
5
CHAPTER

BUILDING A WEB OF
THINGS WITH AVATARS
A COMPREHENSIVE APPROACH FOR
CONCERN MANAGEMENT IN WOT
APPLICATIONS

Lionel Médini∗, Michael Mrissa∗, El-Mehdi Khalfi†, Mehdi Terdjimi∗,
Nicolas Le Sommer‡, Philippe Capdepuy§, Jean-Paul Jamont†, Michel Occello†,

Lionel Touseau‡

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LIRIS UMR5205, F-69622, Villeurbanne,
France∗ Laboratoire LCIS, Université Grenoble Alpes, Valence, France† Laboratoire IRISA,

Université de Bretagne Sud, Vannes, France‡ Génération Robots, Bruges, France§

We propose the notion of avatar as a software architecture
that extends a thing, in order to gain benefits from Web stan-
dards. Avatars achieve interoperability with things and ex-
pose high-level functionalities as RESTful resources, collab-
orate with each other and external services to form standard-
compliant WoT applications.

CHAPTER POINTS
In this chapter, we highlight the following contributions:

• A generic software extension of things, called avatar. Avatars exploit things low-level
capabilities, using their own protocols and encodings, to provide high-level,
Web-compliant functionalities, while taking into account various concerns such as ensuring
security and privacy, optimizing avatar-thing communications, locating application code or
collaborating with other avatars. We present the component-based architecture of an avatar,
explain its life-cycle and show how it relies on semantic Web technologies to fulfill its
objectives. We also detail its components, some of them along with the architecture, the
others as separate contributions.

• A RESTful disruption-tolerant support for the WoT. Resources exposed by connected
things are identified by URIs and accessed through stateless services. Service requests and
responses are forwarded using the store-carry-and-forward principle. We provide a
complete service invocation model, allowing to perform unicast, anycast, multicast and
broadcast service invocations using HTTP or CoAP.

Managing the Web of Things. DOI: 10.1016/B978-0-12-809764-9.00007-X
© 2017 Elsevier Inc. All rights reserved.

151

http://dx.doi.org/10.1016/B978-0-12-809764-9.00007-X


152 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

• A multi-level, multi-dimensional context model and domain-independent adaptation
process. This allows avatars to reason about contextual information and solve various
adaptation requests. We show how to pre-process stable context representations, so that the
adaptation process can both cope with constantly changing environments and be optimized
for reducing computing load at request time.

• An approach for inter-avatar collaboration. We introduce the notion of interaction situation
as the reciprocal influence that avatars have on the actions of others when they are
interrelated. We also provide avatars with social and human-inspired characteristics, such as
collective identity (motivations and relationships among participants) and inter-subjectivity
(the avatar’s ability to consider other avatars’ mental states in its beliefs). We show how,
using these concepts, an avatar can decide whether to participate in an avatar community.

5.1 INTRODUCTION
The Web of Things (WoT) promotes the idea of using Web technologies to support in-
teractions with things. The benefits of this idea are twofold. First, it aims at accessing
all kinds of things through standard technologies and tools, thus achieving interop-
erability among things and breaking silos between thing manufacturers’ proprietary
technologies. This will allow reusing proven platforms, technologies and user inter-
action techniques, ease application development and reduce time-to-market. Second,
by giving things an existence as Web resources, the WoT aims at enriching the possi-
bilities of Web applications by bridging the gap between the virtual and the physical
world. Indeed, being able to control one’s smart home temperature through a social
network is already a reality, as well as making a flower pot tweet when its soil is
getting dry. Conversely, representing a thing as a Web resource gives it an existence
in the informational world. Even inanimate objects can now be added a QR-code, so
that people can post comments to a bottle of wine they drank together and get back
all these comments in the bottle’s blog. Of course, more powerful – and useful – ap-
plications are now built to make use of things through Web technologies. But the fact
is that building such applications remains a handcrafted activity.

One of the reasons is the numerous domains and technologies that a complete
WoT application can require: connected things and robots are subject to specific
constraints that strongly impact applications, such as physical phenomena (gravity,
friction, etc.), energy management and network disconnections. As classical appli-
cations, WoT applications have functional and non-functional requirements, called
concerns in the remainder of this paper, such as reliability, performance, security, pri-
vacy and usability. Moreover, “intelligent” technologies can now be added to these
applications, to help objects collaborate with one another to achieve a common goal,
or to learn new knowledge to be used in the application. All these interrelated con-
cerns have to be studied, modeled and integrated in applications in order to fulfill
the WoT promises. Cyber-Physical Systems (CPS) propose a global approach that
aims at taking into account such various concerns. CPS applications are designed
in a domain-specific, performance-driven manner; however most of them are built



5.2 MOTIVATING SCENARIO 153

with a bottom-up approach and their architectures are hardly reusable. Reusable
frameworks, dedicated to Machine-to-Machine (M2M) and Internet of Things (IoT)
applications have been created, but they fail to meet all these challenges.

We think that WoT platforms should be able to mix these various concerns in a
manner that allows all specialties to connect together and form complex and efficient,
though well-architectured WoT applications. To this end, we introduced in [50] the
notion of avatar developed in the ASAWoO project.1 An avatar represents the soft-
ware part attached to a thing in a CPS-inspired approach. It embeds the components
that implement the concerns required for the thing to participate in WoT applica-
tions through standard Web interfaces. In this chapter, we detail the notions of avatar
and avatar-based WoT infrastructures that gather the common characteristics of WoT
platforms able to expose things on the Web and run WoT applications using avatars.
We illustrate using a realistic scenario, how avatars address concerns at different lev-
els, such as physical constraints (network disconnections), transversal requirements
(contextual adaptation) and application-level processes (inter-avatar collaboration).

CHAPTER ORGANIZATION
The chapter structure includes:

• A motivating scenario in the smart agriculture domain, that highlights the need
for avatar-based infrastructures in the WoT

• A description of avatar-based WoT infrastructures that depicts the different el-
ements of our approach: avatar architecture, common features of WoT platforms
able to deploy and run avatars, and structure of interoperable WoT applications

• A focus on contributions in three different domains: disruption-tolerant net-
works, contextual adaptation and multi-agent systems; each contribution includes
its own problem description, contribution and evaluation

• A general conclusion, including a discussion and outlook on the future of the Web
of Things and avatar-based architectures

5.2 MOTIVATING SCENARIO
The WoT infrastructures presented in this chapter have applications in multiple sce-
narios ranging from simple home automation to more complex smart factories and
service robotics settings. In this chapter, we focus on a motivating scenario in agri-
cultural robotics that leverages the different aspects of the proposed infrastructures.

Agricultural robotics is an important trend that aims at decreasing the reliance
on large machinery and human labor in favor of fleets of small autonomous robots
and distributed sensors working in collaboration [58]. The objective is twofold: im-

1http://liris.cnrs.fr/asawoo/.

http://liris.cnrs.fr/asawoo/


154 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

FIGURE 5.1

Illustration of the viticulture scenario

proving productivity and economic efficiency by reducing labor costs; decreasing
the ecological footprint thanks to better energy efficiency and parcimonious usage of
resources such as water, fertilizers and pesticides. The last aspect relies mostly on
obtaining information for multiple sensors, and using smart processes for deciding
how the robots should act upon these data. This is generally referred to as precision
farming and we will refer to the involved robots as agribots. Such applications are
already studied in the context of viticulture [54].

Fig. 5.1 depicts the application scenario that will be used for illustrating the dif-
ferent elements of avatar-based WoT infrastructures. This scenario takes place in a
vineyard and is composed of the following elements:

1. The farmer’s office from which the overall system is monitored and controlled. We
assumed that it has enough available computational power for hosting a WoT in-
frastructure and that it provides a WiFi access point (potentially also connected to
a larger network). The operator interacts with the system through a Web interface
provided by the precision viticulture WoT application.

2. Recharging bases for the agribots that provide short-range radio connections.
3. Active RFID tags that mark rows and allow to know if they have been processed.

These tags can be read by agribots or human workers, facilitating their interaction.
4. Low energy sensors spread all over the vineyard that monitor environmental pa-

rameters such as temperature, humidity, etc. They rely on inexpensive short-range
radio communication to send their measurements.

5. Agribots of various natures that perform tasks such as weeding, irrigation, fer-
tilization. They are equipped with sensing capabilities, computing power to au-
tonomously achieve WoT application tasks, and network connectivity (RFID and
short-range radio) to communicate with other connected things.



5.3 AVATARS AND AVATAR-BASED WOT PLATFORMS 155

6. Agricultural machinery such as tractors that we herein consider as data mules.
They use short-range radio to communicate with sensors and agribots and WiFi to
exchange with the farmer’s office.

In the next sections, we present these infrastructures and detail how they cope
with constraints such as wireless network malfunctions, adaptation to resource and
environment conditions, and autonomy and coordination constraints.

5.3 AVATARS AND AVATAR-BASED WOT PLATFORMS
The WoT imposes challenges regarding the representation, interoperability and col-
laboration of radically different things (in our scenario: RFID tags, low energy
sensors, agribots, tractors, etc.), embedding various hardware (sensors, actuators,
processing and storage units, network interfaces). We herein advocate avatars as
virtual representations of things, so that a thing and its representation form a “Web-
based cyber-physical object” that proposes homogeneous and user-understandable
functionalities. In this context, WoT infrastructures are platforms able to deploy and
execute WoT applications by creating, using and interlinking avatars. In this section,
we overview WoT challenges and show how they can be tackled with our approach.

