
Linked Service Selection using the Skyline
Algorithm

Mahdi BENNARA1, Michael MRISSA2, and Youssef AMGHAR1

1 Université de Lyon, LIRIS
INSA-Lyon - CNRS UMR5205

F-69621, France
{mahdi.bennara,youssef.amghar}@liris.cnrs.fr

2 Université de Lyon, LIRIS
Université Lyon 1 - CNRS UMR5205

F-69622, France
michael.mrissa@liris.cnrs.fr

Abstract. Recently, resource oriented computing has changed the way
Web applications are designed. Because of the increasing number of APIs,
centralized repositories are no longer a viable option for discovery. As a
consequence, a decentralized approach is needed in order to enable value-
added applications. In this paper, we propose a client-side QoS-based
selection algorithm that can be executed along the discovery stage. Our
solution provides different alternatives based on the skyline approach to
select resources and maintain acceptable time performance.

Keywords: RESTful linked Web services, discovery, selection, quality of service

1 Introduction

In the past twenty years, SOAP-based Web services have helped reaching syn-
tactic level interoperability for distributed applications on the Web. More re-
cently, resource-oriented computing, and in particular the REST architectural
style [5], has revised the way we interact with services, bringing in new advan-
tages such as uniform interface (and consequently generic client), HATEOAS 3

(hypertext-driven applications), cacheability, etc. In parallel, the Web of ser-
vices has started an evolution towards semantic-level interoperability, with a lot
of work around semantically described Web services [7] [6] to allow services to
exchange semantically annotated data. This evolution has moved towards linked
data. Combining the RESTful architectural style with semantic annotations has
unlocked the benefits of using linked data for Web applications. We talk about
Linked Web Services which are RESTful services described with linked data
and that exchange linked data. Despite the evolution of service technologies, the
need for service composition to build complex applications is still present. How-
ever, the challenges have changed. As centralized solutions for service discovery

3 Hypermedia As The Engine Of the Application State

have proven not to scale well [2], the need for distributed service discovery has
emerged [9]. The discovery of services that fulfill a certain task in the process
of answering the user’s request also brings in the need for selecting the most
suitable of these candidates to actually execute the task needed.

In this paper, we introduce a set of algorithms for discovering and selecting
semantically described resources. As we work in the context of resource oriented
Web, the discovery of new resources that can potentially participate in answering
the user’s request is done progressively following the principle of HATEOAS. We
rely on semantic annotations developed in previous work [3] to describe resources.
Such descriptions include resource attributes, available HTTP operations and
relations with other resources. We also rely on breadth-first search algorithm
combined with a skyline-based approach [4] to select the appropriate resources
while maintaining acceptable performance.

The remainder of this paper is organized as follows. Section 2 presents re-
lated work and highlights the originality of our solution. Section 3 introduces
a scenario that motivates our approach. Section 5 details our contribution and
shows the different setups for discovery-selection as well as the algorithms. Sec-
tion 6 discusses the choices we made in the contribution section and highlights
the advantages of our approach. Section 7 resumes our approach and lists some
elements of future work.

2 State of the Art

2.1 Quality of Service in Service Oriented Web

During the last years, QoS has been a key challenge for research community.
Ran [8] proposed a model for QoS in Service oriented Web that divides QoS

attributes into several different categories. This is one of the efforts to provide
a complete set of attributes that describe the QoS aspects of a service. It is
designed for the service-oriented architectures and particularly the Web.

AgFlow [13] is a solution that enables quality-driven composition of Web
services. It proposes two different approaches to select Web services for a given
task within a composite service. The local optimization approach suggests to
leave the selection to the last possible moment. In the global planning approach,
the selection is done for each task individually but by taking into account the
other tasks.

2.2 QoS-based Web service selection

The problem of selection of Web services is a part the composition process that
involves the QoS aspect to choose the most suitable services for the user. Finding
the optimal solution for this problem with multiple QoS constraints is a NP-
hard combinatorial optimization problem [12]. This problem can be modeled
as follows: the user emits a request that requires several Web services to be
answered. The solution for this request is divided into several tasks, every task

can be performed by a single Web service. Every task has several candidate Web
services. Finding a solution amounts to select the best candidate for each task
in order to obtain the highest overall QoS. In the current paper we follow a
different setup where the search space of candidates progressively discovered by
following links between resources.

