A RESTful Task Allocation Mechanism for the

Web of

El-Mehdi Khalfi, Jean-Paul Jamont
Université Grenoble Alpes, LCIS
F-26000 Valence, FRANCE
firstname.surname@lcis.grenoble—-inp.fr

Abstract—The Web of Things extends the Internet of Things
with Web technologies to interconnect smart things and build
scalable, adaptable, and interoperable applications. In this con-
text, smart things expose their services as RESTful resources,
to be combined in composite applications. Though, due to the
proliferation of connected objects, multiple smart things often
are available to provide a single service, showing the need for a
task allocation mechanism for the Web of Things.

Our work addresses the task allocation problem, which consists
in selecting a set of objects to realize a complex application in
a setup where several objects provide the same functionality.
We rely on a multi-agent approach to describe this problem
as a Distributed Constraint Satisfaction problem. We propose a
solution that respects the fundamental principles of the Web by
respecting the REST architectural style and design principles.
We implemented our solution with a typical smart city scenario
to show the applicability of our approach.

I. INTRODUCTION

The Internet of Things (IoT) refers to the current trend
of connecting everyday objects to the Internet Procotol (IP)
world. It aims at establishing identification, connectivity and
communication to devices, ranging from the simplest sensors
to the most complex robots. As more and more devices are
getting connected to the Internet, a promising next step is to
use the Web and its associated technologies as a platform
for smart things : this vision is called the Web of Things
(WoT) [1]. It refers to the use of Web technologies to ad-
dress and consume services exposed by physical things. More
concretely, the WoT promotes the use of the HTTP protocol
and resource-oriented computing to allow exposing object
functionnalities as RESTful Web Services (also called Web
resources or simply resources). Hence, HTTP methods allow
generic HTTP clients seamless access to any Web resource. As
well, Uniform Resources Identifiers (URIs) provide a generic
addressing scheme for physical things. For example, a HTTP
GET on http://lamp.office.home/status would
retrieve the state (on or off) of a lamp.

While Web technologies help communicating with con-
nected objects, it remains difficult to manage or anticipate
the complexity of a typical WoT setup, including interac-
tions among things. In an open environment like the WoT,
physical devices are heterogeneous (in terms of CPU, storage,
capabilities, energy consumption, etc.). They reply to requests
of different consumers, by providing and requesting services.

Things

Michael Mrissa, Lionel Médini
CNRS, Université de Lyon
LIRIS UMR 5205, Université Lyon 1
F-69622, Villeurbanne, France
firstname.surname@univ-1lyonl.fr

Indeed, the WoT forms a complex system in which entities
interact with each other and with their environment. “The
basic idea of this concept is the pervasive presence around
us of a variety of things or objects which are able to interact
with each other and cooperate with their neighbors to reach
common goals” [2]. Among manifold visions of the WoT
paradigm, Multi-agent systems (MAS) provide an attractive
solution in order to enable cooperation between objects in
such context [3] as they allow autonomous behaviour and dis-
tributed decision-making. However, the implementation of typ-
ical distributed algorithms used in multi-agent systems (such
as the asynchronous backtracking algorithm [13]) according
to the principles of resource-oriented computing remains a
challenge. To the best of our knowledge, no work has proposed
a RESTful mapping of such a distributed algorithm.

In this paper, we setup our work in a typical WoT context
where several objects can provide different functionalities to
be combined in a single application. We propose a multi-agent
approach for solving the task allocation problem that consists
in deciding which functionalities of which objects should be
selected to run a WoT application. From a technical aspect,
we provide a resource-oriented implementation of a distributed
artificial intelligence algorithm by providing a mapping be-
tween exchanged messages and the REST architectural style.
We show the applicability of this mapping with the help of a
typical “smart city” motivating scenario.

This paper is structured as follows. In Section II, we provide
an illustrative scenario that presents a smart city environment
and highlights the challenges we address in this work. Section
III overviews related work and shows the originality of our
approach. Section IV details our contribution, then we show
how our implementation applies to the illustrative scenario in
Section V. We draw conclusions from the results obtained and
give guidelines for future work in Section VI.