5.3.1 REQUIREMENTS FOR WOT PLATFORMS
In the IoT field, numerous platforms have been implemented [75]. Some of them rely
on existing standards (e.g. ETSI’s OneM2M2) related to the way they connect with
things. However, there is currently no standard solution to address concerns at the
level of WoT software platforms. In [50], we proposed a list of design requirements
for WoT software platforms to summarize the WoT main challenges. We herein com-
plete and extend this list. A WoT platform should:

• R1: discoverability – allow to discover heterogeneous things [29,48], to be able to
plug and unplug things to the platform

• R2: connectivity – take into account several communication models (request/re-
sponse, message-oriented, event-based, publish-subscribe, streaming, etc.) in order
to allow applications to interact with various things [40], as well as support con-
nectivity disruptions for mobile wirelessly connected things [42]

• R3: reactivity – adapt its structure and behavior to its environment at runtime,
such as the CityPulse3 platform or the work in the INCOME project [4], to react to
changes in the environment

• R4: safety – be reliable and secure so that things and applications are harmless and
avoid privacy issues [29,35]

2http://www.onem2m.org/.
3http://www.ict-citypulse.eu/.

http://www.onem2m.org/
http://www.ict-citypulse.eu/


156 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

• R5: interoperability – allow WoT applications to run across heterogeneous ob-
jects [29,24], so that users can seamlessly interact with things

• R6: delegation – identify the most suitable location to execute each code mod-
ule and deploy these modules on the thing processing unit or on a cloud infras-
tructure [48], instead of completely delegating computation tasks to cloud-based
infrastructures (see IFTTT4)

• R7: scalability – cope with high numbers of things, heavy calculation processes
and/or high quantities of data [40]), as the number of things is expected to increase

• R8: collaboration – allow a set of things to exhibit a collective behavior [18], as
seen in the SensorMeasurement5 framework, to achieve complex functionalities

• R9: usability – provide high-level services, so that applications match end-users’
needs [30,10]

• R10: marketability – design software applications and components that imple-
ment different functionalities for heterogeneous things, so that developers and
industrial companies can distribute them on open online marketplaces.6

To the best of our knowledge, a WoT platform able to handle all these require-
ments for a given WoT application is missing. We think that it is possible to define
such comprehensive yet realistic infrastructures for the WoT by introducing an in-
termediary abstraction level between the things and the platform. This way, a WoT
infrastructure can delegate the management of different requirements to software ar-
tifacts at this intermediate level.

5.3.2 RELATED WORK
Since the development of Programmable Logic Controllers and robots, programming
elements have been associated with things. With the advent of (wireless) networked
communications, they have evolved to distributed control systems, embedded sys-
tems and more recently ambient intelligence and distributed robotics [25]. The IoT
is a direct consequence of this evolution and aims at exploiting Internet’s communi-
cation capabilities, nearly unlimited computing power of cloud infrastructures and
modern user interfaces to provide end-users with helpful applications. The WoT
builds on top of the IoT and promotes the use of Web standards.

But as soon as physical things come into play, programming such applications
becomes more complex and less deterministic. Indeed, sensor data suffer from impre-
cisions, actuators require feedback loops, time-critical and synchronization processes
need constant attention and network communications may lose data or get inter-
rupted. CPS upholders claim that such difficulties originate from physical phenomena
and must be modeled together with computer-based models and processes [44]. This

4https://ifttt.com/.
5http://sensormeasurement.appspot.com/.
6http://www.compose-project.eu/sites/default/files/publications/COMPOSE_v2_factsheet.pdf.

https://ifttt.com/
http://sensormeasurement.appspot.com/
http://www.compose-project.eu/sites/default/files/publications/COMPOSE_v2_factsheet.pdf


5.3 AVATARS AND AVATAR-BASED WOT PLATFORMS 157

way, embedded system applications will allow to take into account various con-
cerns such as reliability, safety, adaptability, scalability and usability.7 Among the
numerous CPS architectures that have been designed, many of them are component-
based and include software entities that model these concerns. Some of them include
semantic languages to manage their interaction workflows [3,55]. Others took advan-
tage of the multi-agent paradigm to build more autonomous and scalable CPS [67]
and mixed this paradigm with semantic technologies [45]. In these works, agents
embed the algorithms that control the things and are able to communicate together to
perform collaborative tasks. However, these tasks are implemented in the frameworks
at design time, which makes them hardly reusable across applications.

In the WoT community, we proposed in [33] the notion of avatar to denote soft-
ware artifacts attached to a thing and aggregating the necessary code to execute WoT
applications. Avatars are software agents that allow collaboration between things and
distribution of application code between avatars. As detailed below, avatars rely on
an internal component-based architecture, so that all necessary concerns from a CPS
point of view can be described. More recently, the World Wide Web Consortium
(W3C) Web of Things Interest Group8 (WoT IG) proposed the notion of “Servient”
that is currently being defined to standardize software objects in WoT applications.
Servients are very close to avatars: they provide access to things, can be executed on
them, on gateways or on cloud infrastructures and can interact with other servients.
Both also rely on semantic technologies to exchange machine-understandable data.
As WoT standards must cope with a variety of use cases and platforms, servient ar-
chitecture only specifies building blocks (“runtime environment”, “resource model”,
etc.). Avatars can be seen as a specialization of servients, more focused on WoT ap-
plication deployment and execution, and relying on a component-based architecture
to take advantage of advances related to specific concerns and requirements in various
fields.

5.3.3 AVATARS
Some components of the avatar architecture (Fig. 5.2) are dedicated to thing control
and others implement the autonomous, self-adaptive and collaborative behavior of
avatars. The physical setup is decoupled from its logical architecture: an avatar can
dynamically adapt the distribution of its components to different locations (see be-
low) to improve their efficiency. We grouped the avatar components in 8 functional
modules.

The Core Module includes components that are used in several steps of the avatar
lifecycle. The component deployment manager defines which avatar components will
be instantiated wrt. the thing capabilities, and where.9 Each avatar embeds a Rea-

7https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286.
8https://www.w3.org/WoT/IG/.
9Avatar components can be located on the thing if it has enough computing capabilities or for time-
constrained code modules, on the gateway for processes that involve inter-avatar communication, or on

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
https://www.w3.org/WoT/IG/


158 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

FIGURE 5.2

Architecture of the avatar software platform

soner, used by other components to process semantic information pertaining on the
capabilities, functionalities and context. So is the Local Cache, that stores semantic
information from diverse sources (thing, repositories, external context) and reflects
the current state of the avatar. In particular, the cache loads concepts from the se-
mantic repositories, in order to make them available to other modules through the
reasoner, as shown in Section 5.5. This module is essential to address the multiple
concerns targeted by the application through the avatar, while avoiding allocating un-
necessary resources. As such, it participates in addressing most of the requirements,
and especially (R6).

The Interoperability module provides the other avatar modules with a uniform
interface to interact with the thing it is attached to (R1, R5). This interface consists
of a set of capabilities that represent the thing API. It loads drivers from a platform
repository and uses them to identify the communication schemes understood by the
thing; eventually, it uploads onto the thing the appropriate configuration.

The Filtering module restricts functionality exposition and data exchanges. If,
for privacy or security reason, some functionalities should not be achieved by the
avatar, they will be filtered by the Privacy manager. The Context Manager has a more
complex role, which is explained in Section 5.5.

The Communication module ensures reliable communication with the thing. It
selects the appropriate network interface (Ethernet, Wi-Fi, Zigbee, etc.) and protocols
(CoAP, HTTP, etc.) according to communication purposes and performance needs
(throughput/energy consumption). It also supports connectivity disruptions, as ex-
plained in Section 5.4 (R4).

the cloud for calculation-intensive processes. This way, application components that model different CPS
aspects and address different application concerns can be executed at an optimal location.



5.3 AVATARS AND AVATAR-BASED WOT PLATFORMS 159

The Web service module allows avatars to communicate with other avatars and
with the external world wrt. Web standards. By this means, avatars can: interact with
the WoT platform to query repositories, respond to client requests regarding the func-
tionalities they expose as RESTful resources, exchange data with other avatars to
achieve collaborative functionalities and query external Web services to enrich their
own data.

The Local Functionality module handles high-level functionalities achievable
using the thing capabilities10 (R9). It relies on semantic technologies to map the
thing layer (capabilities) with the application layer (functionalities) in a declara-
tive and loosely coupled manner, ensuring application interoperability with various
things [51] (R5). When the avatar is created, the CapabilityManager queries the
Interoperability module for the thing capabilities and the platform capability ontol-
ogy for their semantic descriptions. It is queried by the LocalFunctionalityManager,
which also loads the descriptions of functionalities and uses the reasoner to infer the
avatar local functionalities.11 For each inferred functionality, the LocalFunctionality-
Manager queries the Context Manager to decide if it should be exposed to clients.
Exposed functionalities are bound to a registry, so that users and other avatars can
find them.

