
Managing Web Resource Compositions

Mahdi Bennara, Youssef Amghar
Université de Lyon, CNRS

INSA-Lyon, LIRIS UMR5205
F-69621, France

{mahdi.bennara, youssef.amghar}@liris.cnrs.fr

Michael Mrissa
Université de Lyon, CNRS

Université Lyon 1, LIRIS UMR5205
F-69622, France

michael.mrissa@liris.cnrs.fr

Abstract—Nowadays, the use of RESTful Web services
promotes stateless service interaction and decentralized
hypermedia-driven discovery and composition. However, there
is a need for models and tools to drive user interaction as well
as description, discovery and composition of RESTful services.
In this paper, we provide a solution to help users manage,
share and discover workflows of RESTful Web services. We
annotate RESTful Web services with semantic information, and
introduce the notion of composition directory as a Web resource
that assists a user in sharing, managing and discovering
workflows. Users’ composition directories form a decentralized
repository of service workflows connected by hypermedia links.
We illustrate the benefits of our approach with a typical
scenario and show through a set of experiments that the
breadth-first search algorithm combined with the exploitation
of semantic annotations efficiently answers users’ goals by
crawling through composition directories.

Keywords-RESTful Web services, linked services, semantic
Web, composition

I. INTRODUCTION

The Web has moved from a Web of documents to a dis-
tributed application platform where applications are exposed
as Web resources, as witnesses the growing number of avail-
able APIs1. Leading research topics are related to discovery,
composition and invocation of Web resources via their API.
In addition, the emergence of semantic Web technologies
gives the opportunity to improve the use of APIs with se-
mantic annotation over Web resources. Semantic annotation
helps to drive the interaction with APIs by providing explicit
description of domain-specific information about resources.

Another key concept that drives today’s Web is distributed
affordance. Affordance is the ability for a user to use a Web
resource. The idea is to dynamically create affordance based
on the information already present in a resource represen-
tation, with knowledge from distributed sources [12]. Dis-
tributed affordance combines the information on resources
and the knowledge on service providers, as well as user
profiles in order to generate possibilities for manipulating
Web resources. It should allow client-side software to dy-
namically drive the interaction with Web resources, therefore
service providers do not have to anticipate user interaction

1http://www.programmableweb.com

and avoid deploying static business processes that constrain
users.

In order to enable distributed affordance, Web resources
must be semantically described, and user agents needs to be
able to exploit such descriptions. In this paper, we build on
previous work to semantically annotate Web resources [1]
and facilitate resource discovery and browsing. We introduce
the concept of composition directory to help users manage
and share compositions, and show that the breadth-first
search algorithm can be used in this context to crawl and
discover resources according to a composition workflow the
user provides.

Our paper is organized as follows: Section II introduces
the challenges we want to overcome while trying to solve
the composition problem. Section III presents related work
and highlights the advantages our solution offers. Section IV
details the main aspects of our contribution and shows its
innovation. Section V shows a scenario example and details
how our prototype operates in the context of the scenario
to demonstrate the applicability of our solution. Section VI
discusses our results and gives some guidelines for future
work.

II. CONTEXT AND CHALLENGES

In the context of our work, Web services are seen as Web
resources that comply with the REST architectural style. The
REST architectural style is based on the notion of resource
as a conceptual entity that represents abstract or concrete
things such as books, orders, payments, etc. Resources are
identified by URIs, their state is passed to the client through
representations using the adequate media type according
to the principle of context negotiation. In this paper we
consider a RESTful Web service as a set of resources that
provide a coherent access to the state and functionality of
the software it represents [9].

Another principle that drives the REST architectural style
is the HATEOAS2 principle. Using HATEOAS requires
hyperlinks to be established between Web resources that
form an open and very large graph. HATEOAS means that
the discovery process is realized progressively, user agents

2Hypermedia As The Engine Of Application State

http://www.programmableweb.com


should be able to discover other Web resources accessible
from any given resource in the graph.