II. MOTIVATION AND PROBLEM STATEMENT
A. Illustrative Scenario

On a rainy Saturday morning in Lyon, a student’s usual plan
is to do homework in the public local library. At 09:00, the
“homework plan” prescribed in the student’s smartphone shall
be automatically set. One of the actions to be performed in
the “homework plan” is “take a means of transportation”. This



action needs a service composition to recommend a means of
transportation for the student (Fig. 1). We consider that the
student prefers cycling because it is much faster as it allows
avoiding traffic jams, while in cold or rainy days, it is more
convenient to take a public transport (bus, tram, metro) in
urban areas. The Web application provides our user with a
recommendation of the nearest means of transportation (bike
or public transport), taking into account the (i) user’s GPS
location, the (ii) ambient temperature, and (iii) information
about public transport stations and bike stands.

GPS Station

_ Finder
Transportation
Recommender

Figure 1: Flow of Services in the Smart City Scenario

The application relies on a composite service, as illustrated
in Fig. 1, which combines the following atomic services from
different providers :

o GPS : provides the position of the user (Long., Lat.).

o Weather : provides the weather condition and temperature

according the user’s current position.

« TransportationRecommender : recommends a means of
transportation for the user. For the sake of simplicity,
this service simply recommends a public transport in bad
weather or biking if appropriate.

o StationFinder : Finds the name of the nearest station
based on the recommended means of transportation and
the user’s GPS position.

We consider that atomic services are provided as follows :

o GPS is provided by the phone’s embedded sensor,

o Weather service (temperature only) is provided by (i) the
user’s smartphone, (ii) a weather API, and (iii) an ambient
temperature sensor located somewhere in the city.

o TransportationRecommender and StationFinder
RESTful Web services.

This illustrative scenario is simple enough to be particularly
suited to dealing with several aspects of our problem. We use
it to motivate our multi-agent vision and to explore the various
barriers to realizing this vision. Real world scenarios involve
more users, devices, and constraints.

are

B. Problem Statement

Our contribution aims at tackling the following problems :

o Task allocation : As illustrated in our scenario, in a Web
of Things context, several objects can provide similar
services. However, available resources (memory, storage,
energy, processing, bandwidth) are often limited. Consid-
ering the size of a heterogeneous system such as the WoT,
there is a need for applications to select the services they
will use during runtime. To do so, and considering the
distributed nature of the WoT, we shall rely on distributed
algorithms.

o REST adaptation for distributed algorithms : While
REST promotes adaptability, visibility, interoperability

and loosely coupled interactions between objects, there
is a need to adapt the execution of distributed algorithms
used to solve the task allocation problem. Such adaptation
should respect the REST constraints (uniform interface,
protocol statelesness, etc), and at the same time allow for
dynamic service composition to offer complex applica-
tions [4].

Resource-oriented mapping : In daily Web practice, de-
velopers often misuse the resource-oriented paradigm
as proposed by the REST model'. In this model, the
fundamental architectural concept is the resource, and
the interaction mode follows the semantics of the HTTP
verbs. Another challenge is to be able to describe ob-
jects and their interactions from a resource-oriented (i.e.
RESTful) perspective.

III. RELATED WORK

Many works of different communities deal with the afor-
mentionned scenario. We study different approaches that can
guarantee the cooperative behavior in a Web of Things context.

1) WoT Platforms: In [5], “Physical Mashups” are pro-
posed as a lightweight approach for combining software
services with physical objects. For example, a physical mashup
can be a Web dashboard for controlling and monitoring house-
hold appliances. Such “Mashup Editors™? are used to connect
physical and virtual services to develop hybrid workflows.
Since all services are exposed in a RESTful way in our
illustrative scenario, the user can define rules and processes
according to some situations. For example, one can list all
the available services provided by devices in the vicinity, and
define a rule like : if it is rainy today, then find the nearest bus
station. More WoT platforms that support service composition
have been surveyed in [6, 7]. This class of approaches is
very successful in our context, however, decision-making is
not delegated to physical devices which can cause problems
related to scalability and adaptation to situations not pre-
defined by the user via the mashup editor.