The Collaboration module handles functionalities that require collaboration be-
tween several avatars. The CollaborativeFunctionalityDiscoveryManager queries the
reasoner as described above to identify, from the local functionalities, in which
higher-level ones it could participate. Then, it queries the platform functionality di-
rectory to search for the locally missing functionalities. If such functionalities are
available from other avatars, it calls the Collaborative Agent Manager, which handles
negotiation with these other avatars, as explained in Section 5.6 (R8). Here, (R5) and
(R9) are addressed at a multi-thing level.

The WoT Application module provides and controls “WoT application con-
tainers” that execute code modules implementing the different aspects of a WoT
application (R9). Such containers can be replicated on the thing, on the gateway and
on the cloud infrastructure thanks to the deployment manager, so that modules are
executed on the appropriate location (R6).

5.3.4 AVATAR-BASED INFRASTRUCTURE
As requirements R1 to R4 and R7 are also addressed by IoT platforms, existing IoT
solutions can be used as a lower layer to connect things, and WoT platforms imple-
mented as “WoT application servers” on top of these solutions. To allow deploying
and running WoT applications on ubiquitous computing environnements, WoT plat-

10Functionalities provide user-understandable compositions of capabilities. For instance, a user will prefer
to tell a robot to move to another part of the field, rather than to pilot each of its wheels individually.
11Inference processing relies on the Capability and Functionality classes, and relationships between them,
expressed in our own OWL (http://www.w3.org/TR/owl2-overview/) vocabulary. Individuals expressed in
other vocabularies [31] can be used and “rdf:typed” as capabilities or functionalities.

http://www.w3.org/TR/owl2-overview/


160 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

FIGURE 5.3

An Avatar-based infrastructure for the WoT

forms must provide access to information and knowledge storage facilities and to
additional computing power (cloud). As we herein promote avatar-based WoT plat-
forms, they should also support managing, executing, and (de)serializing avatars.
The serialization mechanism allows scaling horizontally by replicating platforms
and moving avatars between them. Vertical scaling is ensured by our multi-layer in-
frastructure (thing, gateway, cloud) (R7). Fig. 5.3 depicts the infrastructure of such
platforms.

The main elements of this infrastructure are the Infrastructure Controller and WoT
Runtime Environment. The former interacts with the IoT platform and is in charge of
deciding to create,12 update13 or remove avatars, as things are plugged and unplugged
from the IoT layer (R1, R3). The latter is the container that isolates avatars (R4) and
handles their lifecycle. For performance reasons, it is also connected to the gateway,
so that avatars can directly interact with things without traversing the IoT platform
stack at each request (R2). Inside the container, avatars can also: access external
Web resources through the Web Proxy, share information about the functionalities
each of them exposes using the Functionality Directory, query the different Semantic
Repositories to access the semantic descriptions they need to operate, and retrieve ap-
plication code modules in the Code Repository. The Device Installer and Application
Installer are in charge of populating the different repositories and are independent
of the notion of avatar. Users securely interact with the platform to download thing

12Each avatar is built so that it can access the thing through the gateway. The thing capabilities are injected
and the avatar components instantiated.
13By periodically checking the IoT platform.



5.3 AVATARS AND AVATAR-BASED WOT PLATFORMS 161

drivers, install WoT applications from a marketplace (R10) or execute these applica-
tions using their Web browsers, through the proxy that blocks unidentified incoming
requests (R4).

5.3.5 WOT APPLICATIONS
In order to ease WoT application design (R11) and keep it independent from the
characteristics of available things (R5), a WoT application only deals with the func-
tionality level. Hence, it mainly describes a hierarchy of functionalities, the end nodes
of which graph are terminal functionalities (i.e. that have to be implemented by a
thing capability14), and all others nodes are composed functionalities (i.e. that require
sub-functionalities and query them using code modules). Some of these composed
functionalities may require the capabilities of several things, and therefore, a collab-
oration between several avatars (R8). The top-level functionality then corresponds to
the application that the end-user wishes to use (R9).

A WoT application is packaged in a compressed file, composed of: a Manifest
file, describing its contents; the above mentioned hierarchy of functionalities; the
Code modules corresponding to the algorithms that implement composed function-
alities15; the application context model, containing a semantic description of the
application domain and a set of adaptation rules (see Section 5.5); a set of static files
that constitute the application interface and allow end-users to execute and control
the application through their Web browser by querying avatar functionalities using
Web standards (RESTful resources, WebSockets, etc.).

5.3.6 VALIDATION PROTOTYPE
The above sections show that all requirements are met by the different elements of our
avatar-based WoT infrastructures. In order to validate our approach, we implemented
its different components as follows. For the IoT platform, we chose OM2M,16 as
it relies on ETSI standards,17 is supported by the Eclipse community and is extensi-
ble. We actually extended it by developing a module capable of introspecting things
and sending semantically annotated capabilities.18 Two versions of those semantic
annotations have been experimented: one relying on Java annotations and one us-
ing JSON-LD files served as RESTful resources using the Hydra specification.19

A prototype of the latter has been presented in [49], to demonstrate how avatars can

14Capabilities are semantically mapped with these terminal functionalities during avatar initialization.
15The R5 (interoperability) requirement imposes to these applications to be generically described, in order
to be deployable and executable on diverse thing setups. Hence, we recommend describing them using
declarative languages, such as state chart of finite state machines – and at installation time – pre-transpiling
them into the languages of the thing, gateway and cloud platform they can be deployed on.
16http://www.eclipse.org/om2m/.
17http://www.etsi.org/technologies-clusters/technologies/m2m.
18http://liris.cnrs.fr/asawoo/doku.php?id=cima.
19http://www.hydra-cg.com/.

http://www.eclipse.org/om2m/
http://www.etsi.org/technologies-clusters/technologies/m2m
http://liris.cnrs.fr/asawoo/doku.php?id=cima
http://www.hydra-cg.com/


162 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

use semantic reasoning to dynamically compose functionalities. The ASAWoO plat-
form has been developed in Java and runs avatars inside an OSGi (Felix20) container.
Avatar components are implemented as OSGi services. Some of them are necessary
for the avatar to function, and others depend on the concerns addressed by the ap-
plication. The next sections highlight our contributions to certain concerns and detail
how a given concern can be modeled and implemented in an avatar component.

5.4 DISRUPTION-TOLERANT COMMUNICATIONS
It is quite common that things involved in WoT applications cannot be connected per-
manently, firstly for energy saving reasons but also because of mobility. Such things
– which are often equipped with short-range radio interfaces (Wi-Fi, Buetooth, Zig-
Bee, etc.) – can be connected to other things or to Internet gateways while they are
moving or when mobile things are passing near them. As shown in the scenario de-
picted in Section 5.2, communication links of such things are thus subject to frequent
and unpredictable disconnections.

To cope with this issue, the communication module of avatars implements
disruption-tolerant communication techniques to transport HTTP or CoAP requests
and responses in partially or intermittently connected networks. These techniques do
not assume that there always exists an end-to-end path between two things in the
network. Mobile things can store messages, carry these messages while moving and
deliver them to other things when possible.

5.4.1 RELATED WORK
The provision of REST services in partially or intermittently connected networks has
been addressed in a few number of works, most of them in opportunistic networks.
Opportunistic networks can be considered as a sub-category of disruption-tolerant
networks, since only opportunistic contacts between mobile things are exploited to
transfer data. In [20,56], the authors propose analytical models to determine the op-
timal number of parallel executions required to minimize the service time, without
saturating the computational resources of the service providers, as well as to select the
best service composition among alternative compositions based on the local knowl-
edge of the network collected by a node through its opportunistic contacts with other
nodes. The exploitation of the presence of several providers in the network and of
their parallel invocation has also been investigated in [46], but with a publish/sub-
scribe and content-based approach. The objective is to reduce the service delivery
delay, and thus to provide a better response time to end-users. To reduce the response
time, intermediate nodes can be used as service proxies has shown in [43]. Interme-
diate nodes are expected to respond on behalf of service providers, as long as that

20http://felix.apache.org/.

http://felix.apache.org/


5.4 DISRUPTION-TOLERANT COMMUNICATIONS 163

these intermediate nodes have in their local cache the responses for the requests they
receive and the services are stateless-services. Intermediate nodes do not forward the
requests towards the providers, but send back the responses to the clients directly.
This solution allows to reduce drastically the network load and the response time.
All these research works address the service provision in general, but do not con-
form to the REST architectural style, that ensures its performance, scalability and
simplicity [23].

5.4.2 OVERVIEW OF THE RESTFUL DTN COMMUNICATION SUPPORT
The avatar communication module (CM) complies with the six constraints below –
the sixth one is optional – defined by REST. Avatars are indeed designed as a set of
distributed clients and stateless services, that interact through well-defined schemes
(i.e. negotiation, functionality calls). Since the communication path between a service
provider and its clients may be subject to disruptions, maintaining a session with a
client can become difficult for a provider. It is consequently preferable to maintain
a state on the client side. This is thus consistent with the REST approach, which
is based on a loosely-coupled client/server (constraint 1) architecture where servers
do not maintain any session state (servers must be stateless) (constraint 2) and are
accessed through uniform interfaces (constraint 3).