In this context, we identified several challenges to address,
which can be summarized as follows :

• Web resource description and interlinking: resources
need to be appropriate described with semantic anno-
tations and also linked to each other with hyperlinks
to enable client-side discovery (how to interact with
the resource) and crawling (how to discover other
resource from a given one according to the HATEOAS
principle).

• Web Resource discovery: as a follow-up to the first
challenge, user agents should be able to implement
an efficient algorithm to crawl between resources and
exploit their annotations to realize users’ objectives.

In order to answer these challenges, we build on previous
work to annotate resources. We introduce the notion of
composition directory to manage and share composition
workflows and we show that the breadth-first search al-
gorithm can be used to crawl through and and efficiently
discover Web resources.

III. RELATED WORK

In this section, we overview existing work about Web
resource management and discovery algorithms.

A. Resource Discovery

RESTdesc [13] is based on the Notation3 RDF syntax. It
involves all the operational semantics of Notation3 which
allows for a versatile discovery methods. We can take
advantage of all the advances in the reasoning domain in
the Notation3 syntax in order to determine whether a re-
source satisfies a set of conditions defined for the discovery.
More advanced reasoning is performed in order to achieve
service matching. Authors estimate that this is an important
prerequisite for services in order for them to contribute to the
future Web of clients, because new functionality can only be
obtained by on-demand compositions tailored to a specific
problem [13].

RESTdoc [3] is a format that combines multiple micro-
formats in order to semantically describe RESTful resources.
RESTdoc offers a discovery mechanism that distinguishes
two different aspects of REST services discovery problem:
(1)the discovery as a client, or discovery as you browse,
concerns the client-side browsers. This discovery uses on
HTML Link element on a Web site in order to point to other
resource descriptions. and (2) the discovery as a service,
also called automated discovery, is the ability for a service
to access and link to other related resources in the same
application domain. The solution provided by RESTdoc
describes a fully peer to peer discovery mechanism. The
main idea is to construct a graph by running through links
and identifying resources. This graph can be subject to later
extending in order to explore new related resources.

LinkedWS [6] is a Web service discovery model based on
social networks. The idea behind LinkedWS is to construct
a social network for every service on the Web in order to
allow social-based discovery process. The social network is
built the moment the service participates a first time in a
composition. Generally speaking, a social network of a Web
service consists of nodes and edges. The nodes represent an
object or an entity (book, person, organization, etc.) and the
edges represent the relationships between nodes (distance
between two cities, relationship between two persons, etc.)
Each edge has its own weight, that is used by the search
or ranking algorithms that navigate through the network in
order to find Web services that suit specific purposes. Every
Web service is the entry point of his own social network.
LinkedWS allow the discovery of additional Web services in
a specific composition. The discovery itself triggers the re-
evaluation of the weight of the edge that led to this discovery.

Our proposition aims to enhance the discovery process
by embedding the related resources directly in the resource
description. It allows also the discovery of resources using
existing composition work-flows.

B. Resource Composition

Many researchers are interested in the problem of describ-
ing the semantics of the sequences in the executions flows,
and have proposed many solutions.

One of the most important works in this domain is the
BPMN 3 [14] specification. BPMN specifies a set of flow
control sequences that allows us to describe the progressing
of a process. The main interest of BPMN for us is that it
can be used in order to construct and store dynamic service
composition processes which can be reused afterward by
another user that wants to do similar service composition.
The use of BPMN relies on a Process-oriented approach
rather than being Resource-oriented. This may conflict with
the principles of the REST architectural style, nevertheless
some concepts can be used naturally on resource oriented
architectures.

Linked USDL 4 [10], is another work in this perspective.
Unlike, BPMN, Linked USDL vocabulary has been designed
especially for the service-oriented domain, making it easier
to adapt for our solution. Some of the important concepts
introduced by this vocabulary include: Service, ServiceOf-
fering, InteractionPoint as well as services roles including:
Producer, Provider, Intermediary, etc. which constitute the
main semantic concepts of workflow control in service-
oriented architectures. Linked USDL is being used in many
projects, and it proved its efficient for the service community.

