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Abstract—Organizations, companies and Web platforms hold
large amounts of unused data. These data are trapped in
separate data sources, locked up in legacy formats and only
reachable through several different protocols, making usage
difficult. It is therefore necessary to manage this multiplicity
of data sources in order to build a solution able to combine this
multi-origin data into a coherent smart data set. We define a
meta-model and models to describe data source diversity in a
flexible way. We therefore propose an adaptive architecture
that generates data integration workflows at runtime. We
evaluate our approach to offer scalability, responsiveness, and
dynamic and transparent data source management. We apply
our approach in a live scenario from a French company to
show how it adapts to industrial needs and facilitates smart
data production and reuse. This paper describes our models
and strategies and presents our resource-oriented architecture.

Keywords-resource oriented architecture; data integration;
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I. INTRODUCTION

During the last few years, governments, companies and
organizations have opened their databases and information
systems to the world across the Web, thanks to initiatives
such as the open data project [1]. Data sources are typically
exposed via Web APIs [2] or SPARQL endpoints and can
be combined in service mashups [3] to produce highly
valuable services. For example, the sets of APIs provided by
Twitter, Amazon, Youtube or Flickr are used in thousands
of mashups1.

The smart use of data has caught the interest of the
community as a natural development after the interest on big
data. The objective of smart data [4] is focused on producing
high-quality data that is directly useful to users, instead of
focusing on massive data quantities. Building smart data
architectures, i.e. automatically integrating data from diverse
sources, in currently a hot research topic. Related approches
are focused on data quality and service optimization [5] or
public ontology alignment [6]. Industrial approaches exist to
give a universal access to data sources [7], [8], but none of
these approaches is focused on data source characteristics to
adapt data processing.

1See also http://www.programmableweb.com/

The solution we propose is a generic meta-model, and
associated models, to describe data source characteristics
and data access strategies, together with an adaptive ar-
chitecture that generates workflows at runtime. We isolate
each task as a separate process within our resource ori-
ented architecture implementation. We identify the following
challenges and scientific locks to address during the data
integration process. Dynamic and transparent data source
management: the possibility to transparently add or remove
a data source at runtime without any need of hard coded
information. Scalability and responsiveness: the solution
must support a large number of data sources while offering
low time response. Dynamic data processing: the solution
needs to adapt data sources that require different processing
(large data volume at runtime, frequent update, latency).
Data consistency: provide consistent, error and duplicate-
free data.

This paper is organized as follows. Section II presents
our meta model and models for describing data sources.
Section III explains our different processing techniques
in order to handle the constraints and characteristics data
sources provided. Section IV presents our resource-oriented
architecture, details the different components and their or-
chestration. Section V gives an evaluation of our prototype
in terms of responsiveness and shows how it responds to
user requests with acceptable timings. Section VI presents
related work and highlights the advantages of our approach.
Section VII discusses our results and provides guidelines for
future work.

II. DATA SOURCE MODELS

In order to address the challenges presented above, we
propose a meta-model to describe the characteristics of data
sources. Based on this metamodel, we define a data source
model describing physical data source characteristics, a data
source meta-model to describe extracted data and, finally,
we define adaptive data processing workflows. Hence, these
models are used to implement our smart data architecture
that provides a resource-oriented solution for data integra-
tion.



A. A Meta-Model for Describing Data Sources

Each data source might follow a different format, structure
and logic, and require processing strategies. Therefore, we
need a flexible data source representation to handle these dif-
ferent data source capabilities. This data source meta-model
is shown in Figure 1. In this meta-model, characteristics can
describe either the source itself (i.e., useful characteristics
to guide the interaction with the data source), or the data
instances to be extracted.

Figure 1. Data source metamodel

Our meta-model includes different core attributes. We
identify the URI and the request format as the mandatory
information to manage access to data sources. The request
format characteristic is represented by a syntax attribute
(e.g., XML, JSON, SQL) and a schema defined by three
attributes: endpoint, syntax (e.g., XML, n3, JSON) and
structure (e.g. RDFS, XSD, JSON Schema). One syntax
field defines the request; the other defines the schema.
Here we illustrate this meta-model with a set of specific
characteristics, but it remains applicable to all kinds of
characteristics and scenarios.

B. Data Source Description Model

Based on this meta-model, it is possible to define adapted
data source models (as instances of the meta-model) to de-
scribe data sources. Fig. 2 shows the different characteristics
of the data source model example used in our scenario.

