
Semantic-enabled and Hypermedia-driven
Linked Service Discovery

Mahdi BENNARA1, Michael MRISSA2, and Youssef AMGHAR1

1 Université de Lyon, LIRIS
INSA-Lyon - CNRS UMR5205

F-69621, France
{mahdi.bennara,youssef.amghar}@liris.cnrs.fr

2 Université de Lyon, LIRIS
Université Lyon 1 - CNRS UMR5205

F-69622, France
michael.mrissa@liris.cnrs.fr

Abstract. Automating discovery and composition of RESTful services
with the help of semantic Web technologies is a key challenge to exploit
today’s Web potential. In this paper, we show how semantic annotations
on resource descriptions can drive discovery algorithms on the Web. We
propose a semantically-enabled variant of the BFS discovery algorithm
that aims at minimizing the number of links explored while maximizing
result diversity. Our algorithm calculates semantic distances between re-
source descriptions and user request concepts to rank explored resources
accordingly. We demonstrate the applicability of our solution with a typ-
ical scenario and provide an evaluation with a prototype.

Keywords: Linked Web services, semantic web, discovery, composition

1 Introduction

During the last few years, both the overall number of Web APIs exposed on
the Web3 and the increasing ratio of RESTful APIs has shown the interest of a
Web of resources. Resources can be combined to answer complex user requests,
in other words: to build Web applications. The emergence of RESTful services4

has been a major success to enable interoperation on the Web. Moreover, service
composition, or mashups, enables valued-added processes that combine several
services to answer complex user needs. The success of Web services is highlighted
via Web sites such as http://www.programmableweb.com that referenced 105
APIs available on the Web in 2005 and more than 15000 APIs in 2016, not
counting mashups. The uniform interface, that comes with the correct use of
HTTP verbs and their semantics, replaces the typical API build around functions

3 http://www.programmableweb.com/api-research
4 In the remainder of this paper, we use “resource” to describe a RESTful service

accessed through a URI endpoint.



and sets of input/output parameters. The operations handled by server-side
modules are now shifting towards the client modules. On top of that, recent
advances in the semantic Web research area have been promoting linked data [2]
and a set of languages and tools, such as RDF [10], that allow to annotate
Web data, resources and services with explicit, machine-readable semantics that
can be utilized in conjunction with advanced reasoning mechanisms to connect
resources to each other. Linked services [13] benefit from these machine-readable
semantic annotations.

Our paper is organized as follows. Section 2 introduces the motivating sce-
nario of our contribution and details the research problem. Section 3 explains
some background knowledge in order to understand our contributions. Section 4
presents related work and highlights the advantages our solution offers. Sec-
tion 5 details how we semantically annotate resource descriptions and hyper-
media links. Section 6 gives an evaluation and discusses the choices made and
results obtained. Section 7 resumes our approach and lists some elements of
future work.

2 Motivating scenario and research problem

2.1 Scenario and Motivation

We motivate our contribution with an online book selling scenario where a user
wants to buy a book, make a payment online then get the book shipped to the
given address. The process of buying involves selecting a set of books, choosing a
shipping method, and paying with the appropriate solution. We assume that the
URI of one of the book selling resources is known to the user. Our work is mo-
tivated by the need to enable distributed affordance principle [14], which means
that the resource discovery process should be automated and hypermedia-driven
(consisting in following links between resources). The advantages of distributed
affordance include the possibility of generating opportunities of use for resources
while exploring the Web as well as respecting the user preferences. Automating
the discovery process can typically be achieved with the help of semantic anno-
tations that can aid software agents decide what are the relevant links to follow.
Building a solution to enable distributed affordance includes two elements. Dis-
covery requires semantic description of resources. Semantic annotations
provide the means to reason about the descriptions. Such descriptions should
follow the HATEOAS principle 5. Exploring the Web requires a resource dis-
covery algorithm. It must make appropriate use of the semantic annotations
on resources to optimize the search response time. The end user should only
provide high level objectives to the software program, as well as an entry point
(URI to start the discovery process). The software program should be in charge
of interpreting the user request, finding out that buying a book online includes
selecting a set of books, choosing a delivery option and paying online. It should
explore the Web of resources to discover the ones that help answering the query,

5 Hypermedia as the Engine of Application State



orchestrate the interactions and execute the created process. These are the chal-
lenges we address in the current paper.