2) Service Composition: Motivated by the same concern,
i.e. WoT platforms focus mainly on aspects related to basic
device interoperation and spontaneous networking without
prodiving for dynamic coordination and the realisation of more
complex and intelligent functionalities that can be built at a
higher application level, a SOA-based architecture adopting an
artificial intelligence domain-independent planning approach
to automatic service composition, and using OSGi as a plat-
form for exposing RESTful web services is shown in [4].
Nonetheless, we believe that using distributed hypermedia
system like REST, distributed models and algorithms for
service composition is more relevant than applying CSP-based
Al planner, as it is more adapted to the distributed Web setup.

3) Multi-Agent Approaches: Applying a different approach
to our scenario, [8] proposes to use RESTful Web services as
an abstraction layer of the proposed architecture to be accessed

Uhttp://ruben.verborgh.org/blog/2012/09/27/
the-object-resource-impedance-mismatch/
Zhttp://clickscript.ch/


http://ruben.verborgh.org/blog/2012/09/27/the-object-resource-impedance-mismatch/
http://ruben.verborgh.org/blog/2012/09/27/the-object-resource-impedance-mismatch/
http://clickscript.ch/

by users to monitor the Social WoT platform. However,
the other layers are not Web compliant and use multi-agent
techniques without respecting Web constraints.

Another approach [9] is suggested in a IoT context, taking
advantage of using embedded RESTful Web services [10]
for constrained embedded networked devices to expose smart
objects resources, capabilities and services to the Web for
human-machine interactions. The novelty of this approach is
its straighforward adaptation to our scenario. However, the
approach suggests to use mobile agents. This requires the sup-
port of distributed programming models : macroprogramming
languages, code migration, task offloading, virtual machines
and cyber foraging. The caveat of such approach is that
decision making is not reached in a multi-agent way (multiple
agents cooperating together to fulfill a complex task) but with
agent migration between devices. This technique may open the
doors to many security problems due to the agent migration.

Starting from the same area of interest, i.e. multi-agent
coordination in ambient intelligence, [11] tackles the chal-
lenge of integrating diversified intelligent capabilities to create
proactive assistant for everyday life in a domestic environment.
This integration, within a coordination scheme, allows to
leverage potentially sophisticated domestic services to obtain
a smart home with more added value than the sum of is parts.
Their contribution consists in reducing the service coordination
to a multi-agent coordination, thus casting the smart home
coordination to a DCOP (Distributed Constraint Optimization
Problem). The fundamental difference related to our work
is the use of a constraint optimization approach, while we
opt for a constraint satisfcation one [12]. Another distinctive
difference lies in the compliance of our work with the RESTful
paradigm, which is much more convenient in a WoT setup.

IV. APPROACH

Providing users with understandable functionalities usually
requires composing services offered in the user’s vicinity. So,
devices need to deal with the incoming requested tasks, called
Functional Requirement Descriptions (FRD).

A. Functional Requirement Description

A FRD is a composed service that can be divided into
multiple atomic services. For example “bring warm coffee” as
a FRD includes the invocation of “go to the kitchen”, “make
coffee” and “carry plate” atomic services that are provided
by a robot and a coffee machine. Fig. 2 shows the FRD of
our scenario, composed of the GPS, Weather, Transportation-
Recommender, and StationFinder atomic services. For a FRD,
many agents are likely to be proposing a similar atomic service
(e.g., in Fig. 2, temperature can be provided by the sensor
(A4), weather API (A3), and device (Al) agents. The first
aspect of our contribution consists in dealing with this task
allocation problem in a Web of Things context. Ideally, we
aim to assign each requested atomic service to a participating
agent in the service composition.

aps
Station
Finder
/|
Transportation
/v e |
/

=T

Figure 2: The task allocation problem for the Smart City
scenario

B. Task Allocation as a “Distributed Constraint Satisfaction
Problem”

In a Web of Things context, objects are confronted to
multiple constraints. (i) Each device has its own limitations
with respect to hardware capabilities, organizational policies,
and cognitive abilities. (ii) Consumers’ needs vary in terms
of data quality, nature, format, etc. (iii) New constraints are
imposed among services provided by physically distributed
agents controlling objects.