BPEL for REST [9] is a work that proposes to reuse
the BPEL language principles and apply it on the REST
architectural style. BPEL for REST either uses the WSDL

3Business Process Modelling Notation
4Unified Service Description Language



2.0 description language without changing the current BPEL
or extends BPEL in order to support HTTP operations on
the resource API. The main drawback of BPEL comes with
its centralized approach that relies on a static composition
engine, which does not fit with the HATEOAS principle.

Our approach aims to use work-flows in order to enable
reuse of popular compositions. This is also a flexible way
of composing resources as the work-flows can be duplicated
and edited.

C. Graph discovery algorithms

Exploring very large graphs such as the Web requires
efficient algorithms in order to have acceptable response
times. As we are discovering resources on the Web, the
efficiency of the exploration algorithm is one of the most
important elements of our research work. Practically the
classic algorithms are not used as such because they may
result in important response times due to the Web size.
Instead, variants of these algorithms are used with specific
parameters (often limiters) in order to yield reasonable
response times and acceptable results. The most known
examples of algorithms are Breadth First Search and Depth
First Search algorithms. Other algorithms include variants of
these two with limiting parameters, for example limiting the
depth of the search (number of consecutive edges counting
from the root) also known as depth-limited search or lim-
iting the total number of nodes accessed during the whole
process [11] [2].

According to [8] the Breadth-First Search graph traversal
algorithm yields high-quality pages early on in a crawl. In
other words, the most relevant pages/resources to the search
are discovered early on in the process. In our work, this
means Breadth-First Search finds the most relevant resources
to answer a user’s request by finding multiple (or single)
resources that can perform the tasks needed in order to
answer the request. In addition to that, Breadth-First Search
is a very natural search strategy in the context of Web.
Also, compared to other efficient search algorithms, it has
a relatively low computational cost for a large scale graph
such as the Web.

IV. CONTRIBUTION

Based on the related work presented above, we have
built our solution that promotes the concept of composition
directory and uses the breadth-first search algorithm to
manage, share and crawl Web resources. Our solution must
respect the following requirements in order to facilitate
resource discovery and composition:

• Scalability: the increasing number of today’s Web APIs
makes the scalability of solutions important.

• Responsiveness: the increasing number of users gener-
ates an important load of requests on servers. We want
server responses to be as fast as possible in order to
handle all the requests in a reasonable time.

• Diversity: We want our resource descriptions to propose
rich and diverse links to other resources in order to
give them a chance for being used. In other words,
the users which make a request should have different
propositions rather than only popular services in a given
field and thus giving the chance to less popular services
to emerge if the users are interested in the services they
offer.

• Dynamism: the results of the resource discovery pro-
cess should not be static, in other words it should
be different from one request to another, because on
one hand the availability of resources involved in the
request as well as the context of the request may have
changed in the meantime, and on the other hand, the
user context may also have changed, which implies that
users might not get same results because they browsed
new resources which may impact the response.

• Serendipity: the serendipity concept allows APIs to be
used in a non-specific process. In other words we do
not want the clients to use APIs in a deterministic
way where every next API to use is already known
in advance

Today, the main advances in Web resource composition
are centered around the description of the resources. The
focus of these advances is how to describe a resource in
order to give as much information as possible to identify
the nature of the resource, its activity and what type of data
it exchanges. Too few efforts focus on how it links to other
resources and how to follow these links, as well as how to
manage and share composition workflows. The latter aspects
are presented in the following in order to enable value-added
resource discovery and composition.

A. Describing and Discovering Resources

In order to semantically describe resources, we rely on the
notion of resource descriptor discussed in [1]. The resource
descriptor has been slightly modified and the data model we
use to implement the descriptor concept is the Hydra core
vocabulary [4]. The main reason for this choice is that Hydra
defines explicit semantics of its Operation and Link
elements, the major two elements present in the descriptor.