To improve overall scalability, REST promotes a layered system (constraint 4) and
cacheable responses (constraint 5). Layers consist in intermediate servers in charge
of non-functional concerns such as security, load balancing or shared caches provi-
sion. By implementing the “store, carry and forward” principle, the CM stores both
the service requests and service responses that have been sent in the network in the
cache of clients and of intermediate nodes. Following a proxy-based approach, inter-
mediate hosts can respond on behalf of a server if they have the response in their local
cache, when this one is still valid. Such an approach allows to improve the perfor-
mance and the scalability of the system, because it naturally performs load balancing
and data caching on intermediate hosts, and thus fulfills the two above-mentioned
requirements.

WoTApps can be partially or fully developed in Javascript, thus allowing to ex-
ecute on the client side a part of the application and to reduce the computation load
on the things, which complies with REST optional code-on-demand constraint (con-
straint 6).

The RESTful disruption-tolerant communication part of CM is designed to
be as versatile as possible. It allows to invoke services using the HTTP and
CoAP application-level protocols. It is composed of two main elements, namely an
HTTP/CoAP proxy and a DTN adapter (see Fig. 5.4). Thanks to this proxy, pro-
grammers can develop HTTP and CoAP WoTApps using regular HTTP and CoAP
libraries. Moreover, standard HTTP and CoAP servers do not need to be modified.
This proxy can also invoke remote REST services using Internet-legacy routing pro-
tocols (i.e., TCP/IP). Application-level messages (i.e., HTTP and CoAP messages)
can be encapsulated in UDP datagrams, in TCP segments or in messages of a given



164 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

FIGURE 5.4

Overview of the architecture of the communication module

disruption-tolerant communication middleware in order to be transmitted to their
destination. Different wireless technologies (e.g., Bluetooth, Wi-Fi) can be used to
communicate with things.

As for the DTN adapter, it binds the proxy and the disruption–communication
middleware in charge of forwarding messages in the network. Hence, the DTN
adapter depends of the underlying communication system and is specifically devel-
oped for each different system. The Bundle Protocol (BP) [61], which is the standard
message-based protocol over the DTN architecture [17], has been chosen as the
default disruption–communication system in our current implementation. Another
implementation has also been done using an opportunistic communication middle-
ware we have developed, and which is called C3PO [42].

5.4.3 COMMUNICATION MODES
Besides providing the traditional point-to-point client/server communication model
used in the Web, CM proposes alternative communication models, that are not nec-
essarily relevant for traditional Web applications, but that are suitable for the WoT,
such as anycast, multicast and broadcast transmission models. Disruption-tolerant
communication systems implementing a multiple copy forwarding strategy can take
advantage of these message transmission models to increase the message delivery
probability and to reduce the response time. Indeed, if it exists several providers offer-
ing the same service in the environment, these providers can indifferently be invoked
with the same request. If an anycast communication model is used, the communica-
tion system will only return the first received response to the client. Similarly, several
sensors can simultaneously be invoked using a multicast transmission model without
naming them explicitly. All responses returned by these sensors will be transmitted
to the client.

In order to remain consistent with the RESTful approach, these different trans-
mission models are specified in the scheme of the URIs used to access REST Web



5.4 DISRUPTION-TOLERANT COMMUNICATIONS 165

Table 5.1 Examples of URIs supported by ADTRS

URI Method Parameters
1 coap+dtn://agribot7/JobManager/back_to_charging_station POST
2 coap+dtn+acast://agribots/JobManager/weed POST rows=1–3
3 http+mcast://soilsensors/moisture GET

services. The first part of the scheme indicates the application-level protocol (i.e.,
HTTP, HTTPS, or CoAP) used to communicate with a remote service. +dtn must
additionally be specified in the scheme if CoAP and HTTP messages must be for-
warded by a disruption–tolerant communication system. By default, messages are
transmitted using a unicast communication model. +acast, +mcast and +bcast spec-
ify respectively that an anycast, a multicast and a broadcast transmission model must
be used in the forwarding process.

Table 5.1 gives examples of URIs that could be used in the smart vineyard sce-
nario presented in Section 5.2. URI number 1 could be sent in unicast to order robot
whose ID is agribot7 to go back to its recharging base after its current mission. Con-
cretely, such an order is given by submitting a new job back_to_charging_station to
the job manager of the avatar. This job manager is exposed as a Web service and is
invoked via a POST CoAP method. Similarly, URI number 2 could be used to ask
robots belonging to the agribots anycast group to weed around vine feet from rows 1
to 3 (additional parameters specified in the body of the POST request). Finally, URI
number 3 allows to get the soil moisture from avatars of sensors monitoring the soil.
As sensor avatars are hosted in a cloud infrastructure, they do not need to be reached
in a disruption-tolerant way.

5.4.4 NON-FUNCTIONAL PARAMETERS FOR DELAY-TOLERANT
COMPUTING

In delay-tolerant networks, service messages are forwarded following the “store,
carry and forward” principle. The propagation delay and transmission area of mes-
sages is likely to be bounded not only to fulfill application requirements, but also
to reduce the network load. Four additional parameters can be specified by service
clients and service providers regarding the service delivery conditions on the one
hand, and that can be exploited by disruption–tolerant communication systems in the
message routing process on the other hand.

Caching parameter: Service clients can specify if their requests can be cached
by intermediate nodes or not. If so, intermediate nodes will store in their cache both
the request and the response associated with this request until they expire. Thus,
they can reply later to a similar request sent by any node on behalf of the service
provider (i.e., by returning immediately the cached response, instead of forwarding
the request towards the service provider). For instance, environmental data such as air
temperature at the vine feet, which is not likely to change frequently, can be cached.



166 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

Time parameters: Temporal constraints can be expressed in URIs as query
strings. Two temporal constraints are considered: the message creation time, and the
message expiration time, expressed relatively to the creation time.

In a service invocation request, these constraints express the fact that the client
wants to get a response before the expiration time specified in the request message.
The request can be forwarded in the network, and a provider of the service can an-
swer to this request until it expires. When specifying time constraints for a response,
these constraints express the lifetime of the response, and the validity duration of the
data it contains. These temporal constraints are also used by the disruption–tolerant
communication systems to determine how long a message can be stored in a cache or
forwarded in the network.

Spatial parameters: A number of hops can additionally be specified in applica-
tion-level messages to circumscribe at a coarse grain the area in which the messages
can be forwarded, and to avoid that a message eternally roams in the network. Nev-
ertheless, this limitation is not exact, and does not guarantee that a message cannot
be transferred outside an expected area. As shown in [41], geographical areas can be
specified in order to limit more precisely the propagation of messages in the physical
environment.

Asynchronous communication: Service clients can add a callback parameter to
define the URI that must be used by service providers to return the response. Clients
can thus process the responses they receive asynchronously without being blocked
by the reception of responses.

In our vineyard scenario, a sprinkler agribot that does not know the soil compo-
sition on the third row can ask other agribots to analyze it and send back the result.
While waiting for the analysis, the agribot continues its current task (e.g., irrigating
the first row). Once the soil composition analysis is received, the robot can process it
and if the soil is dry, it will proceed to irrigate the row.

5.5 CONTEXT MODELING AND MANAGEMENT
An avatar must take decisions all along the lifecycle of the thing it extends, to adapt
its behavior for different purposes (choose a protocol to communicate with the thing,
a location to execute applicative components, etc.) and with respect to various pa-
rameters. Such parameters form the avatar context and come from various sources
(thing sensors, environment, user’s preferences, etc.). In this section, we build a multi-
purpose context adaptation framework. We discuss related work on context modeling
and adaptation to show the need for such framework, and present and evaluate our
context meta-model and multi-level context adaptation solutions.

5.5.1 RELATED WORK
Context is often modeled as multi-dimensional views [60,79,1] that include environ-
mental and geospatial information, such as location, co-location (i.e. what is nearby),



5.5 CONTEXT MODELING AND MANAGEMENT 167

time, etc. [59] but also privacy [21], computing resources (availability, remaining
battery power) and network information (types of connection, services in reach, dis-
tances, disconnection rates) [47,53]. Most context-aware applications give a major
importance to user profiles and preferences [14,74,11] sometimes combined with
network elements [73,57,76]. Context helps users with decision making [13], based
on different knowledge sources [12] described in situations [19,9]. Most context in-
formation is domain-specific [52], or related to the application architecture [72,39].
Hence, existing work highlights the diversity and complexity of context that includes
heterogeneous information, thus motivating our need to build a single framework that
deals with any kind of context information.

Numerous self-adaptive and autonomic systems support dynamic contextual
adaptation in pervasive and mobile computing environments. Most are based on a
control loop, such as the autonomic computing architecture MAPE-K (Monitor, An-
alyze, Plan, Execute, Knowledge) [32] or the Rainbow framework [26]. Reflexive
mechanisms are also used for dynamic adaptation such as in the ReMMoC [28] and
CARISMA [15] middleware platforms. These centralized, problem-specific solutions
are not adapted to our distributed, multi-focus setup. Different work from the IoT
community perform multi-level adaptation in environments composed of cloud in-
frastructure and things [5,2] as well as networked cyber-physical systems [65] but
does not benefit from the advantages of the Web and the collaboration between things
as we provide in our avatar-based approach [33].