Wang et al. [10] propose an approach for selecting services based on Generic
and Domain-related QoS attributes (DGQOS). Generic QoS attributes (GQoS)
can apply on any type of Web service. Domain QoS attributes (DQoS) apply
only on a certain class of Web services. The authors define evaluation models for
DQoS and GQoS attributes, which help calculate the overall QoS of composite
Web services based on its components. They use the C-MMAS (Cultural Min-
Max Ant System) algorithm in order to solve the selection problem.

Alrifai et al. [1] propose a solution for selection Web services based on the
skyline approach. The goal is to identify for each task the services that will
never be part of the final solution simply because they are outclassed by another
candidate service in every QoS-related aspect. The authors try to keep the set
of candidates as small as possible in order to apply constraint optimization
algorithms to obtain the best solution. They also propose a solution to further
reduce the size of the set of candidates by identifying representative candidates
that replace a subset of candidates that have similar QoS parameters.

2.3 Analysis

We have to highlight that in our context, the set of candidate resources to be
selected is progressively discovered. Indeed, the setup of a centralized registry
for all resources is not adapted to the distributed and large scale nature of the
Web. Therefore, the discovery process gradually discovers resources that can
fulfill a given task and does not have all the candidates until the end of the
algorithm. Plus, the space of solutions expands as the discovery algorithm finds
new candidates which increases the computational time of the selection process.
Here, we face two possibilities. The first one is to run the selection algorithm
while the discovery algorithm is exploring the resources on the Web. When a
new candidate is discovered, it may be a part of the final solution. The second
possibility is to run the selection algorithm at the end after having all candidates
for every resource, the selection algorithm is run a single time after the end of
the discovery algorithm.

3 Scenario and Motivation

In order to motivate our work, we consider a scenario where a user wants to
buy a book online. We assume there are three book selling Web resources, three
shipment Web resources and two online payment Web resources in competition.
Every Web resource has its own quality of service properties, and the user has
its own preferences. The disposal of the scenario setup includes the human user,
the machine client software and the set of Web resources listed above.

The process of buying a book requires shipment and online payment, and
is described as follows: the user emits a request explaining his needs e.g. “buy
book”. This request is combined with a set of QoS-related information which
guide the machine in the processing of his request, we agree to call this set of
information “user profile”. For example, the user may want the services with
the best performance and then the best rated among these and does not care
about their availability. The client-side reasoner infers that it needs to discover
a book selling, a shipping service and a payment service. The process of de-
duction is achieved through a reasoner with a simple subsumption technique.
If we take the example of the user’s request : “buy book”, the reasoner in-
fers that there is a need for a service that sells books in order to allow the
user to buy books. The ontology we use for this scenario can be found here
: http://soc.univ-lyon1.fr/bookselling.owl. The client begins to crawl the
Web looking for the resources needed to answer the user’s request. The client
needs to discover three services according to the reasoning on the request: the
book selling service, the shipping service and the online payment service. The
client may find multiple services that fulfill each functionality and has to select
one based on the user’s QoS profile.

4 Problem statement

We consider a user request that involves a set of tasks, each task is represented
by an ontology concept. The set of tasks is organized as a workflow that rep-
resents the series of actions that the client needs to perform in order to deliver
the result to the user. The Web resource that can fulfill a specific task is not
unique due to the nature of the Web and the client can discover many candidate
resources to fulfill the given task. However, not all these candidates match the
user requirements in terms of QoS, and therefore a selection phase is needed in
order to determine the most suitable candidate for each task.

T = {OntologyConcept}N is the set of tasks in the workflow, where N is the
total number of tasks.

Ci = {(URI, operation)}mi is the set of candidates for a task ti, where mi is
the total number of candidates for the task ti. The candidate number j for the
task ti is therfore cij .

Finding a solution for the user’s request amounts to finding the set of candi-
dates ck for each task tk, where every candidate meets the hard constraints for
the user at least (and preferably the soft constraints) and the overall QoS of the
set is the best among all combinations. We define hard constraints as conditions
that must be fulfilled by a discovered resource otherwise it is not eligible for the
task. On the other hand soft constraints are optional conditions that are not
necessary to select a candidate for a task.

