An Avatar Architecture for the Web of Things

Michael Mrissa, Lionel Médini, Jean-Paul Jamont, Nicolas Le Sommer and Jérome Laplace

Abstract—The Web of Things (WoT) extends the Internet of
Things considering that each physical object can be accessed and
controlled using Web-based languages and protocols.

In this paper, we summarize ongoing work promoting the
concept of avatar as a new virtual abstraction to extend physical
objects on the Web. An avatar is an extensible and distributed
runtime environment endowed with an autonomous behaviour.
Avatars rely on Web languages, protocols and reason about
semantic annotations to dynamically drive connected objects,
exploit their capabilities and expose user-understandable func-
tionalities as Web services. Avatars are also able to collaborate
together in order to achieve complex tasks.

I. INTRODUCTION

The future Internet has been envisioned as an Internet of
Things (IoT) in which billions of heterogeneous things or ob-
jects will be connected to the Internet using wired or wireless
interfaces. The pervasive presence around us of a variety of
objects will have a high impact on several aspects of everyday-
life and behavior of people. These effects will be visible in
various domains such as home automation, e-health, industrial
manufacturing, logistics and intelligent transportation [1].

The “Web of Things” (WoT) extends the Internet of Things
so that physical object can be accessed and controlled using
Web standards. To do so, objects are expected to expose logical
interfaces through Web services, to describe Web contents and
services using semantic Web languages and annotations, and
to communicate together through standard protocols in order
to provide software interoperability between objects.

Although the number and types of connected objects in-
creases quickly, the WoT is not yet a reality, as several issues
must be addressed in order to seamlessly interconnect physical
objects, and to make these objects accessible on the Web.
Indeed, objects are heterogeneous and are rarely able to com-
municate with each other as they do not share the same com-
munication protocols, same business model representations
(aka interfaces) or abstraction levels [2]. Moreover, objects
are usually designed to process basic requests using their
sensors and actuators. By relying on Web standard protocols
and technologies and providing end-users with semantically-
described services, it will be possible to achieve complex tasks
that cope with end-users’ needs, even if such tasks require
cooperation between several heterogeneous objects.

In this paper, we introduce a new kind of software artifact
called “avatar”. Avatars provide a virtual extension to physical

Michael Mrissa, Lionel Médini are members of the LIRIS Laboratory,
Université de Lyon, France, e-mail: {michael.mrissa,lionel.medini}@univ-
lyonl.fr

Jean-Paul Jamont is member of the LCIS Laboratory, Université de Greno-
ble Alpes, France, e-mail: jean-paul.jamont@Icis.grenoble-inp.fr

Nicolas Le Sommer is member of the IRISA Laboratory, Université de
Bretagne Sud, France, e-mail: nicolas.le-sommer@univ-ubs.fr

Jérome Laplace is head of the company “Génération Robots”, France, e-
mail: jl@generationrobots.com

objects. Physical objects can therefore be coupled with avatars,
to form cyber-physical objects that are compatible with WoT
constraints and infrastructures. Avatars are implemented using
a distributed software platform that can be fully deployed
on powerful objets, or distributed over resource-constrained
objects and a cloud infrastructure. This platform is designed
and developed in the ASAWo0O project to address the research
challenges of the WoT.

Section II overviews related work and summarizes research
challenges. Section III details the different contributions in-
troduced by the avatar platform and show how they fit the
challenges of the WoT. Section IV gives an overview of the
architecture of the avatar platform. Section V presents our
prototype and illustrates the feasibility of our work with a
use case scenario. Section VI discusses our ongoing results
and gives some guidelines for future work.

II. RESEARCH CHALLENGES AND RELATED WORK

The WoT imposes new challenges regarding the represen-
tation of heterogeneous physical objects on the Web (e.g.,
robots, sensors, camera, mobile phones, connected-watches),
their interoperability and their possible collaboration. Indeed,
the functional and physical capabilities (i.e., processing, act-
ing, sensing and storage) of objects can be radically different.
Moreover, some objects are fixed and can be connected to the
Internet using wired links, while others are mobile and can
suffer from connectivity disruptions due to their mobility and
the short communication range of their wireless interface.