5.5.2 PROBLEM STATEMENT
As seen above, existing work mostly bind context models to specific scenarios and
do not design them with adaptation in mind. It is currently difficult to reuse or extend
these models due to their specificity, and they sometimes do not cope with WoT ap-
plication requirements. Furthermore, adaptation solutions proposed in the literature
do not provide abstraction for extending things and enabling collaboration between
them, or do not provide multi-purpose adaptation. Some of them are also not compat-
ible with decentralized architectures. Thus, there is a need for a solution to support
flexible and interoperable context models that can be reused across applications and
use-cases, as well as autonomic, decentralized and multi-purpose context adaptation.
The following questions, illustrated with our agricultural scenario, must be answered
to provide multi-purpose adaptation:

1. Which protocols should be used to communicate with things? Agribots, ma-
chineries and sensors must exchange information using adequate protocols, with
respect to their heterogeneity and the network status.

2. Where should the application code be executed? Applicative modules can be
executed either locally on agribots or remotely on the office system, which de-
pends on their computational resources, location and availability.

3. Which local capability should be involved in a given high-level functionality?
To move across grapefruit lines, agribots can rely on processing data from their
GPS sensors or embedded cameras.



168 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

4. Which other avatars functionalities should compose a collaborative function-
ality? A sensor can select an agribot to water specific parts of the field.

5. Which functionality should be exposed to application end-users and to other
avatars? The watering functionality would not be displayed in case of drought.

We next present our solution to instantiate reusable and flexible context mod-
els, based on both the literature and a typical WoT application architecture. We then
describe how the components that compose an avatar handle, update and query an
instantiated context model in order to be able to respond to the above adaptation
questions.

5.5.3 CONTEXT META-MODEL
The adaptation process relies on physical, security, privacy, or other constraints,
which vary according to the use-case. We have designed a context meta-model that
allow avatars to instantiate domain-specific models, capable of answering different
adaptation questions for a given WoT application [69]. We have organized our meta-
model into levels that characterize the different parts of a WoT application.

The Physical level describes things, their internal states and their physical
(sensed) environment. The Application level describes the application architecture, its
state, and its configuration (e.g. components or services, locally stored or distributed).
The Communication level describes network link context between application and
clients, things and data sources (e.g. network states, bandwidth, latency, connection
types). The Social level includes cognitive aspects related to the client’s environment,
which involves roles, organizations, as well as behavioral concepts and type of users
(human, software).

Our meta-model is a two-dimensional matrix, that crosses pre-determined levels
with a set of application-defined Dimensions based on the literature. Thus, it not only
provides flexibility to WoT application developers by allowing the creation of any
number of dimensions, but also provides reusability across WoT applications through
the level/dimension view.

5.5.4 MULTI-LEVEL CONTEXT ADAPTATION
The above context meta-model allows for a single adaptation mechanism to operate
across application domains. Each instantiated model supports data integration and
query answering. For each dimension, data integration applies transformation rules
to contextual data (numerical values coming from sensors or external services) in or-
der to turn them into high-level contextual representations corresponding to the four
levels of the model. Transformation rules act as filters that allow these representations
to change only when the data go under significant changes. Query answering relies on
SPARQL SELECT queries to get the accurate information to each adaptation ques-
tion. Then, making the adaptation decisions consists in applying adaptation rules on
the SPARQL query results. Our avatar architecture includes a context manager that
populates the context model and handle the adaptation questions, as defined in [69].



5.6 A SOCIAL VISION OF THE WEB OF THINGS 169

5.5.5 EVALUATION
We have conducted two types of evaluations. First, we have evaluated our meta-
model in [69] according to the methodology proposed in [27] and have shown its
relevance and reusability across different scenarios as well as its usability in terms
of performance based on the DL language it relies on. Second, we have evaluated
our adaptation process in [70]. This evaluation consisted in adapting the location
of application code (question #2). This code performed semantic reasoning about 2
ontologies: Fipa-Device21 with 126 entities (schema + axioms) and IoT-O22 with
328 entities. We have used the HyLAR [68] architecture to migrate the code be-
tween a thing (laptop mocking a drone) and a cloud (virtual machine) and to measure
reasoning times. Evaluation results detailed in [70] show that our solution globally
improves avatar performances for the code execution adaptation question, and that
reasoning is up to 82% more effective than fixed implementations in disrupted en-
vironments for an average domain-specific ontology. This shows that our solution
enables multi-purpose adaptation of avatar-based WoT applications and allows de-
velopers to declaratively define adaptation processes using high-level concepts and
standardized rules.

5.6 A SOCIAL VISION OF THE WEB OF THINGS
To execute a WoT application (i.e. a composition of functionalities), the end-user
requests its top-level functionality to an avatar that exposes it. Each avatar is respon-
sible for the correct execution of the functionalities it exposes. To do so, it satisfies
its individual goals. A goal can be functional or non-functional. In the first case,
it corresponds to the objective of a local (resp. collaborative) functionality, handled
by the Local Functionality Module (resp. Collaborative Functionality Module). In
the second, it is related to other concerns, such as energy management or response
time to other functionalities. The hierarchy of functionalities can be considered as
a global plan to orchestrate local functionalities and produce collaborative ones. An
avatar decides to provide a collaborative functionality by semantically matching the
requirements of the functionality with functionalities exposed by itself and other
avatars. If all sub-functionalities are available, it can start a coalition formation pro-
cess (Fig. 5.5). A coalition is a set of self-interested avatars that agree to cooperate
for executing a task [36]. The result of this process is recruiting a set of avatars in a
temporary ad-hoc cooperation to perform a collective goal. A collective goal is the
objective of a coalition of avatars (namely, the functionality that requires the collabo-
ration). In this section, we describe how avatars can autonomously expose and fulfill
collaborative functionalities and therefore, WoT applications.

21www.fipa.org/specs/fipa00091/PC00091A.html.
22http://www.irit.fr/recherches/MELODI/ontologies/IoT-O.owl.

http://www.fipa.org/specs/fipa00091/PC00091A.html
http://www.irit.fr/recherches/MELODI/ontologies/IoT-O.owl


170 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

FIGURE 5.5

Coalition formation

5.6.1 TOWARDS SOCIAL CONSCIOUSNESS OF AVATARS
The smartness of a WoT system lies typically in its service composition, context-
awareness, human-machine interaction, automation, semantic reasoning, data inte-
gration and analysis to name a few [8]. Still, we can more attractively exploit the po-
tential of the Web of Things and go beyond its user-centric technical smartness. Cur-
rently, we are observing a progressive shift from things with a user-understandable
smartness to things with an actual social consciousness [6]. Motivated by the same
social concern, we believe that the technical smartness offered by WoT platforms
and architectures is mature enough to take a further step in the evolution of every-
day things into socially intelligent ones. Nonetheless, it remains difficult for a WoT
system designer to manage or anticipate the heterogeneity and the complexity of in-
teractions between things. Hence the need for a thing-centered social vision for the
Web of Things. This vision cannot be easily achieved as many pieces are still missing.

While efforts to meet WoT specific challenges (listed above) are partially made,
we still need an abstract high-level perspective. Recently, there has been a paradigm
shift towards a social vision for the IoT/WoT. Many terms like “Social Web of
Things”, “Social Internet of Things”, “Internet of Social Things”, “Smart-its”,
“Everything is alive”, “Cyber Physical Social Systems”, “Wisdom Web of Things”
have flourished attempting to make smart things as first-class citizens of the Web.
However, little attention was paid to “human-inspired” social interactions between
smart things. Approaching the social vision from a collective intelligence perspective
[37,34,38], we consider smart things as (i) autonomous entities, i.e. operating and
deciding independently according to their own agenda, (ii) exhibiting goal-directed
behavior, (iii) and capable of cooperating to solve problems that go beyond the indi-
vidual capabilities or knowledge of each entity.

5.6.2 COOPERATION AS AN INTENDED SOCIAL INTERACTION
Avatars can engage in many types of social interactions. The simplest form is, for
example, communicative action such as sending requests or information. Coopera-
tion is a very general form of interaction that is studied in multi-agent systems. It is



5.6 A SOCIAL VISION OF THE WEB OF THINGS 171

established by the delegation/adoption of tasks, coordination of actions, and conflict
resolution [16]. From an individual point of view, cooperation is a deliberate attitude
of an avatar who decides to carry out a joint action with one or many avatars. More
concretely, cooperation works through an avatar allocating a task (or sub-task) to an-
other avatar via a specific request (offer, proposal, announcement, etc.) satisfying a
commitment (help, contract, etc.) [16].

Avatars need to cooperate when they do not have the necessary skills or knowl-
edge to accomplish their individual goals, to respond effectively to users’ and other
avatars’ requests, but also to meet objectives of the overall system. The challenge of
cooperation is the establishment and maintenance of mutually advantageous relations
between avatars. This challenge is more present in the coexistence of WoT systems,
unknown to each other, in the same physical environment. An avatar that belongs to
one or more coalitions and that is requested by another avatar must ensure that the
response to this request does not interfere in achieving its individual goals and those
associated to its various coalitions.

There are several cases where “interferences” can occur:

• Incompatible goals between two avatars. An avatar A1 delegates an action to an
avatar A2 with consequences on the environment that are not acceptable by A2.
It should be noted that this conflict has no place in a situation of competition or
adversity between avatars, but occurs between avatars with collaborative attitudes.

• Cooperation with avatars having conflicting goals. When an avatar A1 accepts re-
quests from two avatars A2 and A3 in conflict, the external conflict between A2
and A3 will become an internal conflict to A1. From a collective point of view, this
interference transforms an external conflict between coalitions with incompatible
goals into an internal conflict to the avatar agreeing to join these coalitions.