As we have opted for a hypermedia-driven approach for exploring the Web,
we need an on-the-fly selection strategy in order to be able to select relevant
resources along the discovery process. In the remainder of this section, we detail
a “select while you discover” strategy to enable on-the-fly selection.

4.1 A minimal QoS model for Web resources

In this paper, we rely on a minimal model based on [8] in order to describe some
important non-functional properties of a Web resource. QoS : { Performance:
[0-10], Availability: [0-100], Reputation: [0-5] }

4.2 QoS-based resource selection problem specification

The problem of selection of resources is part of the composition problem. This
problem has been proven to be NP-Complete (c.f. Section 2). The process of
reasoning on the user’s request, as described in the scenario (c.f. Section 3), can
be assimilated to a Web service selection problem. Every task of the composite
solution can be fulfilled by a resource, that has to be discovered. Multiple re-
sources can be candidates for a single task. Tasks are semantically identified by
the concepts the reasoner infers after analyzing the user’s request. We start with
N tasks and for each task i we have Mi candidates. The problem is to identify
the set of candidates S where each candidate sj fulfills the task tj and the overall
QoS of the set is the best according to the user’s preferences.

5 Contribution

In this paper, we propose a quality-driven approach that relies on a minimal QoS
model to improve selection of RESTful resources. We want the QoS attributes
to be a guide together with the resource descriptions (including links between
resources) for the selection process. We rely on a minimal QoS model based on
a set of quality attributes in order to incorporate it on the resource descriptions
according to the Descriptor concept [3]. The selection phase is the step where
we have multiple candidates for each task of the process aiming to answer the
user’s request. The selection phase aims at selecting the best candidate for each
task to obtain an overall QoS that matches with the user’s QoS profile. In this
paper, we present two configurations of the discovery and selection processes.

5.1 On-The-Fly Selection

In this configuration, the selection process is executed at the same time as the
discovery goes on. Each time a resource is discovered, the selection algorithm is
run in order to verify if this new resource can be the best candidate for its task
among the other previously discovered resources for that same task while, at the
same time, making sure the set of selected candidates for all the tasks verify
certain conditions (best overall QoS matching with user’s profile, compatibility
between resources, etc.).

In table 1, we present four different setups to enable the on-the-fly selection
(select as you discover)

The general selection algorithm takes as input the set of all candidates T
for each resource, the current set of best candidates s and the new candidate c

Setup Advantage Drawback

Selection of the first
solution that matches the

user’s QoS profile
Fast solution

Low overall QoS, may not
match with the user’s soft

constraints

Selection of the best
candidate for each task

Selection of the best
candidate for each task

May not be the best
solution to obtain the best

overall QoS

Selection of the best
solution, by exploring all

combinations

Ensures the best solution
amongst all combinations

Slow solution, exponential
processing time

Selection of the best
solution while eliminating
irrelevant candidates using

skyline approach

Ensures the best solution
amongst all combinations,

while having less candidates
to work with

Still a relatively solution
but a lot better than naive

exploring of all
combinations

Table 1. Different on-the-fly selection setups

resource as well as the user’s QoS preferences qos and returns a new set of best
candidates and updates If it is selected the set of best candidates is updated with
the better new solution. For this purpose, we consider a discovered candidate as
an object composed of two attributes resource URI and HTTP operation (uri
and operation) plus the concept that matches is with the operation (concept).
In the context of the algorithms presented below, we define the concept of dom-
ination as follows : a candidate c1 dominates another candidate c2 if all of c1’s
QoS attributes are equal of better compared to c2’s QoS attributes.

Algorithm 1 shows the optimized global planning method. This algorithm
eliminates the candidates that will not be part of the final solution before reeval-
uating the solution. If the new candidate cannot be added to the set of candidates
(is irrelevant), the algorithm does nothing and skips this iteration.

Algorithm 2 shows how to insert the new candidate and how the irrelevant
ones are removed right after.

5.2 N-Periodic Selection

Launching the selection every time we have N new candidates for a given task
can reduce processing time for the selection phase, with the skyline based setup.

Note that the number of new candidates for a given task t is nt where
M∑
i=1

nt = N

(M being is the total number of tasks).
Algorithm 3 shows how to apply the skyline approach to reduce the size of

candidates for a given task t when nt new candidates are discovered in each
iteration of the selection process, instead of only one.