The resource representation contains the business-level
information about the given resource, while the descriptor
contains semantically annotated information on how to use
this resource (the available HTTP Operations on the current
resource, not on other resources) plus information about the
related resources (links to other related resources). Hence,
resource descriptors separate resource representations from
their descriptions, to promote separation of concerns be-
tween resource interaction and management (discovery and
composition). We deem appropriate to make sure that ev-
ery resource must have a descriptor to enable machine-
to-machine interaction. As every resource must have a
descriptor, and descriptors are also considered as resources,



descriptors also must have their own descriptors. To address
this issue, we define the Universal Descriptor5, which de-
scribes all the resources including itself.

With the help of resource descriptors, a generic-client is
able to interact with resources and to crawl from one to
another in order to compose resources. From a resource URI,
a client can get its descriptor by executing a GET/HEAD
operation on the given URI, and checking the LINK header
element in the HTTP response. Another GET operation
on the retrieved link returns a HTTP response with the
descriptor containing all the necessary meta-data that de-
scribes not only the interaction model with the current
resource, but also annotated links to internal or external
resources that can be composed together with the given
resource. In order to document the semantics of sets of
links as well as operations that are present in a given
resource descriptor, we rely on ontology concepts. On the
operation side, we want to know the exact concept that is
accomplished by the operation being described. The concept
is part of a larger global composition process that implies
several other operations on different resources. Describing
operations requires ontologies of operational semantics to
describe how to realize a complex task with a combination
of simpler, specific tasks.

B. Discovery Process

The discovery process we introduce in this work relies on
semantic annotations of operations in the descriptors. When
a user enters a request, it is processed by a reasoner in order
to know what actions should be realized in order to prepare
a response, as presented in previous work [7]. These actions
are represented by an ordered list of ontology concepts. The
discovery process will take as input this list of concepts as
well as an entry point (the URL of a Web resource). Starting
from this entry point, the process tries to find resources on
the Web that provide the required operations to respond to
the request, on the basis of the concept list taken as input.
We consider the Web as a big oriented cyclic graph, where
nodes are resources and links are Web hyperlinks. We adopt
the Breadth-First Search (BFS) algorithm in order to traverse
the Web in search of resources that provide the operations
corresponding to the concepts of the request.

C. Managing and Sharing Compositions

In order to enable users to record, reuse, manage and share
their composition workflows, we propose a specific resource
called composition directory. The Composition Directory
resource contains information about its owner, and a sub-
resource called repository to store as sub-resources the com-
position workflows the user creates. The Composition Direc-
tory of a user links to other connected users Composition
Directories. Note that this is completely compatible with the

5http://soc.univ-lyon1.fr/universal.md

descriptor concept because the links to other Composition
Directories, the Repository and the created compositions
scenarios represent the external part of our descriptor.

We define the following API in order to qualify possible
interactions with Composition Directories

1) GET on the base URI of a Composition Directory
should send back the information about this Compo-
sition Directory and its owner.

2) GET on the Repository of the Composition Directory
should send back the set of links to every composition
on the Repository.

3) GET on a specific composition URI should send
back the representation of the composition. This may
require an authentication and may send a 401 code
(Unauthorized) in case the authentication fails.

4) POST from the user on the Repository of his Com-
position Directory should create a new composition.
Composition attributes and its accessibility should be
indicated by the use beforehand in the representation.

5) POST from the user on his own composition directory
in order to add a new Composition Directory URI of
another user that exposes interesting compositions for
him.

This offers many advantages, first it is a scalable and
decentralized solution as every user stores a part of composi-
tions on the web, it also respects the serendipity concept as a
given client may find part of the solution to the user’s prob-
lem in another user’s composition set. Our model includes
access control features relying on HTTP authentication. We
define public compositions that everyone on the Web can
access from its URI, and private compositions that are not
disclosed and require authentication.