• Resource conflict between avatars. When two avatars need to use the same resource
at the same time. In a cooperative setting, this interference can be considered as a
scheduling constraint.

5.6.3 TOWARDS SOCIAL CONSCIOUSNESS OF AVATARS:
UNDERSTANDING SOCIAL INTERACTIONS

In an open environment like the Web, systems are designed by different vendors,
making it difficult for all the coexisting groups of socially conscious avatars to share
the same mental attitudes (cooperative, cautious, selfish, precautious, etc.). Indeed,
such coexistence can show a wide range of behaviors that may either fit the label
of mutualism, cooperation, antagonism, parasitism, etc. One can also think about
considering some kind of exploitive behaviour that smart things can encounter. This
difference in attitudes and intentions of avatars influences the interactions between
coexisting smart things. Therefore, an avatar must be able to understand the nature of
its social interactions for a successful cooperation.

Identification of social interactions One of the most important prerequisites to im-
plement a social vision of the Web of Things is to investigate the types of social



172 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

Table 5.2 Classification of Interaction Situations ([22])

Resources Skills Goals Interaction Situation
Type Category

Sufficient Sufficient Compatible Independence Independence

Insufficient Simple Collaboration
CooperationInsufficient Sufficient Obstruction

Insufficient Coordinated Collaboration

Sufficient Sufficient Incompatible Pure Individual Competition Antagonism

Insufficient Pure Collective Competition

Insufficient Sufficient Individual Resource Conflict

Insufficient Collective Resource Conflict

interactions among things [6]. According to Ferber [22], except for independence
situations where goals are compatible and the resources and skills are sufficient, the
possible interaction situations are cooperation or antagonism (Table 5.2).

There have been efforts to present a taxonomy for relationships between smart
things [7]: Parental object relationship, Co-location object relationship, Co-work ob-
ject relationship, Ownership object relationship, Social object relationship. However,
they are meant to classify agents into communities (smart things sharing the same
manufacturer, environment, owner, or goal) so they can be easily navigable in social
networks like the ones created by humans.

Intersubjectivity as a social process to understand social interactions Com-
munication is the essence of multi-avatar systems. Indeed, expressing desires, setting
goals and committing to joint actions require that all avatars communicate. The for-
mation of coalitions needs, as well, some kind of communication. In this context, we
point out a concept that is the basis of human communication called intersubjectiv-
ity [71]. Intersubjectivity – between two or more avatars in interaction – consists in
considering the recognition of the intended meaning of actions and requests. From
a multi-agent perspective, intersubjectivity refers to the interconnection of the self,
the others and the environment. In other words, the avatar ability to take into account
the mental states [62] of other avatars in its perception of the environment. Yet, we
can never access the mental states of other avatars, we can only infer their existence
based on what we observe, namely their performed actions, exchanged messages, re-
quests, social links, etc. When an avatar is requested to contribute to a coalition, it is
not enough to assess the cost of the provided services. The avatar should include the
involvement of goals, both individual and derived from the coalitions in which the
requester is involved. Additionally, in connection with its own coalitions, the avatar
should construct a social representation of what we call its Collective Identity, i.e.
any self-representational mode adopted by most of the avatars in a coalition, that
they must integrate into their personal identity. Collective identity can simply be the
coalition members and their common goal, or can be extended to role hierarchical
structure between avatars.



5.6 A SOCIAL VISION OF THE WEB OF THINGS 173

5.6.4 INTENT RECOGNITION AS A MEANS FOR INTERSUBJECTIVITY
As we stated earlier, for a successful cooperation, an avatar needs to identify the
type of interaction situations with its potential partners. We introduce intersubjectiv-
ity as a social process to this identification. This is where intent recognition [66] will
play a very important role. There are many sub-areas that contribute to the growing
field of recognizing other agents’ behavior: intent recognition, goal recognition, plan
recognition, activity recognition, mental state abduction, etc. But they share simi-
lar challenges and applications. This division is not meant to separate recognition
into isolated research areas, they are closely related and they can transform into one
another. Better than that, the resolution of one can automatically resolve others. For
example, many works use goal and intention interchangeably. Likewise, intent recog-
nition and plan recognition may have the same meaning, while some other works
consider goal/intent recognition as a particular case of plan recognition.

Intent Recognition has proven useful for many research areas such as robotics,
ambient intelligence, computer vision, human-machine interaction, traffic monitor-
ing, military applications, video games and many others [66]. Several difficulties are
encountered like the cost of handcrafted plan libraries [77], and partial observabil-
ity of agents actions. In the absence of a plan library, agents can use action models
[78] to recognize the plans that may be executed by an observed team. These tech-
niques require a team trace, an initial state and a goal. The objective is to generate
all possible plans to go from the initial state to the goal state, and keep the plans
corresponding to the observed team trace. There are other techniques that do not rely
on plan libraries or action models. [64] offers an approximation of a team intention
considering the activities that take place between the roles of agents in a hierarchical
structure (called RoleGraph). Agents can then match those activities between roles
with rolegraphs that they already know.

5.6.5 APPLICATION TO THE VITICULTURE SCENARIO
We consider a set of agribots, RFID tags, sensors and a tractor in a vineyard. These
smart things participate – through their avatars – in the satisfaction of three function-
alities, grouped under a Vineyard Management WoT application (Fig. 5.6).

A user requests a moisture sensor avatar to achieve a Watering functionality,
which requires several sub-functionalities, among which water-vineyard. To recruit
an avatar that performs this functionality, the moisture sensor avatar initiates the
Contract Net Protocol [63] to form a coalition. This protocol comprises four steps:
(i) Announce: the moisture sensor avatar requests every avatar exposing a water-
vineyard functionality, (ii) Proposition: the avatar of an agribot already involved in
a 3D Data Analysis functionality receives the request to provide water-vineyard. It
knows that participating to a coalition for realizing another functionality may inter-
fere in achieving the objective of 3D Data Analysis. However, it can postpone the
accomplishment of 3D Data Analysis for a functionality of higher priority. For this
reason, the agribot avatar requests an external service to use an intent recognition al-
gorithm (like MARS [77] and DARE [78]) to identify the moisture sensor intention.



174 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

FIGURE 5.6

Coalition formation

After having determined that the moisture sensor avatar is likely seeking to realize
the priority Watering functionality, the agribot avatar makes the decision to join the
moisture sensor avatar coalition. It abandons its original plan of realizing 3D Data
Analysis, saves it for later, and responds positively to the sensor avatar proposal,
(iii) Decision: after analysis of the positive responses, the moisture sensor avatar
chooses the agribot avatar which seems to be the best candidate. (iv) Contract: the
contract between the moisture sensor avatar and the agribot avatar that accepted to
join the coalition is made. The sensor avatar can then inform the user that the collab-
orative functionality is being achieved.

5.7 CONCLUSION
Web of Things applications target various domains, address different concerns and
will only meet global adoption by offering smart behaviors and services to their users.
WoT platforms need to be sufficiently flexible to both enable interoperability between
heterogeneous things and host such diverse and complex Web applications. In this
chapter, we claim that such flexibility requires an abstraction layer between things
and applications, and that this layer should represent things in a convenient, extensi-
ble and standard manner. To this end, we present the notion of avatar developed in
the ASAWoO project and highlight several contributions.

Avatars are autonomous software artifacts that apply semantic technologies to
both achieve interoperability among things and expose high-level RESTful function-
alities from combinations of elementary thing capabilities. They can be connected
to things using different network protocols withstanding connectivity disruptions.
They can be executed and can deploy application code on the thing itself, on the
gateway on which it is connected or on cloud infrastructures. They integrate a multi-
purpose adaptation mechanism that allows optimizing functional and non-functional
processes. They can autonomously collaborate and form coalitions to provide appli-



REFERENCES 175

cations composed with functionalities from avatars of multiple and heterogeneous
things.

All these possibilities are provided in the avatar component-based architecture
described in this chapter. We show how these contributions are put into work in the
avatar architecture and more generally, how this architecture is able to efficiently
handle various concerns at different levels: thing-specific constraints (e.g. network
management), transversal requirements (e.g. adaptation) or application behavior (e.g.
collaboration). This architecture has been designed to be extensible, and additional
components are currently being implemented, such as a (de)serialization mechanism
that will allow avatars to be saved, restored and moved between WoT platforms.

Together with the avatar architecture, we have specified an infrastructure that
gathers the characteristics of avatar-based WoT platforms. Such platforms can be
implemented on top of existing IoT solutions. They add support for avatar life-cycle,
and act as “WoT application servers”. We have also specified how to package WoT
applications in a way that copes with WoT requirements and allows application de-
signers to address domain-specific concerns while reusing existing functionalities.
However, the notion of avatar does not appear in an application description; this saves
developers’ time and allows other WoT application specifications to be imported in
our infrastructure. In any case, deploying an application in an avatar-based platform
seamlessly leverages all advantages of the concerns already addressed in our avatar
approach (interoperability, fine-grained deployment, network control and adaptation,
collaboration). This is particularly useful when using complex things (such as robots)
or heterogeneous setups. We have implemented our approach and describe the differ-
ent parts of our prototype. We illustrate our contributions with a scenario inspired
from agricultural robotics.