2.2 Problem statement and research contribution

Typical approaches to discover, compose, orchestrate and utilize linked services
on the Web require complete overhauling of existing technique in order to harness
the benefits provided by the REST principles and the semantic Web. In the
present paper, we propose a generic solution to automate resource discovery
based on semantic reasoning and following the HATEOAS principle. We follow
the distributed affordance principle [14] and rely on an extension [1] to the
Hydra [8] specification for semantically describing resources. Our contribution is
two-fold:

– Resource description: The extension of our previous work on descriptions
(presented in Sec. 5) describes the business-level semantics of HTTP oper-
ations on resources as well as links to other resources. Annotations on op-
erations allow to automate the identification the tasks required by the user,
and annotations on links guide the discovery process to other resources.

– Resource discovery: we extend the BFS 6 algorithm with semantic-awareness
to improve its response time. Our annotation extends the social model pre-
sented in [9] to semantically qualify the relationships between resources.

3 Background Knowledge

3.1 Graph search algorithms

Breadth-First-Seach: Exploring very large graphs like the Web [11] needs high
performance algorithms in order to obtain low response times. Efficiency of the
exploration algorithm is key for our work, as we are discovering resources on
the Web. Breadth-First-Search [7] algorithm yields high performances in large
graphs, according to [12]. In addition, BFS is a natural search strategy in the
context of Web. Also, compared to other efficient search algorithms, it has a
relatively low computational cost for a large scale graph such as the Web. In our
approach, BFS finds the most relevant resources to answer a user’s request early
enough to be considered efficient.

Depth-First-Search: DFS is also one of the well-known graph exploring
algorithms [7]. It explores branches one by one and it stops only when it reaches
the deepest node of that branch, the deepest node being the one with no suc-
cessor. The application of DFS in Web crawling has proved to be difficult. This
is due to the fact that the Web is a very large graph, and exploring one branch
only can be extremely difficult, performance-wise. Most relevant nodes to the
current research are generally not very deep but rather in different branches,
which is the main weakness of the algorithm.

6 Breadth First Search [7]



3.2 Web Resource Description

In this paper, we rely on the RESTful resource descriptor mechanism as well as
and the discovery solution introduced in [1] in order to propose a solution for
resource discovery problem in the context of semantic Web. The descriptor no-
tion separates resource representation from its description and states that every
resource must have a descriptor and a representation. The reason for detaching
the representation from the description is to separate different concerns, in order
to ease the resolution of each one apart. Resource representations relate to user
Web browsing, while resource descriptions relate to M2M interactions and oper-
ations such as discovery and composition processes. The descriptor is typically
accessed by calling a GET / HEAD operation on the resource URI, and retriev-
ing the LINK header element in the HTTP response. A GET on the retrieved
link returns a HTTP response whose body contains the descriptor itself.

4 Related Work

4.1 Semantic Description of Resources

Hydra core vocabulary: The Hydra core vocabulary [8] is a small vocabulary
aimed to describe RESTful Web APIs. The purpose of developing the Hydra
vocabulary is to simplify the development of RESTful APIs by leveraging the
advantages offered by Linked Data. The basic idea of Hydra vocabulary is to
allow RESTful APIs to publish valid state transitions to clients. As a result, the
clients can utilize this information in order to construct valid HTTP requests in
order to modify the resource, request/delete another one or create a new one.
All this information is exchanged between server and client at run-time and is
not hard-coded into client at design time. Hence, the clients can be decoupled
from the servers and adapt their execution according to changes.

RESTdoc: RESTdoc [5] is a description solution that combines multiple
micro-formats in order to semantically describe RESTful resources. RESTdoc
offers also a discovery mechanism that distinguishes two different aspects of
REST services discovery problem: (1) the discovery as a client concerns the
client-side browsers. This discovery uses on HTML Link element on a Web site
in order to point to other resource descriptions, and (2) the discovery as a service
which is is the ability for a service to access and link to other related resources
in the same application domain. This solution describes a fully peer to peer
discovery mechanism. In our work we combine both discovery modes.

4.2 Resource discovery and composition

LinkedWS: LinkedWS [9] is a Web service discovery model based on human in-
teractions in social networks in the context of SOA. The idea behind LinkedWS
is to establish a social network of Web services where nodes are actual Web
services and edges are relations between these Web services. What is really im-
portant about this work in the current paper is the categorization established on



exposed functionality. These functionalities are either Similar so the Web ser-
vices compete for participation in compositions or Complementary, so the Web
services work towards the same compositions.