Fixed objects Mohile objects

Resourceful
ohjects

Resource
constrained
objects

Resourceless
ohjects

Figure 1. Classification of connected objects.

From our point of view, connected objects can be classified
in 6 different categories, depending if they are fixed or mobile
and depending on their physical capabilities. Resourceful
objects embed a WoT platform that hosts all the services



they provide. Installation of these objects is often simple since
they are standalone and do not require additional infrastructure
elements to run. Resource-constrained objects cannot embed
the whole WoT software platform due to restricted resources,
but it is possible to link them to distant hosts that can embed
missing parts of the platform. Resourceless Objects are passive
objects, detected using unique identifiers such as QR codes
or RFID tags. They do not have any computation, storage
or memory capability. They can be extended with software
deployed on the cloud or on the local network gateway.

The lack of standard specification for developing WoT
applications highlights the need for a WoT software platform
that extends physical objects on the Web. Based on existing
works, we hereafter list a set of design requirements for
software platforms to address the main research challenges
imposed by the WoT. Such a platform should be based on
Web standards, to cope with scalability issues and to able
to automatically discover and interact with heterogeneous
physical objects [2] (R1: interoperability). It should adapt its
behavior and structure to its environment at runtime (R2: Live
reactivity), such as the CityPulse! platform or the work of the
INCOME project [3]. To do so, it should be able to estimate
the global cost of physical actions in terms of device usage,
computation and networking and determine if an object can
perform this action (R3: resource management), as well as
to support connectivity disruptions occurring between several
mobile objects and between mobile objects and network
access points (R4: disconnection tolerance). As expressed
in the Webinos? project, the platform must be reliable and
secure so that objects and applications are harmless and avoid
privacy issues (R5: safety). Instead of completely delegating
computation tasks to cloud-based infrastructures (see IFTTT?),
we believe that, as stated in [4], a WoT platform would
gain performance by identifying the most suitable location to
execute each code module and deploying these modules on
the object processing unit or on a cloud infrastructure (R6:
delegation). At a higher level, a WoT platform should provide
applications that make sense and are useful for the users (R7:
user-understandable services) [S] and allow to a set of objects
to exhibit a collective behavior [6] (R8: collaboration), as seen
in the SensorMeasurement* framework. Consequently, a major
challenge resides in the ability of the WoT platform to evaluate
the intents of the other objects/platforms in order to identify
the tasks it is likely to be involved in or it must initiate. Finally,
a WoT platform should also favor the emergence of an open
market of software components and applications dedicated
to connected objects that rely on Web standards. Such a
WoT marketplace should permit developers and industrial
companies to distribute software applications and components
and provide end-users with software pieces allowing them to
implement different functionalities into their objects in order
to perform various tasks. The Compose® project targets such
an objective by standardizing WoT marketable applications.

Uhttp://www.ict-citypulse.eu/
Zhttp://webinos.org/

3https://ifttt.com/
“http://sensormeasurement.appspot.com/
Shttp://www.compose- project.eu/

We herein propose a WoT platform that takes advantages
of existing works and satisfies all these requirements. In the
rest of this paper, these requirements are referred to using a
reminder of the form “Rx”.

III. CONTRIBUTION

The ASAWOo0O project aims at extending physical objects
by proposing virtual representations of these objects, so that
an object and its representation both form a "Web-based
cyber-physical object" that defines and embodies high-level
behaviors for physical appliances. To do this, we propose
a software artifact called an avatar that is dedicated to a
particular physical object and represents the virtual part of
its corresponding cyber-physical object. The concept of avatar
aims at providing hardware vendors, software developers
and end-users with a comprehensible abstraction that makes
physical objects accessible on the Web and that extends their
status and capabilities (processing, acting, sensing, etc.) into
homogeneous, user-understandable functionalities. An avatar
is built on a software platform that addresses most of the
challenges imposed by the WoT and fits the requirements
presented in the previous section. It relies on several features
described in the following.