The Web of Things is currently a relatively new field. The community is large
and expects promising business opportunities. Therefore, it will for sure continue to
evolve and new standards will emerge. It has to deal with a multi-layered vertical
stack and multiple use cases, and to combine contributions from different disciplines.
This is why we have built our approach on stable and comprehensive visions from as
various disciplines as cyber-physical systems, software engineering, semantic Web
and artificial intelligence. In this chapter, we show first that the notion of avatar helps
building multidisciplinary, efficient and user-understandable WoT applications, and
second that the theoretical foundations of our approach are reusable across the lan-
guages, standards and components implemented in the avatars.

REFERENCES
[1] Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles P. Towards a better un-

derstanding of context and context-awareness. In: Handheld and ubiquitous computing.
Springer; 1999. p. 304–7.



176 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

[2] Alaya MB, Matoussi S, Monteil T, Drira K. Autonomic computing system for self-
management of machine-to-machine networks. In: Proceedings of the 2012 international
workshop on self-aware Internet of things. New York, NY, USA: ACM; 2012. p. 25–30.

[3] Arbab F. A channel-based coordination model for component composition. Rep Softw
Eng 2002;3:1–35.

[4] Arcangeli J-P, Bouzeghoub A, Camps V, Canut M-F, Chabridon S, Conan D, et al.
Income–multi-scale context management for the internet of things. In: Ambient intelli-
gence. Springer; 2012. p. 338–47.

[5] Athreya A, DeBruhl B, Tague P. Designing for self-configuration and self-adaptation in
the internet of things. In: First international workshop on internet of things (C-IOT), 9th
international conference on collaborative computing: networking, applications and work-
sharing (CollaborateCom 2013). Oct 2013. p. 585–92.

[6] Atzori L, Iera A, Morabito G. From “smart objects” to “social objects”: the next evolu-
tionary step of the internet of things. IEEE Commun Mag 2014;52(1):97–105.

[7] Atzori L, Iera A, Morabito G, Nitti M. The social internet of things (siot)–when social
networks meet the internet of things: concept, architecture and network characterization.
Comput Netw 2012;56(16):3594–608.

[8] Bandyopadhyay D, Sen J. Internet of things: applications and challenges in technology
and standardization. Wirel Pers Commun 2011;58(1):49–69.

[9] Bazire M, Brézillon P. Understanding context before using it. Modeling and using context.
2005.

[10] Bischof S, Karapantelakis A, Nechifor C-S, Sheth A, Mileo A, Barnaghi P. Semantic
modelling of smart city data. In: W3C workshop on the web of things. Jun 2014.

[11] Brézillon P. Context in artificial intelligence: II. Key elements of contexts. Comput Artif
Intell 1999:1–27.

[12] Brézillon P. Representation of procedures and practices in contextual graphs. Knowl Eng
Rev 2003:1–26.

[13] Brézillon P, Pomerol J. Contextual knowledge sharing and cooperation in intelligent as-
sistant systems. Le Travail Humain 1999:1–33.

[14] Cao H, Hu DH, Shen D, Jiang D, Sun J-T, Chen E, Yang Q. Context-aware query classi-
fication. ACM Sigir 2009;106(3):3.

[15] Capra L, Blair GS, Mascolo C, Emmerich W, Grace P. Exploiting reflection in
mobile computing middleware. SIGMOBILE Mobile Comput Commun Revue Oct.
2002;6(4):34–44.

[16] Castelfranchi C, Falcone R. Conflicts within and for collaboration. In: Conflicting agents.
Springer; 2002. p. 33–61.

[17] Cerf VG, Burleigh SC, Durst RC, Fall K, Hooke AJ, Scott KL, et al. Delay-tolerant net-
working architecture. In: IETF RFC 4838. Nov. 2007.

[18] Cervantes F, Occello M, Ramos F, Jamont J. Toward self-adaptive ecosystems of services
in dynamic environments. In: Proceedings of the international conference on systems
science 2013, ICSS 2013. Advances in intelligent systems and computing, vol. 240.
Springer; 2014. p. 671–80.

[19] Chaari T, Laforest F, Flory A, Einstein AA, Cedex V. Adaptation des applications au con-
texte en utilisant les services web. In: Proceedings of the 2nd French-speaking conference
on mobility and uibquity computing – UbiMob ’05. 2005. p. 3–6.

[20] Conti M, Marzini E, Mascitti D, Passarella A, Ricci L. Service selection and composi-
tion in opportunistic networks. In: 9th international wireless communications and mobile
computing conference (IWCMC 2013). July 2013. p. 1565–72.



REFERENCES 177

[21] Dey AK, Salber D, Abowd GD, Futakawa M. The conference assistant: combining
context-awareness with wearable computing. In: The third international symposium on
wearable computers, 1999. Digest of papers. IEEE; 1999. p. 21–8.

[22] Ferber J. Multi-agent systems: an introduction to distributed artificial intelligence, vol. 1.
Reading: Addison-Wesley; 1999.

[23] Fielding RT. Architectural styles and the design of network-based software architectures.
Ph.D. thesis. Irvine: University of California; 2000.

[24] Fuhrhop C, Lyle J, Faily S. The webinos project. In: Proceedings of the 21st international
conference companion on world wide web. ACM; 2012. p. 259–62.

[25] Galloway B, Hancke GP. Introduction to industrial control networks. IEEE Commun Surv
Tutor 2013;15(2):860–80.

[26] Garlan D, Schmerl B, Cheng S-W. Software architecture-based self-adaptation. In: Auto-
nomic computing and networking. Springer; 2009. p. 31–55.

[27] Gómez-Pérez A. Knowledge sharing and reuse. Handbook of applied expert systems.
1998. p. 10–1.

[28] Grace P, Blair GS, Samuel S. Remmoc: a reflective middleware to support mobile client
interoperability. In: On the move to meaningful Internet systems 2003: CoopIS, DOA,
and ODBASE. Nov. 2003. p. 1170–87.

[29] Guinard D, Trifa V, Mattern F, Wilde E. From the internet of things to the web of things:
resource-oriented architecture and best practices. In: Uckelmann D, Harrison M, Micha-
helles F, editors. Architecting the internet of things. New York, Dordrecht, Heidelberg,
London: Springer; 2011. p. 97–129.

[30] Gyrard A. A machine-to-machine architecture to merge semantic sensor measurements.
In: Proceedings of the 22nd international conference on world wide web companion. In-
ternational world wide web conferences steering committee. 2013. p. 371–6.

[31] Gyrard A, Serrano M, Atemezing GA. Semantic web methodologies, best practices and
ontology engineering applied to internet of things. In: 2015 IEEE 2nd world forum on
Internet of things (WF-IoT). IEEE; 2015. p. 412–7.

[32] IBM. An architectural blueprint for autonomic computing. 2004.
[33] Jamont J, Médini L, Mrissa M. A web-based agent-oriented approach to address het-

erogeneity in cooperative embedded systems. In: Pérez JB, Rodríguez JMC, Mathieu P,
Campbell A, Ortega A, Adam E, Navarro E, Ahrndt S, Moreno MN, Julián V, editors.
The 12th international conference on practical applications of agents and multi-agent sys-
tems PAAMS 2014. Advances in intelligent systems and computing, vol. 293. Salamanca,
Spain: Springer; Jun 2014. p. 45–52.

[34] Jamont J-P. Multi-agent approach, models and tools to collective cyber-physical system
engineering. In: Habilitation thesis. Université Grenoble Alpes; 2016.

[35] Mattsson J, Göran Selander GAE. Object security in web of things. In: W3C workshop
on the web of things – enablers and services for an open web of devices. June 2014.

[36] Kerr R, Cohen R. Detecting and identifying coalitions. In: International foundation for
autonomous agents and multiagent systems. Proceedings of the 11th international confer-
ence on autonomous agents and multiagent systems, vol. 3. 2012. p. 1363–4.

[37] Khalfi EM, Jamont J-P, Cervantes F, Barhamgi M. Designing the web of things as a so-
ciety of autonomous real/virtual hybrid entities. In: Proceedings of the 2014 international
workshop on web intelligence and smart sensing. ACM; 2014. p. 1–2.

[38] Khenifar A, Jamont J-P, Occello M, Ben-Yelles C-B, Koudil M. A recursive approach to
enable the collective level interaction of the web of things applications. In: Proceedings



178 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

of the 2014 international workshop on web intelligence and smart sensing. ACM; 2014.
p. 1–5.

[39] Kirsch-Pinheiro M, Gensel J, Martin H. Representing context for an adaptative awareness
mechanism. In: Groupware: design, implementation, and use. Springer; 2004. p. 339–48.

[40] Kovatsch M, Lanter M, Duquennoy S. Actinium: a restful runtime container for scriptable
internet of things applications. In: 3rd IEEE international conference on the internet of
things, IOT 2012. IEEE; 2012. p. 135–42.

[41] Le Sommer N, Ben Sassi S, Guidec F, Mahéo Y. A middleware support for location-based
service discovery and invocation in disconnected MANETs. Studia Inform Universalis
Sep. 2010;8(3):71–97.

[42] Le Sommer N, Launay P, Mahéo Y. A framework for opportunistic networking in spon-
taneous and ephemeral social networks. In: 10th workshop on challenged networks
(CHANTS’2015). Paris, France: ACM; Sep. 2015.