URI identifies the data source and contains the necessary
information to enable interactions with this data source (pro-
tocol, domain and resource name). Request Format defines
how to interact with the data source (e.g., SQL, SPARQL,
XML). Update frequency indicates the recommended av-
erage duration between each request to a data source.
Volume represents the global quantity of data that a data
source manages. This characteristic takes its value from the
following enumeration: [small,medium, high]. This helps
to adapt the access strategy (direct access, cache, synchro-
nization, ...). Latency represents the average network time
(regularly updated) required to obtain a response message to
a request on a data source. Authentication describes the data
source access restriction (HTTP-Auth, OAuth, SSL, Public).
In some cases, auth parameters can be specified in the
URI, e.g., http://user:pass@test.com/. Semantics
aggregate the information required to perform the semantic
transformation from raw data to linked data. The semantic
description contains: an URI of the data model ontology,

an URI of the mapping file that gives information about
required data transformation and an attribute identifying
the system used to perform the transformation. Privacy (of
data source) agreements [9] define whether data is limited
to a specific usage context or not, according to a set of
conditions. Agreements can, as an example, avoid to provide
a piece of data to a third party system, or prevent any
modification or commercial use of a data piece.

C. Data Source Meta-Model

At the data level, there is a need for a model to describe
the data we extract from sources. These attributes can apply
to specific pieces or to global data sets, and always override
the data source characteristics.

The model is composed of the following characteristics:
Privacy (of data) attributes which override data source
privacy for specific pieces of data (given by owner). Validity
specifies the date after which data can be considered as obso-
lete. Semantics are conceptual information about extracted
data, provided by data source or updated during semantic
annotation. Filters are specific attributes which identifies
the quality in the data set. Filters can specify a detected
malformed piece of data, or a forbidden value.

D. Data Access Strategies

In the following, we present our data access strategies
to adapt to cases where volume or latency problems hamper
data access. A data access model describes several character-
istics that affect the way a client connects to and downloads
data from data sources. According to characteristic values,
different data access policies can be adopted. We adapt
our access strategies to the three following characteristics:
data volume, latency and update period. High latency and
medium volumes require the data to be cached. Update pe-
riod helps to set the synchronization delay. In the following
section, we present the different processing tasks required
to perform the integration process.

III. DATA PROCESSING WORKFLOWS

From the needs we have identified in the previous sec-
tions, we define processing tasks, which we combine in
workflows to generate smart data. In this section, we en-
vision different data processing workflows as combinations
of functions in different orders. We list in the following
the different kind of functions that our architecture manages
as resources, before presenting how the different possible
workflows are constructed.

A. Defining Processing Functions

We consider a data source DSa, defined by a set of
characteristics. We define a download function DL() that
extracts a quantity of data D from a data source DSa.

Definition 1: DL(URIa, Sa) = Da where URIa, Sa

represent the data source DSa (URI and Model) and Da

the data extracted.



Figure 2. A data source model based on our scenario

An access function can accept optional parameters in
order to handle the auth protocol (query for databases,
authentication parameters, etc.). In order to be processed,
data need to be transformed from its raw extracted format to
a format we can manipulate. We define a decoding function
Dec() which will transform the data into our standard
format.

Definition 2: Dec(Da,r) = Da,f where Da,r is the data
extracted into its raw format and Da,f is the transformed
data.

In order to aggregate data from multiple data sources,
concepts from both data source must belong to the same
ontology, which we called G. In order to transform the data
extracted into linked data instances Ia, we define a mapping
function Sema() which is defined as:

Definition 3: Sema(Da, G) = Ia where Da is the data
extracted from data source DSa, G is the ontology graph,
and Ia the linked data graph produced from DSa.

Once data has been extracted and semantically enhanced,
it can easily be combined into a new data set. We define an
integration function called I() which takes as input the data
sets that have been previously annotated and combines them
into a new one.

Definition 4: I(G,Da, Db, ...) => Dmix where G is the
semantic graph of manipulated data and (Da, Db, ...) are
semantically transformed extracted data from data source
(DSa, DSb, ...). Finally, Dmix is the smart data set result.

This function aggregates data and links common data
concepts together. Before this combination, the integration
function analyzes data, detects heterogeneities and provides
mediation based on our previous Data Mediation as a Service
approach [10]. This approach proposes a architecture that
solves inconsistencies in service compositions.

Finally, we define a function F () that removes the mal-
formed part, noise and inconsistencies that may appear in a
data set Da after processing. This function can also take as
input a set of conditions to filter data.

Definition 5: F (Da, < Filters >) => Da,clean

The different processing tasks defined here will help to
complete the tasks that participate in the integration process.

In the following, we present how these functions can be
combined into different processing workflows depending on
the characteristics described in the data source and data
models.