A. Semantic description of capabilities and functionalities

Semantically described capabilities and functionalities are a
key and original feature of our proposition [7]. In our WoT
platform, we describe them using the OWL semantic Web
language®, in order to be able to process and reason about
these descriptions using standard semantic Web tools (e.g.
triple stores and SPARQL query engines). An avatar discovers
the capabilities of an object using introspection techniques
and then infers its functionalities using a common ontology.
This ontology keeps trace of the different combinations of
capabilities required to achieve each functionality, therefore
allowing mapping the object layer (i.e. capabilities) with the
application layer (i.e. functionalities) in a declarative and
loosely coupled manner (R1). This way, a functionality, a
service and a WoT application can be performed in different
ways depending on the current environment and available ob-
jects. Reasoning about semantic descriptions of the capabilities
and functionalities also help inferring complex functionalities
involving sub-functionalities, which allows defining high-level
representations that better match the users’ needs (R8) than
the low-level capabilities (e.g. a user can tell a robot to
move forward to another room, instead of piloting each of its
wheels individually). Semantic descriptions of capabilities and
functionalities also provide intelligent resource management
facilities (R3) that are used to meet several of the other
challenges, as explained in the following sections.

B. Context-Aware Adaptation

Objects can have heterogeneous capabilities and can be
used in various environments. Therefore, an avatar must be
able to run on different types of objects, regardless of their

Shttp://www.w3.org/TR/owl2-overview/ for details.



type and manufacturer. We address this challenge (R2) by
designing a multi-level, semantic context model, as well as its
processing engine. This model can be processed at different
abstraction levels and must respond to requests regarding
four adaptation goals: code deployment (find out where to
deploy the different application modules (R6)); avatar-object
communication (choose the most appropriate communication
protocols and schemes for a given task (R4)); functionality
exposition (decide whether an object has enough resources
to perform a task or not (R3) and if the task is safe (R5));
collaborative behavior (take part in negotiations to achieve
collaborative functionalities (R8)). In order to achieve these
goals, this multi-level context model relies on QoS data,
as well as high-level information from both the user’s and
object profiles and from external Web services. For deciding
how to compose these contextual information pieces, making
them available to use and keeping them operational, we build
from the literature [8], as well as from several projects, such
as the semantic, multi-scale adaptation model developed in
the INCOME project [3]. Our context engine will be both
compatible with the high-level features defined in the project
and the contextual and QoS data provided by the objects or
other resources. Technically, we plan to implement the context
engine as a service continuous substitution mechanism, such
as the one described in [9].

C. Disruption tolerant service provisioning

Both the free movements of mobile devices (e.g., robots or
handheld devices carried by people) and the short communi-
cation range of wireless interfaces, such as Wi-Fi, accompa-
nied with the radio interferences induce some frequent and
unpredictable disruptions in the communication links. These
disruptions can also result from the volatility of devices, which
are frequently switched off due to their limited power resource.

To cope with these issues, routing protocols devised for net-
works that suffer from frequent and unpredictable disruptions,
such as delay tolerant and opportunistic networks, implement
the “store, carry and forward” general principle [10]. When
two devices cannot communicate directly because they are
not in the transmission range of each other, these protocols
make it possible to exploit other mobile nodes as intermediate
relays that can carry a copy of a message when they move
and forward it afterwards to other nodes so that it eventually
reaches its destination. The provision of application services
with this kind of opportunistic and asynchronous communi-
cations has been addressed so far only by a few number of
research works [11], [12]. The avatar platform implements a
disruption-tolerant protocol suite that supports the discovery
and the invocation of REST services either with COAP or
HTTP. This protocol suite implements both a centralized and
a distributed service discovery, and unicast and anycast service
invocation models (R4).