V. TESTS AND EVALUATION

In this section, we illustrate our contribution with different
scenarios, we detail our implementation setup, and discuss
the results obtained.

A. Illustrative Scenarios and Experiment Setup

In order to illustrate our approach, we consider three
scenarios. The first scenario involves three different Web
resources and illustrates how resources and descriptors are
disposed, and how resources link to each other using de-
scriptors. It includes :

• A book selling service: users can select books, read
abstract and place an order.

• A shipping service: its task is to deliver goods that users
buy online.

• An online payment service: the task of this service is to
debit money from users’ bank accounts to the benefit
of online stores for the goods they buy.

The second scenario involves two users to illustrate the
fact that users do not use Web resources in the same way.

http://soc.univ-lyon1.fr/universal.md


Each user orchestrates services in a different manner and
shares it with the other user or with everyone on the Web
using the Composition Directory mechanisms. The Web
resources involved are similar to the first scenario with an
additional computer accessories store, where users can select
accessories, read description and place an order. The first
user’s objective is to buy a book online, pay it online and
receive it by mail. The second user wants to buy some
computer accessories, pay them online and receive them by
mail. The third scenario involves 25 resources with their
descriptors. These resources can perform multiple actions,
which are annotated in the descriptors. The objective of
this scenario is to illustrate the discovery process with the
descriptor mechanism. The prototype illustrating our work
is available online6.

In our work, we rely on JavaTM language and the Jer-
sey framework7 in order to implement our services and
JavaScript as a client-side scripting language in our Web
pages. We use the Google Gson module8 in order to ma-
nipulate Json objects in Java. We use Apache Tomcat9 as
an application server in order to accommodate our different
Web resources. Our descriptors rely on the Hydra core
vocabulary [5] to describe resources. The machine used for
the experiments has an IntelTM Core i5-3340M CPU and
8GB RAM. The Web browser used is MozillaTM Firefox.
The tests were performed on the local university network.

B. Evaluation and Discussion

In this section, we discuss the choices of our implemen-
tation and the impact of these choices on the challenges and
the properties we want to achieve. As we are using the REST
architectural style to build our solution, the respect of Web
constraints is ensured by design.

1) Resource Description: We evaluate and discuss our
contribution for the resource description challenge on the
basis of the first scenario. The use of descriptors allows
to benefit from separation of concerns between business-
level information and description-level information (meta-
data contained in the descriptor). The descriptor also allows
access to relations with other Web resources, which enables
interactions according to HATEOAS. The first scenario
illustrates well this separation.

In our example, the book selling resource only contains
business layer information such as the name of the service
as well as a brief description. Its descriptor, on the other
hand, contains links to internal and external related resources
(the shipping and payment services for instance) as well
as the functioning of the resource itself with the help of
semantic annotations. The order resource in the book selling
service gives another example about resource description: a

6https://liris.cnrs.fr/∼mbennara/doku.php?id=wetice2015
7https://jersey.java.net/
8https://code.google.com/p/google-gson/
9http://tomcat.apache.org/

GET operation returns the representation of the repository
with all the placed orders and their statuses (with per user
authentication), a POST operation takes an order as request
body and adds it to the repository as an unpaid order,
and PUT operation changes the order state and a DELETE
operation (only available when the order has been fully
completed) deletes an order from the repository.

2) Resource Composition: We evaluate and discuss our
contribution for the composition challenge with the second
scenario. Composition directories allow users to create, store
and share compositions of Web resources. Compositions can
be thereafter entirely of partially reused by the user himself
or other authorized users. This solution allows for dynamic
creation of new compositions rather than follow inflexible
server-side compositions. It allows also a large scale sharing
of popular compositions that users find useful and offers
flexible ways to reuse and adapt compositions to user’s
needs. We do not rely on a central repository to store the
compositions.