B. Interaction models in the architecture

Figure 3 presents an example of process orchestration in
order to integrate data coming from two data sources called
S1 and S2. Processes are executed from left to right, where
boxes represent the previously defined functions. Data is
going through the following steps: download (Dl), decode
(Dec), transformation into linked data with help from a
mapping description (Sem), then both data set are integrated
(I) and finally filtered (F ).

S2 Dl Dec Sem

S1 Dl Dec Sem

I F

Figure 3. Typical integration workflow

During execution data goes through different states, from
the raw original format following data extraction, to a format
that facilitates manipulation, and finally to the linked data
format once annotated. The move from one state to another
may have an impact on processing in terms of response time
(especially when processing a huge data volume) or data
consistency (streams VS static DB). In a classical workflow,
data is typically transformed into linked data before the
integration task, because semantic annotations facilitate the
integration process.

The originality of our approach is that our adaptive
architecture generates workflows at runtime in order to
fit with the data source characteristics. Tasks are moved
forward or backward in workflows to limit volume of data
to be processed. In the following example, the workflow is
optimized by placing the filtering process before integration
and semantic transformation tasks.



S2 Dl Dec F Sem

S1 Dl Dec F Sem

I F

Figure 4. Optimized workflow

IV. A SMART DATA ARCHITECTURE

Using these models and strategies, we define a resource-
oriented architecture in which we define the different tasks
required to prepare, semantically annotate and clean data.
Through these different steps, data is transformed into a
consistent “smart data” set

A. Global Overview: a Resource-Oriented Architecture

Our architecture follows the principles of SOA [11],
which makes our components decoupled, cohesive and
reusable, thanks to its properties: Loose Coupling, Abstrac-
tion, Reusability, Autonomy and Composability.

In order to build a completely generic and modular archi-
tecture, we deploy our components as RESTful resources,
i.e., identified by URIs and accessible through HTTP meth-
ods. Thanks to the SOA and REST principles [12], our
architecture is generic, scalable and modular. It is composed
of different resources that can be dynamically orchestrated
as presented in the following.

Figure 5. Architecture Resources

We define generic RESTful resources [13] to handle the
main data processing and management tasks, as shown in
Fig. 5.

B. Core Resources

In the following, we present the core resources that handle
the tasks presented in Section III.

The data source handler manages the access and data
extraction from data sources (DL and Dec tasks of Sec-
tion III-A).

Semantic annotation resources help to annotate and trans-
form data coming from diverse sources into linked data
(Sem task). We rely on existing semantic transformation

approach such as D2R[14] and Tarql [15] to perform the
semantic annotation and transformation.

Data integration resources help combine multi-origin data
(I task) and resolve heterogeneities that appear relying on
our previous DMaaS approach [10].

Filtering and cleaning resources filter data and remove
duplicates as well as malformed pieces of data (F task).

We added a reasoner running as a background task to
infer new facts from existing data.

Finally, the Web Interface combined with the Query
Parser handle user interaction and data requests to the
architecture.

V. TESTS AND EVALUATIONS

Our architecture implementation and our adaptive mod-
els and strategies provide a dynamic and transparent data
source processing. Data consistency is provided by filtering
and cleaning tasks, which can be placed anywhere in our
workflows. On the other hand, the scalability to a large
number of data source cannot be guaranteed a priori by
our model and implementation. We answer the scalability
challenge by evaluating the evolution of complex query
response time over a growing number of data sources. We
regularly increase the number of data sources and measure
the response time.

The objectives we identified are classical in the field of
data integration from data sources. Scalability, responsive-
ness and data consistency are inherent to quality-aware data
architecture. On the other hand, transparent and dynamic
data source management and processing are specific objec-
tives we tried to address in our work, by taking a provenance
point of view.

A. Scenario

In order to evaluate our approach, we focus on a live
scenario from a company, which has a need for an adaptive
system to automatically combine their data with information
from Web sources in order to study the campaign broadcast-
ing impact over their customers. The scenario describes the
following data sources, each of them presenting different
characteristics.

1) an internal linked service giving access to our com-
pany business data

2) a SQL database containing a large volume of infor-
mation (around 10GB)

3) a SQL database that records user activities (high
volume of changing data) with 10.000/20.000 new
tuples per day

4) a RSS stream that contains user update requests
5) external APIs (DbPedia sparql endpoint, FOAF ontol-

ogy, etc.)
Relying on this scenario, we create two requests, involving

different concepts. We populate our scenario with a set
of data sources covering the different subgraphs. Query 1



involves four concepts, implying different types of data
sources with different characteristics such as high volume
(big database in our scenario) and privacy sensitive infor-
mation (linked service in our scenario).
PREFIX al: <http:// restful . alabs . io / concepts/0.1/>
SELECT ?email value ?campaign WHERE {

?email a al :email ;
al :has email value ?email value .