D. Autonomous behavior and collaboration

Because it does not have all the knowledge and the skills
to reach the associate goals, an avatar must be able to exhibit
collective behaviors [6]. Intent recognition [13] in artificial

systems appears with the Plan, Activity, and Intent Recognition
at the 2007 National Conference on Artificial Intelligence. In
our context, this recognition enables the interaction situation
identification by avatars. An interaction situation is a set of
behaviors resulting from the gathering of agents that act to
satisfy their objectives while taking into account their limited
resources as well as their individual skills. For example,
an avatar can be indifferent to other avatars with similar
objectives, in the situation where there is not competition for
specific resources or skills, cooperative with respect to other
avatars with compatible objectives that can help compensating
for missing resources or skills, or antagonist to entities with in-
compatible objectives. We develop an intent evaluation model
devised to allow each avatar to assess the interaction situation
from its own partial representation of the world. A common
semantic model will provide the underlying background of
this contribution. It will be coupled with a network listening
protocol that will allow avatars to reason about the skills
and objectives searched by other avatars. Moreover, this work
includes studying the relevance of a collective, decentralized
intent evaluation algorithm that will enable a trusted group of
agents to evaluate the intents of another agent. Once the in-
teraction situation has been identified, a collaboration strategy
will be devised by the avatars involved in the collective task
(R8).

E. Semantic service composition

In the avatar architecture presented in the following, appli-
cations describe configurable orchestrations of functionalities.
Avatars expose the functionalities they provide as RESTful
resources, and as well take the responsibility to expose and run
applications. We envision collaborating avatars that manipulate
semantically described RESTful resources to drive the exe-
cution of applications. However, the automation of discovery
and management of calls to resources to fulfill a high level
objective driven by an application remains a challenge at the
charge of avatars that should be modeled through interactions
in their multi-agent systems. We deem appropriate to explore
how the operationalization of the interaction protocols used
in multi-agents systems into sets of RESTful services that
exchange semantically described messages can be realized.
Avatars envisioned as agents should be able to communicate
about the applications they host and query other avatars to
engage collaborative behaviors (R1, RS).

FE. An Avatar-based infrastructure for the WoT

In order to support the dynamic deployment of functional-
ities, services and application on avatars, we have designed
a software infrastructure for autonomous avatars. This infras-
tructure is composed of a cloud environment and of a set of
package and ontology repositories. The package repositories
can be perceived as a marketplace for the WoT. They include
drivers for connected objects, as well as software function-
alities that can be deployed on objects according to their
capabilities and exposed as services. These repositories also
include WoT applications designed for users to control or to
interact with their objects (R7). The ontology repositories are



Cloud-based infrastucture
* Avatar \\//

N J - platform | < >
| A
[ - p 1 Avatar | \ 4
e T4 platform >
J —
r .
3 e — [; ]

~

Appliance Drivers

1 } B

Functionalities

—
—
&

Capabilities

=

= Services

— ‘j:uwavatar - (=) J‘:
= /\ o platform
Applications

Figure 2. An Avatar-based infrastructure for the WoT.

Package Repositories

fe
Functionalities

Ontology Repositories

—
—

&
Context

expected to be queried by avatars in order to reason about the
available semantic descriptions (capabilities, functionalities,
context data...), to find out what functionalities and application
they can deploy automatically, where they can deploy them
— on the physical object or in the cloud — and how they
must adapt their structure and their behavior according to their
execution context. This software infrastructure also allows
making avatars accessible on the Web so as to permit end-users
accessing their objects using their Web browser. Interoperabil-
ity between objects is achieved using standard protocols and
technologies defined by the W3C for the Web, coupled with a
distributed service-oriented mediation infrastructure developed
in previous work [14] (R1). For scalability and efficiency
purposes, the architecture of the avatar platform matches
the REST architectural style. Avatars expose the services
they offer as RESTful services, promoting uniform interface,
stateless communication and loosely-coupled, late bindings
between service clients and providers. Client are transparently
bound to the providers of the services they require and are
not concerned with service implementation. Communications
between avatars are achieved using standards protocols such
as HTTP and COAP.