The second scenario illustrates these statements: the first
user can create a composition for the process of buying a
book involving the shipping and online payment services.
He can share this composition with the second user to buy
things online with goods delivery and payment services. The
second user can reuse the same composition if he wants
to buy a book, or only a part of this composition if he
wants to buy computer accessories. The creation of a new
composition as well as its reuse depend on the discovery
process discussed below.

3) Resource Discovery: We evaluate and discuss the ap-
plication of the Breadth-First Search algorithm for discovery
of resources in our work.

One important thing to note while applying the algorithm
is that nodes are not simple in the context of descriptors,
but are double. A node of our graph is the resource and
its descriptor while the edges are simply the links in the
descriptor of a given resource. In order to avoid unnecessary
use of bandwidth, we use HEAD requests on resources
instead of GET, in order to retrieve the descriptor link, and
then we use a GET request in order to retrieve the descriptor
contents.

We illustrate the application of the algorithm on our re-
sources with the third scenario. The algorithm takes a set of
concepts and an entry point as input data, it crawls through
the graph formed by resources and their descriptors in order
to give back the results. The timings of our experiment are
shown in Table I and discussed below.

The number of nodes indicates the total number of nodes
in the graph that have been traversed in order to give a full
response to the request. The response time indicates the time
in milliseconds taken in order to respond to the request. The
response time per node is simply the response time divided
by the number of nodes. The response times per node are
under 20 millisecond if the research involves a small number

https://liris.cnrs.fr/~mbennara/doku.php?id=wetice2015
https://jersey.java.net/
https://code.google.com/p/google-gson/
http://tomcat.apache.org/


Table I
DISCOVERY ALGORITHM RESPONSE TIMES

Number of nodes 1 5 10 15 20 25
Response time (ms) 18 89 184 241 301 334
Response time per node (ms) 18 18 18 16 15 13

of nodes, but as the number of nodes grows, it becomes
lower due to the caching mechanism of the Web browser
and the factoring of descriptors for resources that share the
same descriptor contents. In other words, additional GET
requests on the same descriptor that is shared by multiple
resources in the graph are processed faster, as the results are
stored in the local cache.

This experiment demonstrates that response times are
below a linear progression as the global response times
indicate. Hence, our approach scales quite well as the
composition directories as well as the descriptions are decen-
tralized and each resource stores a part of the global graph.
Our approach also ensures dynamic results, as the content
of descriptors may be subject to change especially the links
part. The diversity is also ensured as the algorithm may
find multiple resources that implement a specific operation
needed in the process, this number can be limited before the
algorithm starts and is given as input with the concepts. The
serendipity has also its share in our approach, as the order in
which the links of a descriptor are crawled may influence the
final result, giving chance to more or less popular resources
to be used within the composition process.

VI. CONCLUSION

In this paper, we have introduced the notion of compo-
sition directory as a REST resource that allows users to
record, manage and share composition workflows. We have
proposed a solution to link users’ composition directories
over the Web to each other to form a distributed direc-
tory of composition workflows that can be crawled with
graph traversal algorithms. We demonstrate the adequacy
of our solution with a set of experiments that rely on the
well-known breadth-first search algorithm to discover Web
resources according to a set of concepts that represent a
user’s goal. The obtained results show the scalability of our
proposal. As future work, we envision extending our solution
with quality models combined with user-side reasoning to
enhance the discovery algorithm efficiency. We aim to enable
automatic reuse of compositions by reasoning about their
semantic annotations in order to respond to a user’s request.

REFERENCES

[1] M. Bennara, M. Mrissa, and Y. Amghar. An approach for
composing restful linked services on the web. In C.-W.
Chung, A. Z. Broder, K. Shim, and T. Suel, editors, WWW
(Companion Volume), pages 977–982. ACM, 2014.

[2] K.-T. Förster and R. Wattenhofer. Directed graph explo-
ration. In Principles of Distributed Systems, pages 151–165.
Springer, 2012.