?email value a al : email value .
? clic a al : clic ;

al : clic email ?email ;
al :clic campaign ?campaign .

?campaign a al :campaign .
}

Listing 1. Query 1 involving four data sources

Query 2 involves less concepts, but includes user specific
filters. This query introduces freshness sensitive data sources
(streams in our scenario).
PREFIX al: <http:// restful . alabs . io / concepts/0.1/>
PREFIX xsd: <http://www.w3.org/TR/xmlschema−2/>
SELECT ?email value ?campaign WHERE {

?email a al :email ;
al :has email value ?email value ;
al : blacklist status ? status .

? clic a al : clic ;
al : clic email ?email ;
al : clic date ?date .

FILTER (? status != 1 && ?date >= "1411477450"ˆˆxsd:date)
}

Listing 2. Query 2 introducing user specific filters

Tests are performed on a double core 2.3 GHz ma-
chine, with 4 GB of RAM. Restful resources and architec-
ture are implemented through PHP frameworks, Zend and
Slim2. Resources are hosted on scenario company servers
(Apache/PHP hosting servers), while architecture is hosted
locally.

B. Results

In this subsection, we evaluate our architecture response
time to queries Q1 and Q2 respectively, when the number of
data sources increases. We compared two composition tech-
niques, identified as WF1 and WF2. WF1 is composed of
the different steps of the integration process in a static order,
whereas WF2 introduces a dynamic composition, with the
ability to optimize component orchestration.

As can be seen in Fig. 6 and Fig. 7, when the number
of data source increases, there is an exponential increase of
execution time for the static composition WF1. In parallel,
the response time of composition WF2 increases linearly.

For query Q1, the combination step of the data integration
process becomes time-consuming, and the response time
increases exponentially. The evolution of response time for
query Q2 is less significant than query Q1, because of
introduction of filters in the query. When the number of
data sources exceeds 16 for Q1, and 15 for Q2, composition
technique WF1 is unable to provide a response in less than
a minute.

2See http://www.slimframework.com/
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Figure 7. Average response time for Query 2

These graphs clearly show that our architecture can adapt
to a large number of data sources, as long as we use a
dynamic composition model.

VI. RELATED WORK

Building an architecture to automatically integrate data
from diverse resources in order to produce smart data is
currently a hot research topic explored by the community.

Dustdar et al. present a peer data network architecture
in [5], where data sources are independent databases. Their
infrastructure solution focuses on quality of data and pro-
vides service-based optimization, such as peer replication,
to resolve data issues. However, the paper does not address
data heterogeneity problems, assuming that schema mapping
is sufficient.

QuerioCity [6] presents a smart platform to catalog,
index and query heterogeneous information from open data
portals3. They focus on data integration, annotating data with
public ontologies (Dublin Core [16] or FOAF [17]). They do
not provide any information about data sources, assuming
that sources have to meet the format that the architecture
supports.

On top of that, there has been a lot of approaches to
transform raw data to linked data in order to make these
data reusable, like D2R [14], RDF123 [18] and Tarql [15].
These approaches bring valuable tools, but the aggregation
work has to be performed on top of them.

3Such as Dublinked http://www.dublinked.ie/



Some approaches, such as SmartData.io [7] or Apache
Metamodel [8] present more industrial or technical auto-
mated management of data coming from heterogeneous
sources. These solutions are APIs and frameworks that
provide transparent interface to data sources but they did not
address challenges related to data combination or semantics.

We have taken into account the strengths and weaknesses
of these different approaches to build our proposal, im-
proving the reusability and loose coupling through usage
of linked data services, automating the linked data efforts
by proposing a distributed approach for the different tasks
to perform on data.

We chose to focus on data sources, in response to our
specific objective by design. At the same time, we focused
on scalability and responsiveness, justifying our approach
with a set of tests and response time evaluation where we
give acceptable results regarding these objectives.

VII. CONCLUSION

In this work, we build the foundation of a smart data
architecture, which is able to extract, annotate and combine
data coming from different data sources. We propose a
flexible solution to model data sources and data accord-
ing to their characteristics, allowing to use different data
access and processing strategies. Our adaptive architecture
generates workflows at runtime, adapting process to data
source characteristics. It aims at being as generic as possible,
independent of data sources, and adaptable to any use case.
We implement and evaluate our architecture in the context
of a scenario that answers the needs of our partner company.
Future work includes performing additional evaluation over
large data sets and exploring issues related to data manage-
ment such as data quality or freshness issues. It also includes
handling uncertainty that can appear in data aggregation
from multi-origin data sources.
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