IV. THE AVATAR ARCHITECTURE AND LIFECYCLE
A. Overview of the Avatar Architecture

The avatar platform has been designed as an OSGi service-
oriented architecture partially relying on the OM2M open-
source platform’, a RESTful implementation of the ETSI
M2M standard®. Other platforms to support WoT development
such as the Lab of Things’ or AllJoyn'® either do not follow
the REST architectural style, lack platform-independence, or
do not follow the ETSI standards. In the avatar, specific
services are dedicated to object control while others implement
the autonomous, self-adaptive and collaborative behavior of
avatars, ensuring interoperability with objects and external
software using Web standards. The runtime environment is
entirely decoupled from its logical architecture. An avatar can
dynamically adapt the distribution of its services to different

"http://eclipse.org/om2m/
8http://www.etsi.org/technologies-clusters/technologies/m2m
%http://www.lab-of-things.com/

10https://www.alljoyn.org/

locations (e.g., object, local network gateway and cloud) in
order to improve their execution (R2, R3). The avatar architec-
ture consists of 6 functional modules containing components,

described in the following.
Collaboration
Module

Web Service
Module

[ WoT Application

Module

Core Module

Reasoner

Functionality

Manager

Deployment
Manager

Context
Manager

Communication
Module

[ Object Interoperability Module j

Figure 3. Achitecture of the avatar software platform.

1) Object Interoperability Module: The object interoper-
ability module of an avatar offers a uniform interface to
interact with the physical object it is attached to (R1). This
module relies on a repository of files and tools to configure
the object (i.e. to define the methods that must be used
to communicate with it). This module loads and uses the
drivers to exchange messages with the object. It performs an
introspection of the connected object in order to discover its
physical capabilities.

2) Core Module: The core module of the avatar platform
includes several components that are reused in different steps
of the avatar lifecycle. The main components of this module
are respectively a reasoner and a component deployment
manager. The reasoner allows to process semantic information
pertaining on the capababilities, the functionalities and the exe-
cution context of a connected object. The pieces of information
provided by the object interoperability module are aggregated
with those of the context manager and processed by the
reasoner in order to perform semantic multi-level adaptation.
These adaptation directives are exploited for instance by the
component deployment manager, another component of this
module, in order to decide where and when it must deploy
the other components of the platform. These directives also
help to determine the most appropriate protocol stack for
the current communication scheme and contextual conditions.
This module also includes a functionality manager, which is
responsible for deciding what functionalities can be deployed
according to the capabilities of the object and to its current
execution context. It also relies on the deployment manager
to define where the functionalities must be deployed. This
module is essential to respect the (R2), (R3), (R4), (RS) and
(R6) requirements.

3) Communication module: The communication module
of the avatar platform is responsible for selecting the right
network interface and for selecting the right network (Wi-
Fi, Bluetooth, Zigbee...) and application protocols (CoAP,
HTTP) according to available communication interfaces and



performance needs (throughput and energy consumption). In
order to support connectivity disruptions induced by the mobil-
ity of some objects and the short communication range of their
wireless interfaces, we have introduced in the communication
module of the avatars a disruption tolerant communication
protocol suite that relies on the “store, carry and forward”
principle and that allows to satisfy requirement (R4).

4) Web service module: The Web service module is de-
signed to expose the functionalities of an avatar as REST
services. By this means, other avatars and Web applications
can discover and invoke these REST services to interact with
the avatar (and the object) to perform a given task. This Web
service module also allows an avatar to discover and to invoke
remote REST services offered either by avatars or by servers
on the Web. This module is thus in charge of implementing the
inter-avatar negotiation processes, using a Web service-based
communication scheme.

5) WoT Application module: In our avatar architecture,
WoT applications expose the high-level behavior of a con-
nected object. They provide users with Web-based interfaces
to control and interact with the physical objects. These WoT
applications are executed inside a WoT application container
that can be partly distributed on the connected object and
partly on the Web infrastructure (e.g. a cloud) thanks to the
deployment manager. This module satisfies requirement (R7).

6) Collaboration module: Thanks to the core, communi-
cation and Web service modules, an avatar is able to identify
other avatars and the functionalities they expose. By observing
these functionalities and the activity of other avatars, the
collaboration module is able to identify if the objectives of
the avatar are compatible with those of the other avatars. It
can also identify if a conflict with another avatar is likely to
occur. According to these interaction situations (antagonism,
indifference, cooperation...), negotiation with other avatars
can be achieved so as to expose a collaborative functionality
as a WoT application. It must be noticed that the location
information is an important context property that is taken into
account in the collaboration procedure since specific tasks can
only be achieved by nearby objects.