RESTdesc: RESTdesc [15] is a work about semantic description of Web
APIs based on the Notation3 RDF syntax. The purpose of the description is to
allow for an efficient way to discover the features that Web APIs offer. It uses
operational semantics of Notation3 in order to allow a flexible discovery.we think
that the N3 descriptions require a lot of effort to work with, even though N3 rea-
soning has seen a good advance. Our descriptor mechanism is aimed specifically
to render descriptions use simple for both machines and Web API developers.

4.3 Analysis

Using semantic Web advances to automate resource composition is a recent topic
and has only been explored by few works in the literature [6]. The contribution
we propose in this paper relies on exploring the semantic annotations over the
links between resources, which are found in descriptors, in order to guide the dis-
covery process into the links with the most potential to match with the request
concepts. We reuse the Hydra core vocabulary in order to establish descriptions.
However Hydra does not provide a good support for semantic annotations over
links and operations. We extend hydra in order to allow resources description
to have semantically annotated elements that can be exploited by discovery, se-
lection and composition algorithms in order to enable a completely automated
process to answer user’s requests. The simplicity of our solution lies in the sepa-
ration between resource representation and description as well as the separation
between links and operations in the descriptions. In order to discover resources
that can answer the user’s request, the generic client has to start exploring the
description of the resource given as an entry point by the user. Based on the se-
mantic annotations given by the description, the decision making of (1) whether
to account the current resource in the final composition and (2) what are the
next resources to explore is easy to establish.

5 Contribution

5.1 Semantically Annotating Descriptor Links

Our descriptor-based solution allows generic clients to crawl from one resource
to another in order to select interesting resources to answer the user’s query.
However, due to the huge number of resources on the Web, there is a need to
improve the discovery algorithm that we use (i.e. BFS [7]) to only select the most
interesting resources. The vocabulary we use to implement the descriptor concept
is Hydra core vocabulary [8]. We introduce semantic annotations on descriptor
links, and extend the BFS algorithm to take advantage of these annotations. The
semantic annotations will guide the algorithm by excluding irrelevant links to
the current application. Fig 1 illustrates the semantic annotation of descriptor



links. Our semantic annotation is inspired from existing work [9] to define the
properties that link resources to each other. We define that:

– Two resources are similar if they provide functionally substitutable ser-
vices, sometimes varying in terms of non-functional properties.

– Two resources are complementary if they can be combined in the same
process to answer user’s needs, for example: a flight booking service and a
hotel booking service inthe context of a trip.

– Two resources are incompatible if they cannot be involved together in the
same process because of a given reason, for example: the eBay online seller
could decide not to work with the UPS delivery company.

Operations 

GET bs:consultBooks 
PUT   bs:updateBookList 

bs: http://soc.univ-lyon1.fr/bookselling.owl 
rr : http://soc.univ-lyon1.fr/resourcerelation.owl 

 Links 

http://amazon.com rr:IsSimilar 
http://dhl.com  rr:IsComplementary 
http://paypal.com rr:IsIncompatible 

Fig. 1. Descriptor example with annotated links

5.2 Semantic-enabled Discovery

Our solution builds a generic client that interacts with the resources through
their respective APIs. The client software program needs to be able to automate
the process of composing the functionality of the three resources of the scenario
to answer the user’s query. This includes the discovery of the resources. The
maximum number of similar links to be operated can be limited in order to in-
crease the performance of the BFS algorithm. However, this will limit the choices
given to the user. A compromise between performance and result diversity is to
be established using this parameter.

We also propose a solution inspired by the weight-based approach presented
in [3] in order to :

– Sort the links on a resource description in order to guide the discovery algo-
rithm while exploring similar links.

– Sort the results obtained after positive matching with a query concept

In other words, the set of similar resources inside a resource descriptor are
sorted from the most similar link into the least similar one. Based on the query
nature, the discovery algorithm starts exploring the most similar resources if the
priority is to find more alternatives to the current resource or the least similar
resources if the priority is to find more complementary and diverse resources.
Many formulas to calculate semantic distance have been proposed in the state



of the art [3, 4]. The one we adopt in our work is weight-based formula proposed
in [3] because it can be directly used with our approach without any further
calculation of additional parameters. Note that the work of annotating links and
sorting them is not done during the discovery.

The discovery algorithm details are given in Algorithm 1.