We introduced in one of our previous works [12] a self-
adaptive ecosystem of services based on a multi-agent per-
spective for dealing with the dynamic nature of physical
environments. This work proposes an approach to face the
challenge of service adaptation by modeling this problem as a
Distributed Constraint Satisfaction Problem (DisCSP). Since
we view this problem from a multi-agent perspective, we use
this work as a task allocation mechanism for agents.

1) DisCSP: The formal definition of a CSP involves a set
of variables X;,X5,...,X,, whose values are taken from finite,
discrete domains Dy,D,,...,D, respectively, without violating
a number of constraints C;,C,...,C,. The set of constraints
specifies allowable combinations of values for subsets of
variables. A solution to a CSP is an assignment of every
variable to a value in its domain such that every constraint
is satisfied.

A Distributed CSP [13] is a CSP in which variables and
constraints are distributed among multiple agents. Solving
a DisCSP consists in finding a set of values for variables
to satisfy inter-agent constraints to reach consensus among
agents. Unlike the centralized CSP, no agent has a complete
view of the states of involved agents. Many Al problems can
be modeled as DisCSPs. In the same way, we propose to
model the dynamic task allocation as a Distributed Constraint
Satisfaction Problem.

2) DisCSP Model: To fulfill each FRD in the system, we
represent it as a tuple (Ay, SDy, SCy), where :

o Ay is the set of agents {(a;,ay,...,a,) which accepted to

collaborate to fulfill the FRD;

e SDy is a set of service domains (sd;, sdu2, . - ., Sdan),
each service domain SDy comprises services provided by
the corresponding ay in the service composition;

e SC, is the set of constraints on A,.

A solution to this DisCSP model consists of assigning services
to agents without violating (intra-)constraints.



s, e - -——A s, e - A

A, A,
s, @ - - A A, s, © — - : A A,
S; @< p=d - A A, S; o= = - A A
S, @ ———- A A, S, &———— =~ A
Figure 3: Task Allocation Problem represented as a (bipartite)

graph

Task allocation can be represented with Fig. 3. On the left
side, we have the required services for the FRD, and the agents
that accepted to provide them, dashed links mean a potential
participation of the agents. On the right side, normal links
mean self-acquired obligation of agents to provide the linked
services (We assume, there is a constraint preventing an agent
to take a service provided by another).

To create this graph, an agent receives a requested FRD,
it decomposes this FRD into atomic services, then sends
atomic service requests to its neighbors. Each neighbor de-
cides whether or not to provide the requested services. After
receiving replies from neighbors, the agent forms a candidate
table with the neighbors and the corresponding services (the
services that they agreed to provide).

To provide a composite service, as illustrated in Fig. 1, we
must solve the following task allocation problem modeled as
a DisCSP (Fig. 4).

Al A2

Weather,
Recommendation

A4 A3

Figure 4: Task Allocation DisCSP Model of our Smart City
Scenario

In this model, nodes represent agents, services provided
by each agent are listed in the corresponding node, arrows
between agents represent the following constraint : Two agents
can not provide the same service. Each edge is directed from
the agent with the higher priority to the agent with the lower
priority. In this type of problems, it is highly recommended
to establish a priority between the participating agents. We
simply set the highest priority to the agent which provides the
highest number of services. For each constraint, the lowest
priority agent involved in the constraint is the agent that
evaluates the constraint. The other agents in the constraint
send their assignments to the first agent, which will check
the consistency of the constraint.