[3] D. John and M. S. Rajasree. RESTDoc: Describe, Discover
and Compose RESTful Semantic Web Services using An-
notated Documentations. International Journal of Web &
Semantic Technology (IJWesT), 4(1), 2013.

[4] M. Lanthaler. Hydra Core Vocabulary. http://www.
markus-lanthaler.com/hydra/spec/latest/core/.

[5] M. Lanthaler and C. Guetl. Hydra: A Vocabulary for
Hypermedia-Driven Web APIs. In C. Bizer, T. Heath,
T. Berners-Lee, M. Hausenblas, and S. Auer, editors, LDOW,
volume 996 of CEUR Workshop Proceedings. CEUR-WS.org,
2013.

[6] Z. Maamar, L. K. Wives, Y. Badr, S. Elnaffar, K. Boukadi, and
N. Faci. Linkedws: A novel web services discovery model
based on the metaphor of ”social networks”. Simulation
Modelling Practice and Theory, 19(1):121–132, 2011.

[7] M. Mrissa, L. Médini, and J. Jamont. Semantic discovery
and invocation of functionalities for the web of things. In
S. Reddy, editor, 2014 IEEE 23rd International WETICE
Conference, WETICE 2014, Parma, Italy, 23-25 June, 2014,
pages 281–286. IEEE, 2014.

[8] M. Najork and J. L. Wiener. Breadth-first crawling yields
high-quality pages. In Proceedings of the 10th international
conference on World Wide Web, pages 114–118. ACM, 2001.

[9] C. Pautasso. Restful web service composition with bpel for
rest. Data Knowl. Eng., 68(9):851–866, 2009.

[10] C. Pedrinaci, J. Cardoso, and T. Leidig. Linked usdl: A
vocabulary for web-scale service trading. In V. Presutti,
C. d’Amato, F. Gandon, M. d’Aquin, S. Staab, and A. Tordai,
editors, ESWC, volume 8465 of Lecture Notes in Computer
Science, pages 68–82. Springer, 2014.

[11] S. Russell, P. Norvig, and A. Intelligence. A modern
approach. Artificial Intelligence. Prentice-Hall, Egnlewood
Cliffs, 25, 1995.

[12] R. Verborgh, M. Hausenblas, T. Steiner, E. Mannens, and
R. V. de Walle. Distributed affordance: an open-world
assumption for hypermedia. In L. Carr, A. H. F. Laender,
B. F. Lóscio, I. King, M. Fontoura, D. Vrandecic, L. Aroyo,
J. P. M. de Oliveira, F. Lima, and E. Wilde, editors, WWW
(Companion Volume), pages 1399–1406. International World
Wide Web Conferences Steering Committee / ACM, 2013.

[13] R. Verborgh, T. Steiner, D. V. Deursen, J. D. Roo, R. V.
de Walle, and J. G. Vallés. Description and Interaction of
RESTful Services for Automatic Discovery and Execution.
In Proceedings of the FTRA 2011 International Workshop on
Advanced Future Multimedia Services, Dec. 2011.

[14] P. Y. H. Wong and J. Gibbons. A process semantics for bpmn.
In S. Liu, T. S. E. Maibaum, and K. Araki, editors, ICFEM,
volume 5256 of Lecture Notes in Computer Science, pages
355–374. Springer, 2008.

http://www.markus-lanthaler.com/hydra/spec/latest/core/
http://www.markus-lanthaler.com/hydra/spec/latest/core/

	Introduction
	Context and Challenges
	Related Work
	Resource Discovery
	Resource Composition
	Graph discovery algorithms

	Contribution
	Describing and Discovering Resources
	Discovery Process
	Managing and Sharing Compositions

	Tests and Evaluation
	Illustrative Scenarios and Experiment Setup
	Evaluation and Discussion
	Resource Description
	Resource Composition
	Resource Discovery


	Conclusion
	References