Algorithm 1: BFS-based discovery algorithm

Input: conceptList: array of string
Input: currentLink: string
Input: similarLimit : integer
Output: result: array of string

1 bfsQueue: array of string
2 visited: array of string
3 while not conceptList.empty() and not bfsQueue.empty() do
4 if not currentLink in visited then
5 visited.insert(currentLink)
6 Descriptor descriptor = getDescriptor(currentLink)
7 foreach operation in descriptor.operations do
8 foreach concept in conceptList do
9 if conceptMatch(operation.annotation, concept) then

10 result.insert([concept, currentLink])
11 conceptList.remove(concept)

12 similarCount: integer = 0
13 foreach link in descriptor.links do
14 if link.annotation = IsComplementary then
15 bfsQueue.insert(link)
16 else
17 if link.annotation = IsSimilar and similarCount < similarLimit

then
18 bfsQueue.insert(link)
19 similarCount = similarCount + 1

20 //and if it is incompatible we do not take it into account in the first
place

21 currentLink = bfsQueue.next()

The algorithm takes as input three parameters:

– conceptList (array): contains the list of concepts that describe the opera-
tions needed in order to answer the user’s query.

– currentLink (string): contains the URI of the resource being processed.

– similarLimit(int): is the maximum number of similar links per resource to
be taken into account by the algorithm.



The algorithm returns as output the result array which contains all the pairs
[concept,URI] where the resource identified by URI can perform an operation that
semantically matches the paired concept classified by semantic distance from
the query concept.

The set of variables used in this algorithm are the following:

– The bfsQueue is the queue that contains the ordered set of URIs for the
next nodes to be explored by the BFS algorithm.

– The visited array contains URIs of resources already traveled. This vari-
able’s main objective is to prevent loops if the graph is cyclic. Further im-
provements on this part of the algorithm are possible in order to obtain
better performance.

– The similarCount variable introduced in line 12 counts the number of
similar links that are inserted in the BFS queue to be traveled. This counter
cannot exceed similarLimit.

The algorithm consists of a main While loop. The exit condition is verified
when there are no concepts to look for or no further resources in the graph to
travel or when a certain amount of time passed since the beginning of the loop
(timeout). Each iteration of this loop discovers a single resource whose link is
currentLink. The algorithm verifies if it has not been visited yet, if not it is
marked as visited. If the resource has not been processed yet, the algorithm
gets its descriptor then checks if any of the operations provided by the resource
is annotated by one of the remaining concepts. If so, the concept along with
the resource URI are inserted into result then the concept is removed from
conceptList. After that, the algorithm inserts the URIs of the related resources
into bfsQueue, while respecting the fact that similar resources links inserted
cannot exceed similarLimit.

6 Evaluation and Discussion

The resources composing the services previously presented in the scenario are
implemented using Java TM Servlets using Jersey framework 7. We use Apache
Tomcat 8 as a server-side software in order to accommodate our resources.
The demonstration Web page can be found here: https://liris.cnrs.fr/

~mbennara/doku.php?id=medi2016.
We show the number of traveled nodes as well as response time (in millisec-

onds) gain compared to the raw BFS algorithm respectively in Fig 2 and Fig 3.
Each column represents a separate query that involves an increasing number of
resources in the Web. We get better response times for the same request with
the enhanced algorithm because it explores less nodes than the regular. This is
due to the fact that when we travel the Web graph, we find more similar re-
sources. The similar resources are ignored by the enhanced algorithm but taken
into account by the regular one. However, this decrease in response time can also
be accompanied by a decrease in result diversity.



0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

Response time with regular
algorithm (ms)

Response time  with
enhanced algorithm (ms)

Fig. 2. Response time in ms

0

10

20

30

40

50

60

1 2 3 4 5 6

Number of explored nodes
with regular algorithm

Number of explored nodes
with enhanced algorithm

Fig. 3. Number of explored nodes

Enabling semantic annotations on links between resources allows the automa-
tion of the discovery process. Without the semantic annotations, the discovery
algorithm has to explore every link in order to search for resources to answer
the user’s query. Having similar and complementary annotations on links allows
the algorithm to explore the requested links based on selectivity measures. The
maximum number of similar links to be explored is limited. This limit deter-
mines the performances of the discovery algorithm as well as the diversity of the
results obtained. The lack of diversity is due to the possibility for similar re-
sources to contain links into useful complementary resources. Sorting the similar
resource links in the description is important in order to optimize the discovery
algorithm. Depending on the user’s query, the discovery process will prioritize
the most or the least similar links while taking into account the similar limit as
well.