V. MAPPING DISCSP TO THE WEB OF RESOURCES

For solving a DisCSP, one trivial approach is to collect all
the information about the problem (variables, domains and
constraints) into a single agent. Then, this agent solves the
problem in a centralized way. However, centralizing the entire
problem into a single agent could be very costly in terms
of communication and scalability and is not relevant with
respect to the distributed nature of the Web. Therefore, we do
not consider a centralized algorithm for solving our DisCSP
model. A common method for solving a DisCSP is by back-
tracking, that is, by repeatedly assigning values to the variables
in a predetermined order and then backtracking whenever
reaching a dead end. The solution involves assignments of
all agents to all their variables. Agents exchange messages
containing information about their assignments which allow
them to check the consistency of assignments with respect to
the problem constraints.

A. The Asynchronous BackTracking Algorithm

Following the pioneer work on the ABT (Asyn-
chronous BackTracking) algorithm [13], manifold ABT-
based extensions have been proposed for solving both dis-
tributed constraint satisfaction and optimization problems :
ABTkernel, Asynchronous Distributed Constraints Optimiza-
tion (ADOPT), ADOPT-ng, AgileABT, Dynamic Backtracking
for distributed constraint optimization (DyBop), erc. . All
these extensions share commun principles and assumptions
with ABT. Therefore, in this paper, we found it logical
to base our implementation on the original ABT algorithm
as a cornerstone for adapting the implementation of more
extensions to the Web. ABT is an asynchronous algorithm
executed autonomously by each agent in the task allocation
process. Each agent manages to find an assignment (provided
service) satisfying the constraints with what is known from
other agents in a distributed way. To give an idea about the
progress of the algorithm (detailed in [13]), agents exchange
many messages :

e 0k? : sent after choosing a service.

e nogood : sent after finding that the current local view

(assignment of neighbors) violates one of the constraints.

e newlink : sent to a non-neighbor to know its current

assignment.

B. Mapping ABT messages to HTTP Requests

An important aspect of this paper lies in the alignment
of the implementation of an Al distributed algorithm with
REST architectural principles [14, 15]. Many of the successful
RESTful Web applications are still limited to data exposure
and manipulation, it is still not clear how to apply them
to process-intensive systems [16]. So, we consider mapping
the ABT algorithm to the REST design principles as a step
forward towards further application to wider problem domains.
We respect the following REST constraints as follows :

C1 Everything being resource identified through URI
The central principle of REST is to model as a resource
any entity that needs to be used or addressed, which the



client can consume or act upon. Each agent participating
in the fulfillment of the FRD (Fig. 2) has a unique
URI. As shown in Fig. 5, the agent’s state is modeled
as a Web resource. Its most relevant state attributes
(localview, constraints) are modeled as sub-resources.
Following this segmentation, the size of requests and re-
sponses is reduced, giving more scalability to distributed
algorithms [17].

1
2 "name": "a3",

3 "address": "http://localhost:8080/RESTfulMAS/agents/a3/",
4 "value": "Recommendation",

6
7
8

"valuesDomain": [
"Weather",
"Recommendation”

1,
9 "mode": "VALUE_CHANGED",

10 "parentsChildren": {

11 "children": [

12 "http://localhost:8080/RESTfulMAS/agents/ad/"
13 ]

14 ”;’)arents": L
15 "http://localhost:8080/RESTfulMAS/agents/al/"
]

18 "inks": [
{

20 "1ink": "http://localhost:8080/RESTfulMAS/agents/a3/",

21 "rel": "self"

22 ¥o

23 {

24 "link": "http://localhost:8080/RESTfulMAS/agents/a3/localView",
25 "rel": "localView"

26 o

27 {

28 "1link": "http://localhost:8080/RESTfulMAS/agents/a3/constraints",

29 "rel": "constraints"

30 ]}
Figure 5: JSON Representation of an Agent resource

C2 Manipulation of resources through representations
We provide agents with a uniform interface through
HTTP operations (GET,POST,PUT,DELETE) such that

o GET is used to retrieve the agent’s attributes,

o POST sets the agent’s initial constraints (arcs in Fig.
4) and neighbors (parents and children),

« PUT is invoked to allow agents to exchange messages
in a resource-oriented manner as illustrated in Fig. 6,

« DELETE is used to reinitialize agents states after the
execution of the ABT algorithm : agents constraints
and local view sub-resources are deleted after the adhoc
task allocation phase.