[43] Le Sommer N, Said R, Mahéo Y. A proxy-based model for service provision in oppor-
tunistic networks. In: 6th international workshop on middleware for pervasive and ad-hoc
computing (MPAC’08). Louvain, Belgium: ACM; Dec. 2008.

[44] Lee EA. Cyber physical systems: design challenges. In: 2008 11th IEEE international
symposium on object oriented real-time distributed computing (ISORC). IEEE; 2008.
p. 363–9.

[45] Lin J, Sedigh S, Miller A. Modeling cyber-physical systems with semantic agents. In:
Computer software and applications conference workshops (COMPSACW), 2010 IEEE
34th annual. IEEE; 2010. p. 13–8.

[46] Mahéo Y, Said R. Service invocation over content-based communication in disconnected
mobile ad hoc networks. In: 24th international conference on advanced information net-
working and applications (AINA’10). Perth, Australia: IEEE; Apr. 2010. p. 503–10.

[47] Mascolo C, Capra L, Emmerich W. Mobile computing middleware. In: Advanced lectures
on networking. Springer; 2002. p. 20–58.

[48] Cuenca M, Da Cruz M, Morin R. Programming device ensembles in the web of things. In:
W3C workshop on the web of things – enablers and services for an open web of devices.
June 2014.

[49] Médini L, Terdjimi M. An avatar-based workflow for the semantic web of things. Com-
munication in the WWW2016 W3C track, https://www.w3.org/2016/04/w3c-track.html,
April 2016.

[50] Mrissa M, Médini L, Jamont J-P, Le Sommer N, Laplace J. An avatar architecture for the
web of things. IEEE Internet Comput 2015;19(2):30–8.

[51] Mrissa M, Médini L, Jamont J-P. Semantic discovery and invocation of functionalities for
the web of things. In: IEEE international conference on enabling technologies: infrastruc-
ture for collaborative enterprises. Jun. 2014.

[52] Munnelly J, Fritsch S, Clarke S. An aspect-oriented approach to the modularisation of
context. In: Fifth annual IEEE international conference on pervasive computing and com-
munications, 2007. PerCom’07. IEEE; 2007. p. 114–24.

[53] Musolesi M, Mascolo C. Car: context-aware adaptive routing for delay-tolerant mobile
networks. IEEE Trans Mob Comput 2009;8(2):246–60.

[54] Neves dos Santos F, Sobreira H, Campos D, Morais R, Moreira AP, Contente O. Towards
a reliable monitoring robot for mountain vineyards. In: International conference on au-
tonomous robot systems and competitions (ICARSC 2015). Vila Real, Portugal: IEEE;
Apr. 2015. p. 37–43.

https://www.w3.org/2016/04/w3c-track.html


REFERENCES 179

[55] Papadopoulos GA, Stavrou A, Papapetrou O. An implementation framework for
software architectures based on the coordination paradigm. Sci Comput Program
2006;60(1):27–67.

[56] Passarella A, Kumar M, Conti M, Borgia E. Minimum-delay service provisioning in op-
portunistic networks. IEEE Trans Parallel Distrib Syst 2010;22(8):1267–75.

[57] Raverdy P-G, Riva O, de La Chapelle A, Chibout R, Issarny V. Efficient context-aware
service discovery in multi-protocol pervasive environments. In: 7th international confer-
ence on mobile data management, 2006. MDM 2006. IEEE; 2006. p. 3.

[58] Redhead F, Snow S, Vyas D, Bawden O, Russell R, Perez T, et al. Bringing the farmer per-
spective to agricultural robots. In: 33rd annual ACM conference on human factors in com-
puting systems (CHI EA ’15). Seoul, Republic of Korea: ACM; Apr. 2015. p. 1067–72.

[59] Schilit BN, Adams N, Gold R, Tso MM, Want R. The parctab mobile computing system.
In: Fourth workshop on workstation operating systems, 1993. Proceedings. IEEE; 1993.
p. 34–9.

[60] Schmidt A. Ubiquitous computing-computing in context. Ph.D. thesis. Lancaster Univer-
sity; 2003.

[61] Scott K, Burleigh S. Bundle protocol specification. In: IETF RFC 5050. Apr. 2007.
[62] Sindlar MP, Dastani MM, Dignum F, Meyer J-JC. Mental state abduction of bdi-based

agents. In: Declarative agent languages and technologies VI. Springer; 2008. p. 161–78.
[63] Smith RG. The contract net protocol: high-level communication and control in a dis-

tributed problem solver. IEEE Trans Comput 1980;12:1104–13.
[64] Soon S, Pearce A, Noble M. A teamwork coordination strategy using hierarchical role re-

lationship matching. In: Agents and computational autonomy. Springer; 2003. p. 249–60.
[65] Stehr M, Talcott CL, Rushby JM, Lincoln P, Kim M, Cheung S, Poggio A. Fractionated

software for networked cyber-physical systems: research directions and long-term vision.
In: Agha G, Danvy O, Meseguer J, editors. Formal modeling: actors, open systems, bio-
logical systems – essays dedicated to carolyn talcott on the occasion of her 70th birthday.
Lecture notes in computer science, vol. 7000. Springer; 2011. p. 110–43.

[66] Sukthankar G, Geib C, Bui HH, Pynadath D, Goldman RP. Plan, activity, and intent recog-
nition: theory and practice. Newnes; 2014.

[67] Sztipanovits J, Koutsoukos X, Karsai G, Kottenstette N, Antsaklis P, Gupta V, Good-
wine B, Baras J, Wang S. Toward a science of cyber-physical system integration. Proc
IEEE 2012;100(1):29–44.

[68] Terdjimi M, Médini L, Mrissa M. HyLAR+: improving hybrid location-agnostic reason-
ing with incremental rule-based update. In: WWW’16: 25th international world wide web
conference companion. Apr. 2016.

[69] Terdjimi M, Médini L, Mrissa M. Towards a meta-model for context in the web of things.
In: Karlsruhe service summit workshop. Feb. 2016.

[70] Terdjimi M, Médini L, Mrissa M, Le Sommer N. An avatar-based adaptation workflow
for the web of things. In: WETICE 2016. Jun. 2016.

[71] Tomasello M, Kruger AC, Ratner HH. Cultural learning. Behav Brain Sci
1993;16(03):495–511.

[72] Truong H-L, Dustdar S, Baggio D, Corlosquet S, Dorn C, Giuliani G, et al. Incontext:
a pervasive and collaborative working environment for emerging team forms. In: Inter-
national symposium on applications and the internet, 2008. SAINT 2008. IEEE; 2008.
p. 118–25.

[73] Wei Q, Farkas K, Prehofer C, Mendes P, Plattner B. Context-aware handover using active
network technology. Comput Netw 2006;50(15):2855–72.



180 CHAPTER 5 BUILDING A WEB OF THINGS WITH AVATARS

[74] Xiang B, Jiang D, Pei J, Sun X, Chen E, Li H. Context-aware ranking in web search. Sigir
2010;2010:451.

[75] Yao L, Sheng QZ, Benatallah B, Dustdar S, Shemshadi A, Wang X, Ngu AH. Up in the
air: when homes meet the web of things. arXiv preprint arXiv:1512.06257, 2015.

[76] Yu Z, Zhou X, Zhang D, Chin C-Y, Wang X, et al. Supporting context-aware media rec-
ommendations for smart phones. IEEE Pervasive Comput 2006;5(3):68–75.

[77] Zhuo HH, Li L. Multi-agent plan recognition with partial team traces and plan libraries.
In: IJCAI, vol. 22. 2011. p. 484.

[78] Zhuo HH, Yang Q, Kambhampati S. Action-model based multi-agent plan recognition.
In: Advances in neural information processing systems. 2012. p. 368–76.

[79] Zimmermann A, Lorenz A, Oppermann R. An operational definition of context. In: Mod-
eling and using context. Springer; 2007. p. 558–71.

ACKNOWLEDGEMENTS
This work is supported by the French ANR (Agence Nationale de la Recherche) under the
grant number <ANR-13-INFR-012>.


	5 Building a Web of Things with Avatars
	5.1 Introduction
	 Chapter Organization

	5.2 Motivating Scenario
	5.3 Avatars and Avatar-Based WoT Platforms
	5.3.1 Requirements for WoT Platforms
	5.3.2 Related Work
	5.3.3 Avatars
	5.3.4 Avatar-Based Infrastructure
	5.3.5 WoT Applications
	5.3.6 Validation Prototype

	5.4 Disruption-Tolerant Communications
	5.4.1 Related Work
	5.4.2 Overview of the RESTful DTN Communication Support
	5.4.3 Communication Modes
	5.4.4 Non-functional Parameters for Delay-tolerant Computing

	5.5 Context Modeling and Management
	5.5.1 Related Work
	5.5.2 Problem Statement
	5.5.3 Context Meta-model
	5.5.4 Multi-level Context Adaptation
	5.5.5 Evaluation

	5.6 A Social Vision of the Web of Things
	5.6.1 Towards Social Consciousness of Avatars
	5.6.2 Cooperation as an Intended Social Interaction
	5.6.3 Towards Social Consciousness of Avatars: Understanding Social Interactions
	5.6.4 Intent Recognition as a Means for Intersubjectivity
	5.6.5 Application to the Viticulture Scenario

	5.7 Conclusion
	 References
	 Acknowledgements