We know that the set of old candidates for the task t is a skyline i.e. no old
candidate in T [t] is dominated by another one in the same set. The first step
is to eliminate the new candidates in (N [t]) that are dominated at least one

Algorithm 1: On-The-Fly optimized selection algorithm

Input: s: array of Candidate
Input: c: Candidate
Input: qos : QoSprofile
Input: T : array of array of Candidate
Output: s: array of Candidate

1 var s2: array of Candidate = s
2 // If the new candidate matches user requirements :
3 if QoSmatch(c, qos) then
4 // add c while removing irrelevant candidates
5 // if c is irrelevant quit if (skyline(T, c) = true) return
6 // and verify if there is a new best solution :
7 for i = 0 to T.size do
8 for j = 0 to T[i].size do
9 s2[i] = T[i,j]

10 if QoScalculate(s2, qos) > QoScalculate(s, qos) then
11 s = s2

Algorithm 2: Inserting the new candidates and removing the irrelevant
ones using the skyline approach

Input: c: Candidate
Input: T : array of array of Candidate
Output: T : array of array of Candidate

1 var x : type = init
2 // if c is not dominated by any other candidate for the same task
3 for i = 0 to T[c.concept].size do
4 if dominate(T[c.concept][i], c) then
5 return true

6 // insert it T[c.concept].insert(c);
7 // remove candidates dominated by c foreach c2 in T[c.concept] do
8 if dominate(c, c2) then
9 T[c.concept].remove(c2);

10 return false

Algorithm 3: Selection of n resources at a time instead of one

Input: N : array of array of Candidate
Input: T : array of array of Candidate
Output: T : array of array of Candidate

1 // apply the skyline on the set of new candidates first
2 for i = 0 to N[t].size do
3 for j = i+1 to N[t].size do
4 if dominate(N[t][i], N[t][j]) then
5 N[t].remove(j);

6 if dominate(N[t][j], N[t][i]) then
7 N[t].remove(i); break;

8 // remove new candidates dominated by old ones
9 for i = 0 to N[t].size do

10 for j = 0 to T[t].size do
11 if dominate(T[t][j], N[t][i]) then
12 N[t].remove(i); break;

13 // remove old candidates dominated by new ones
14 for i = 0 to T[t].size do
15 for j = 0 to N[t].size do
16 if dominate(N[t][j], t[t][i]) then
17 T[t].remove(i); break;

18 // merge the two new sets
19 T[t].merge(N[t]);

candidate of the same set. After that, we eliminate the new candidates (which
is now a skyline) that are dominated by at least one old candidate (T [t]). Next,
we eliminate old candidates dominated by at least one new candidate. Now we
know that no candidate in T [t] or N [t] is dominated by any other candidate in
the two sets. Finally, we merge the two sets in order to obtain the skyline of
candidates for the task t.

6 Discussion and Theoretical Evaluation

6.1 One-periodic selection versus N-periodic selection

Executing the selection algorithm every time a new candidate is discovered can
hinder the processing performance to answer the user’s request. With the skyline-
based solution the overall execution time can be optimized through waiting for
N new candidates to start the selection.

Lets suppose the number of new candidates for each task t is mt, where
N∑
i=1

mi = n where N is the number of tasks. Let us suppose the number of the

old candidates for each task is lt.

In the worst case (i.e no new nor old candidate is dominated by another),
the number of iterations is exactly the same with One-periodic or N-periodic

selection : 2ltmt + m(m−1)
2 . But in the general case, the number of iterations in

N-periodic selection is lower. Indeed, we eliminate the irrelevant candidates in
the set s1 of the newly discovered n candidates to obtain a set s2 of m ≤ n
candidates. After that, we consider s2 and eliminate the candidates that are
dominated by at least one element of T1 to obtain s3 with |s3| ≤ |s2|. Next, we
consider the complete set of candidates T1 and eliminate the candidates that are
dominated by at least one element of s2 to obtain a new set T2 where |T2| ≤ |T1|.
Finally we merge T2 and s3 to obtain the final set T3 that represents the whole
set of candidates without irrelevant candidates.

6.2 Selection algorithms of the skyline set of services

After reducing the number of candidates with the skyline algorithm, we need
to choose the best solution for selection. In our contribution we show the naive
combinatorial algorithm in order to explore the reduced space of solutions. We
use a double loop in order to explore the two dimension array of candidates.
There are some optimized algorithms [11] specifically aimed at obtaining better
performances for this class of optimization problems.