V. SCENARIO AND IMPLEMENTATION

We consider the following temperature regulation scenario,
freely adapted from [15], to illustrate the operation of our
WoT infrastructure. Our user called Bob starts his workday
and enters into his office. The following physical devices are
involved:

« Bob owns a cell phone that connects to the local wireless
network.

o The office room is equipped with a temperature sensor,

« a controllable heater (temperature increaser),

« a controllable air conditioner (temperature decreaser),

e« and a window with a controllable motor than can be
programmatically opened/closed.

Each of these devices has its own avatar accessible on the
local network. More specifically, Bob’s cell phone, which has
already been connected to the WoT infrastructure, does not get
a new avatar instance, but retrieves its latest instance through

deserialization. The retrieved avatar hosts a WoT application
(WotApp) that performs temperature regulation. The WoTApp
has been provided either by the device manufacturer or by
a third party. The application has already been configured
by Bob to define his preferred room temperature: 21°C. The
actual room temperature is 24°C, therefore actions have to
be taken to meet the user needs. Let us see how our WoT
infrastructure allows these actions to take place without any
user intervention.

Upon connection, the avatar of Bob’s cell phone broadcasts
the network to discover available functionalities. It receives
a response from all the other avatars in the room, containing
a list of their exposed functionalities that can be accessed as
HTTP REST services, along with their associated semantics.
The regulation application knows that Bob has expressed the
need to have a room temperature of 21°C. Thanks to the
reasoning engine, it is also aware that it will need a “tem-
perature sensing” functionality, which is actually exposed on
the network by another device, to know the room temperature.
The corresponding service is then invoked and the avatar is
informed of the current room temperature: 24°C. It is now
aware that Bob’s need is not fulfilled and initiates a new goal,
which is to decrease the temperature to 21°C.

The WoT regulation application has been designed to make
use of all devices that can have an impact on the room
temperature and also to reason about the outside temperature
thanks to a remote service provided by the device manufacturer
or a third party. Therefore it first invokes the heater avatar
service to make sure that it is turned off. Then, it contacts the
external weather forecast Web service, which informs him that
the outside temperature is 19°C and that it is a sunny day. As a
consequence it decides to open the window instead of starting
the air conditioner. To do so, it contacts the window motor
avatar and asks it to go to open position, and it invokes the air
conditioner service to make sure it is turned off. Reasoning
about the different ways to decrease the room temperature
is possible with the help of semantic descriptions of func-
tionalities as well as domain specific ontologies developed
for this purpose. As well, the relationships between the room
temperature, the external temperature and the position of the
window are described in RDF terms and exploited in the
reasoning process.

Bob found the room too warm and left during the regulation
process. However the regulation is not interrupted since it is
managed by the avatars of the objects that are still in the room
and can communicate together. His temperature regulation
WoTApp regularly queries the avatar of the sensor to obtain
the current temperature and notifies Bob on its phone when
the room has reached the desired temperature, at which point
it also closes the window.

VI. CONCLUSION

The connection between the Web and physical objects is not
yet a reality. In this paper, we propose an avatar architecture
that enables connecting objects to the Web and improving
their skills with additional intelligence. Avatars receive data
from the objects they extend and provide reasoning capability



to drive object towards a cleverer behavior, thus naturally
improving object intelligence and rising object possibilities to
a new level. They form communities and collaborate to realize
WoT applications (WoTApps) based on available objects.

Future work includes developing models and protocols to
optimize energy consumption during the lifecycle of avatars, to
adapt avatar behavior to mobile situations and to dynamically
react to environmental changes. Another challenge to explore
is the development of WoTApp marketplaces and their appli-
cation to different domains such as smart home, enterprise or
city.

ACKNOWLEDGEMENT

This work is supported by the French ANR (Agence Na-
tionale de la Recherche) grant number <ANR-13-INFR-012>.

REFERENCES

[1] Luigi Atzori, Antonio lera, and Giacomo Morabito, “The Internet of
Things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787-2805,
2010.