C3 Stateless interactions
In the ABT algorithm, agents exchange their selected
services and local views (a table containing services pro-
vided by neighbors). These asynchrnonous interactions
are separate and do not depend on any additional context
information for interpretation, thus we keep no state
between interactions as illustrated in Fig. 6 which reduces
the workload on the agents.

C4 Self-descriptive messages
This constraint tightly liked to C3, as interactions are self-
contained. Standard HTTP operations are used to indicate
semantics and exchange information (C2).

C5 Hypermedia as the engine of application state (HA-
TEOAS)
Each agent resource contains links to other resources
or sub-resources. This allows other agents or users to
navigate through the accessed agent. Even if we have
implemented this constraint, we do not use it in the
distributed task allocation mechanism because the algo-

ok?, A3=W

A4 A3

GET /agents/Ad/localview/

{

— |
al

"view": {
/agents/A2/": "GPS",
}

}
ETag : "277421249"
Last-Modified : 01/01/2016 69:00:01

—
PUT /agents/Ad4/localview/ — __—f
If-Unmodified-Since : ©1/01/2016 60:60:01] S

alt J
{
"view": { outdated resource

/agents/A2/": "GPS",
Jagents/A3/": "W"

up-todate resource < 412 Precondition Failed- |

Figure 6: Sending an ok? message

rithm’s steps are predefined, and there is no dynamic
interactions in the process. Yet, we can fully exploit the
potential of this constraint to provide users with links to
others resources (agents, functionalities, services, etc.)
C6 Cache

Caching is one of the many performance and scalability
aspects of the Web. Agents use this information technol-
ogy to store temporary data by caching responses. As
a result, we prevent agents from sending unnecessary
data in response to further requests, and reduce the time
generating the results. By adding ETag and Last-Modified
headers to responses, agents can get other agents state
only when necessary. Requests containing these headers
are called Conditional Requests and give the sender an
opportunity to skip the response body if the represen-
tation has not changed since the last time it served the
representation.

Therefore, our solution supports by design the constraints
of the REST architectural style, which allows getting most
benefits of the Web as a support platform for realizing our
view of avatar [18] communities to build the Web of Things.

VI. CONCLUSION

In this paper, we have presented a solution to map a task
allocation algorithm based on a cooperative distributed prob-
lem solving approach to the Web. We setup our contribution
in a Web of Things context where agents are required to
compose services offered in their vicinity to provide users with
understandable functionalities. The novelty of our contribution
lies in envisioning a WoT problem as a distributed constraint
satisfaction problem (DisCSP), and in providing a translation
of the Asynchronous BackTracking (ABT) distributed algo-
rithm into the REST architectural style to solve this problem.
We show that a Web-compliant mapping of the ABT algorithm
is possible and offers interesting features. Future work includes
studying to what extent other problems from the Web of
Things can be modeled as distributed constraint satisfaction
problems and solved with well-known distributed algorithms.


GET, POST, PUT, DELETE
GET
POST
PUT
DELETE
ETag
Last-Modified

ACKNOWLEDGMENT

The authors would like to thank Mohamed Ayache for his
help on previous versions of this paper. This work is supported
by the French ANR (Agence Nationale de la Recherche) under
the grant number <ANR-13-INFR-012>.

REFERENCES

[1] E. Wilde, “Putting things to rest,” School of Information,
2007.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of
things: A survey,” Computer networks, vol. 54, no. 15,
pp- 2787-2805, 2010.