In some cases, the size of the set of candidates is very large that, even with
the algorithms we proposed, the solution can not be obtained in a reasonable
amount of time. Some solutions have been proposed to resolve this problem, such
as the representative skyline services proposed in [1].

7 Conclusion

In this paper, we propose a skyline-based approach to enable Web resource se-
lection. We show that a solution based on the HATEOAS principle, where we
select the Web resource candidates along the discovery stage, is more efficient for
selection than a classical solution that consists in waiting for discovery results
before the selection stage. We rely on a minimal QoS model to demonstrate our
approach. We provide four different setups in order to satisfy the user require-
ments according to the QoS profile and preferences. We enhance the performance
of our solution with a skyline-based algorithm in order to reduce the set of can-
didates for a given task and demonstrate that it gives the same output as with a
fully combinatorial algorithm but with less candidates and therefore less overall
computational time.

As future work, we envision to consider constraints between candidates for
different tasks while running the selection process. In other words, the set of
candidates for a given task can be different depending on the chosen candidate
for other tasks and also on the user’s preferences.

8 Acknowledgment

We would like to thank Karim Benouaret for his fruitful discussions about the
application of the skyline approach over the selection-on-the-fly setup.

References

1. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for qos-based web
service composition. In: Proceedings of the 19th international conference on World
wide web. pp. 11–20. ACM (2010)

2. Anadiotis, G., Kotoulas, S., Lausen, H., Siebes, R.: Massively scalable web ser-
vice discovery. In: Awan, I., Younas, M., Hara, T., Durresi, A. (eds.) The IEEE
23rd International Conference on Advanced Information Networking and Appli-
cations, AINA 2009, Bradford, United Kingdom, May 26-29, 2009. pp. 394–402.
IEEE Computer Society (2009), http://dx.doi.org/10.1109/AINA.2009.106

3. Bennara, M., Amghar, Y., Mrissa, M.: Managing web resource compositions. In:
Reddy, S. (ed.) 24th IEEE International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE Workshops 2015, Larnaca,
Cyprus, June 15-17, 2015. pp. 176–181. IEEE (2015)

4. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Data Engi-
neering, 2001. Proceedings. 17th International Conference on. pp. 421–430. IEEE
(2001)

5. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. Ph.D. thesis, University of California, Irvine (2000), aAI9980887

6. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for
wsdl and xml schema. IEEE Internet Computing 11(6), 60–67 (2007)

7. Martin, D.L., Paolucci, M., McIlraith, S.A., Burstein, M.H., McDermott, D.V.,
McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan,
N., Sycara, K.P.: Bringing semantics to web services: The OWL-S approach. In:
Cardoso, J., Sheth, A.P. (eds.) Semantic Web Services and Web Process Compo-
sition, First International Workshop, SWSWPC 2004, San Diego, CA, USA, July
6, 2004, Revised Selected Papers. pp. 26–42. Springer (2004)

8. Ran, S.: A model for web services discovery with qos. SIGecom Exchanges 4(1),
1–10 (2003), http://doi.acm.org/10.1145/844357.844360

9. Verborgh, R., Hausenblas, M., Steiner, T., Mannens, E., de Walle, R.V.: Dis-
tributed affordance: an open-world assumption for hypermedia. In: Carr, L.,
Laender, A.H.F., Lóscio, B.F., King, I., Fontoura, M., Vrandecic, D., Aroyo, L.,
de Oliveira, J.P.M., Lima, F., Wilde, E. (eds.) WWW (Companion Volume). pp.
1399–1406. International World Wide Web Conferences Steering Committee /
ACM (2013)

10. Wang, Z.J., Liu, Z.Z., Zhou, X.F., Lou, Y.S.: An approach for composite web
service selection based on dgqos. The International Journal of Advanced Manufac-
turing Technology 56(9-12), 1167–1179 (2011)

11. Wolsey, L.A., Nemhauser, G.L.: Integer and combinatorial optimization. John Wi-
ley & Sons (2014)

12. Yu, T., Zhang, Y., Lin, K.: Efficient algorithms for web services selection with
end-to-end qos constraints. TWEB 1(1) (2007)

13. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Trans. Software Eng.
30(5), 311–327 (2004)