[2] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde,
“From the internet of things to the web of things: Resource-oriented
architecture and best practices,” in Architecting the Internet of Things.,
Dieter Uckelmann, Mark Harrison, and Florian Michahelles, Eds., pp.
97-129. Springer, 2011.

[3] Jean-Paul Arcangeli, Amel Bouzeghoub, Valérie Camps, Marie-
Francgoise Canut, Sophie Chabridon, Denis Conan, Thierry Desprats, Ro-
main Laborde, Emmanuel Lavinal, Sébastien Leriche, et al., “Income—
multi-scale context management for the internet of things,” in Ambient
Intelligence, pp. 338-347. Springer, 2012.

[4] Matias Cuenca, Marcelo Da Cruz, and Ricardo Morin, ‘“Programming
Device Ensembles in the Web of Things,” in W3C Workshop on the
Web of Things, Berlin, Germany, jun 2014.

[5]1 Stephan Bischof, Athanasios Karapantelakis, Cosmin-Septimiu Nechi-
for, Amit Sheth, Alessandra Mileo, and Payam Barnaghi, “Semantic
Modelling of Smart City Data,” in W3C Workshop on the Web of Things,
Berlin, Germany, jun 2014.

[6] Francisco Cervantes, Michel Occello, Félix Ramos, and Jean-Paul
Jamont, “Toward self-adaptive ecosystems of services in dynamic
environments,” in Proceedings of the International Conference on
Systems Science 2013, ICSS 2013,. 2014, vol. 240 of Advances in
Intelligent Systems and Computing, pp. 671-680, Springer.

[7]1 Michaél Mrissa, Lionel Médini, and Jean-Paul Jamont, “Semantic
Discovery and Invocation of Functionalities for the Web of Things,” in
IEEE International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises, June 2014.

[8] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos, “Context aware computing for the internet of things: A
survey,” Communications Surveys & Tutorials, IEEE, vol. 16, no. 1, pp.
414-454, 2014.

[9] Mounir Beggas, Lionel Médini, Frédérique Laforest, and Mo-
hamed Tayeb Laskri, “Towards an ideal service qos in fuzzy logic-based
adaptation planning middleware,” Journal of Systems and Software, vol.
92, pp. 71-81, 2014.

[10] Vinicius F. S. Mota, Felipe D. Cunha, Daniel F. Macedo, José M. S.
Nogueira, and Antonio A. F. Loureiro, “Protocols, Mobility Models
and Tools in Opportunistic Networks: A Survey,” Computer Communi-
cations, vol. 48, pp. 5-19, March 2014.

[11] Marco Conti, Emanuel Marzini, Davide Mascitti, Andrea Passarella,
and Laura Ricci, “Service Selection and Composition in Opportunistic
Networks,” in 9th International Conference on Wireless Communications
and Mobile Computing (IWCMC 2013), jul 2013, pp. 1565-1572.

[12] Ali Makke, Nicolas Le Sommer, and Yves Mahéo, “TAO: A Time-Aware
Opportunistic Routing Protocol for Service Invocation in Intermittently
Connected Networks,” in Eighth International Conference on Wireless
and Mobile Communications(ICWMC 2012), Dragana Krstic ; Eugen
Borcoci, Ed., Venise, Italy, June 2012, pp. 118-123, Xpert Publishing
Services.

[13] Gita Sukthankar, Robert P. Goldman, Christopher Geib, David V. Pyna-
dath, and Hung Bui, Plan, Activity, and Intent Recognition: Theory and
Practice, Morgan Kaufmann, 2014.

[14] Michael Mrissa, Mohamed Sellami, Pierre De Vettor, Djamal Bensli-
mane, and Bruno Defude, “A decentralized mediation-as-a-service
architecture for service composition,” in WETICE, Sumitra Reddy and
Mohamed Jmaiel, Eds. 2013, pp. 80-85, IEEE.

[15] Simon Mayer, Dominique Guinard, and Vlad Trifa, “Searching in a
web-based infrastructure for smart things,” in 3rd IEEE International
Conference on the Internet of Things, 10T 2012, Wuxi, Jiangsu Province,

China, October 24-26, 2012. 2012, pp. 119-126, IEEE.