[3] E. M. Khalfi, J.-P. Jamont, F. Cervantes, and
M. Barhamgi, “Designing the web of things as a
society of autonomous real/virtual hybrid entities,” in
Proceedings of the 2014 International Workshop on Web
Intelligence and Smart Sensing. ACM, 2014, pp. 1-5.

[4] E. Kaldeli, E. U. Warriach, A. Lazovik, and M. Aiello,
“Coordinating the web of services for a smart home,”
ACM Transactions on the Web (TWEB), vol. 7, no. 2,
p. 10, 2013.

[5] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented
architecture for the web of things,” in Internet of Things
(10T), 2010. IEEE, 2010, pp. 1-8.

[6] D. Zeng, S. Guo, and Z. Cheng, “The web of things: A
survey,” Journal of Communications, vol. 6, no. 6, pp.
424-438, 2011.

[7] S. N. Han, I. Khan, G. M. Lee, N. Crespi, and R. H.
Glitho, “Service composition for ip smart object using re-
altime web protocols: Concept and research challenges,”
Computer Standards & Interfaces, vol. 43, pp. 79-90,
2016.

[8] A. Ciortea, O. Boissier, A. Zimmermann, and A. M.
Florea, “Reconsidering the social web of things: position
paper,” in Proceedings of the 2013 ACM conference on
Pervasive and ubiquitous computing adjunct publication.
ACM, 2013, pp. 1535-1544.

[9] T. Leppinen, J. Riekki, M. Liu, E. Harjula, and T. Ojala,
“Mobile agents-based smart objects for the internet of
things,” in Internet of Things Based on Smart Objects.
Springer, 2014, pp. 29-48.

[10] Z. Shelby, “Embedded web services,” Wireless Commu-
nications, IEEE, vol. 17, no. 6, pp. 52-57, 2010.

[11] F. Pecora and A. Cesta, “Dcop for smart homes: A case
study,” Computational Intelligence, vol. 23, no. 4, pp.
395419, 2007.

[12] F. Cervantes, M. Occello, F. Ramos, J.-P. Jamont et al.,
“Toward self-adaptive ecosystems of services in dynamic
environments,” Advances in Systems Science, vol. 240,
pp- 671-680, 2013.

[13] M. Yokoo, T. Ishida, E. H. Durfee, and K. Kuwabara,
“Distributed constraint satisfaction for formalizing dis-
tributed problem solving,” in Distributed Computing
Systems, 1992., Proceedings of the 12th International
Conference on. IEEE, 1992, pp. 614-621.

[14] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. disserta-
tion, University of California, 2000.

D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From

the internet of things to the web of things: Resource-

oriented architecture and best practices,” in Architecting

the Internet of Things. Springer, 2011, pp. 97-129.

[16] X. Xu, L. Zhu, Y. Liu, and M. Staples, “Resource-

oriented architecture for business processes,” in Software

Engineering Conference, 2008. APSEC’08. 15th Asia-

Pacific. 1EEE, 2008, pp. 395-402.

A. Doniec, N. Bouragadi, M. Defoort, V. T. Le, and

S. Stinckwich, “Distributed constraint reasoning applied

to multi-robot exploration,” in Tools with Artificial Intel-

ligence, 2009. ICTAI’09. 21st International Conference

on. 1EEE, 2009, pp. 159-166.

[18] M. Mrissa, L. Médini, J.-P. Jamont, N. Le Sommer, and
J. Laplace, “An avatar architecture for the web of things,”
Internet Computing, IEEE, vol. 19, no. 2, pp. 30-38,
2015.

[15]



	Introduction
	Motivation and Problem Statement
	Illustrative Scenario
	Problem Statement

	Related Work
	WoT Platforms
	Service Composition
	Multi-Agent Approaches


	Approach
	Functional Requirement Description
	Task Allocation as a ``Distributed Constraint Satisfaction Problem"
	DisCSP
	DisCSP Model


	Mapping DisCSP to the Web of Resources
	The Asynchronous BackTracking Algorithm
	Mapping ABT messages to HTTP Requests

	Conclusion

