPNs
models. Moreover, it features syntax checking while the workflow is being con-
structed, and generates a standard state space report that contains information
about behavioral properties of the modeled system.
Figure 5 represents the HIT2GAP scenario implemented according to our for-
malism. As it is illustrated, the model includes all the resources involved in the

Fig. 5: CPN model for the resources composition relative to the prediction scenario

energy prediction process, with the required parameters and responses, described
in Table 2. During our tests, we extended the input places related to URI 7 to
respect the HATEOAS principle. In fact, due to the existing of several resources
(URI 1, URI 5 and URI 6) that point out to URI 7 in their next resources to
follow, we linked each of these resources to URI 7 transition.
Using the state space tool of the CPN tools, and by implementing queries via
ML code (the functional programming language of the CPN tools), we were able
to verify Reachability and Liveness properties. As for the Persistence and In-
teroperability properties, they were verified automatically during composition
construction. Below are the properties tests applied to the composition scenario:

- Reachability Test: Figure 6(a) shows the Reachability graph of our sce-
nario, containing a node for each reachable state. In total we have 22 states,
with node 22 representing the final state that is the prediction output re-
sults (PrEnH). Moreover, we used the ‘Reachable (1,22)’ boolean function
(written in ML code) to test if state 22 is reached from state 1. The returned
boolean value equal to “true” verifies the Reachability property.

- Liveness Test: Liveness property is verified through analyzing the Reacha-
bility graph arcs, which are labeled by the resources responsible of the state
changing. Figure 6(b) shows examples of some Reachability graph arcs la-
bels, appeared when clicking on the arcs. It proves that all URIs (from 1 to



Fig. 6: Reachability graph

8) are executed at least once. Moreover, and when generating the state space
report through the state space tool of the CPN tools, several information
can be retrieved including Liveness property results. Figure 7(a) for example
shows the statistics representing the number of nodes and arcs of the com-
position scenario, and Figure 7(b) proves that there are no dead transition
instances, denoting that all the resources will be eventually executed starting
from the initial state.

Fig. 7: Information retrieved from the state space report

- Persistence Test: The persistence property is guaranteed automatically in
the CPN tools, due to the CPN ability in modeling parallel systems. In fact,
the execution of parallel transitions can be done without interruptions, as
long as each transition has the required data in all of its input places.

Fig. 8: Defined color sets and Interoperability issue



- Interoperability Test: In order to represent the flowing data types between
resources, we defined the color sets as shown in Figure 8(a). Using CPNs, our
approach allows to verify the Interoperability property between the linked
resources. CPN tools check the syntax of the nets during their construction
where errors, such as in data types, can be visually seen through specific
color indications, as shown in Figure 8(b).

6 Related Work

6.1 Petri Net-based Approaches

Formal languages are defined in [3] [1] to describe RESTful services based on
high-level Petri Nets. However, these approaches ignore internal hypermedia
links, describe all tokens in XML only, and do not verify the correctness of
composition behavior. In our work, we explicitly define data types as colors,
within Σ that contains standard types and other defined types required for the
resources. Also, in our approach we propose a unique definition of a resource as
a service, identified by a URI, which can be invoked to provide its functionality.
On top of that, we focus on how CPNs properties can help verify the correctness
of RESTful composition behavior.

6.2 FSM-based Approaches

In [18], RESTful systems are modeled through a non-determinitic Finite State
Machine (FSM) approach with epsilon transitions that do not need to read an
input symbol in order to modify the system’s state. The proposed model fol-
lows some REST design principles, i.e., uniform interface, stateless client-server
operation, and code-on-demand execution. The main advantage of this work is
that it supports hypermedia links between internal resources of a single web ser-
vice. However, composition between different RESTful services are not modeled.
Moreover, there are no composition verification properties used to ensure the
correct behavior of the composition execution.

6.3 Linear Logic-based Approaches

In [17], Intuitionistic Linear Logic (ILL) is used to model formally RESTful web
services. The main contribution of this approach is web services composition
modeling, and the ability to ensure composition completeness and correctness,
through theorems based on propositional Linear Logic and π-calculus. However,
although it respects the main principles of REST architectural style principles,
linear Logic is a complicated formal language that requires extra efforts from
web engineers to put it in practice.

6.4 Process Algebra-based Approaches

In [15], RESTful services are described through the combination of process cal-
culi format with tuple space computing, a model for managing a distributed
object system. Based on this work, a semantic RESTful resource is formalized
as a process associated with a triple space and a URI used for handling remote



requests. However, the proposed approach does not support HATEAOS princi-
ple, nor even verification properties to check the correctness of the composition.

6.5 Semantic-based Approaches

RESTdesc [14], is a solution that describes services’ functionalities through the
Notation3 syntax with embedded semantics. Although it supports the automatic
web services discovery and composition by constructing a graph that links and
identifies resources, it does not verify the correctness of the composition.

6.6 SOAP-based Approaches

Before REST technology has been emerged, numerous work were conducted to
compose services based on SOAP protocol [12]. In [6,8,2] SOAP web services have
been translated to Petri Nets-based models. Apart from being SOAP-oriented
services, none of them handle data types and they lack in analyzing composition
behavior properties.

7 Conclusion

In this paper, we proposed a Colored Petri Nets-based approach for composing
RESTful services, in the context of a web-based energy management solution
developed in the HIT2GAP European project. We first exposed our CPN-based
formalism to model the behavior of REST resources with their composition. And
then, we showed how the verification of composition behavior properties (i.e.,
Interoperability, Reachability, Liveness, and Persistence) can be done based on
our formal defined model.
Future work includes studying the limitations of our approach when the compo-
sition involves a large number of services. As well, quality of service constraints
could be also modeled and taken into consideration in the verification. We also
intend to extend resources descriptions with semantic annotations to automate
the service orchestration task.
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