7 Conclusion

In this paper we propose an annotation of Web resource descriptions based
on a social model that relies on similar and complementary relations. These
annotations provide information for the discovery process in order to respond to
the user’s request faster and more accurately. Then, we provide a semantically-
enhanced BFS-based algorithm to discover resources. It relies on the semantic
annotations in order to determine whether a resource is worth exploring.

Future work includes exploring advanced heuristics to reach a better compro-
mise between performance and result diversity. We envision to extend our model
to support quality of service aspects in order to further enhance the discovery
and selection processes. We aim also to enable an automatic service composition
process in order to fully automate answering users’ requests.

8 Acknowledgment

We would like to thank Mehdi Terdjimi for his support and help with the imple-
mentation of the algorithm, the ontology and the concept matching component.



References

1. Bennara, M., Amghar, Y., Mrissa, M.: Managing web resource compositions. In:
Reddy, S. (ed.) 24th IEEE International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE Workshops 2015, Larnaca,
Cyprus, June 15-17, 2015. pp. 176–181. IEEE (2015)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

3. Ge, J., Qiu, Y.: Concept similarity matching based on semantic distance. In: Se-
mantics, Knowledge and Grid, 2008. SKG’08. Fourth International Conference on.
pp. 380–383. IEEE (2008)

4. Hau, J., Lee, W., Darlington, J.: A semantic similarity measure for semantic web
services. In: Web Service Semantics Workshop at WWW. pp. 10–14 (2005)

5. John, D., Rajasree, M.S.: RESTDoc: Describe, Discover and Compose RESTful
Semantic Web Services using Annotated Documentations. International Journal of
Web & Semantic Technology (IJWesT) 4(1) (2013)

6. Kovatsch, M., Hassan, Y.N., Mayer, S.: Practical semantics for the internet of
things: Physical states, device mashups, and open questions. In: Internet of Things
(IOT), 2015 5th International Conference on the. pp. 54–61. IEEE (2015)

7. Kozen, D.: Depth-first and breadth-first search. In: The Design and Analysis of
Algorithms, pp. 19–24. Texts and Monographs in Computer Science, Springer New
York (1992), http://dx.doi.org/10.1007/978-1-4612-4400-4_4

8. Lanthaler, M., Guetl, C.: Hydra: A Vocabulary for Hypermedia-Driven Web APIs.
In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M., Auer, S. (eds.) LDOW.
CEUR Workshop Proceedings, vol. 996. CEUR-WS.org (2013)

9. Maamar, Z., Wives, L.K., Badr, Y., Elnaffar, S., Boukadi, K., Faci, N.: Linkedws:
A novel web services discovery model based on the metaphor of ”social networks”.
Simulation Modelling Practice and Theory 19(1), 121–132 (2011)

10. Manola, F., Miller, E.: RDF Primer. W3C Recommendation, http://www.w3.org/
TR/rdf-primer/

11. Meusel, R., Vigna, S., Lehmberg, O., Bizer, C.: The graph structure in the web–
analyzed on different aggregation levels. The Journal of Web Science 1(1) (2015)

12. Najork, M., Wiener, J.L.: Breadth-first crawling yields high-quality pages. In: Pro-
ceedings of the 10th international conference on World Wide Web. pp. 114–118.
ACM (2001)

13. Pedrinaci, C., Domingue, J.: Toward the Next Wave of Services: Linked Services
for the Web of Data. J. UCS 16(13), 1694–1719 (2010)

14. Verborgh, R., Hausenblas, M., Steiner, T., Mannens, E., de Walle, R.V.: Dis-
tributed affordance: an open-world assumption for hypermedia. In: Carr, L.,
Laender, A.H.F., Lóscio, B.F., King, I., Fontoura, M., Vrandecic, D., Aroyo, L.,
de Oliveira, J.P.M., Lima, F., Wilde, E. (eds.) WWW (Companion Volume). pp.
1399–1406. International World Wide Web Conferences Steering Committee /
ACM (2013)

15. Verborgh, R., Steiner, T., Deursen, D.V., Roo, J.D., de Walle, R.V., Vallés, J.G.:
Description and Interaction of RESTful Services for Automatic Discovery and Ex-
ecution. In: Proceedings of the FTRA 2011 International Workshop on Advanced
Future Multimedia Services (Dec 2011)


