HyLAR: Hybrid Location-Agnostic Reasoning

Mehdi Terdjimi, Lionel Médini, and Michael Mrissa

Université de Lyon, LIRIS
Université Lyon 1 - CNRS UMR5205
F-69622, France

{mehdi .terdjimi,lionel.medini,michael .mrissa}@liris .cnrs.fr

Abstract. The question of client-side reasoning is crucial to semantic
web application design as client performances drastically increase. It is
an opportunity for ubiquitous devices to use semantic technologies. In
this paper, we propose a lightweight, modular and adaptive architecture
developed in JavaScript for hybrid client/server side reasoning. We eval-
uate the performance of the reasoning process with different browsers,
devices and network conditions, and discuss the best strategy with re-
spect to the envisioned reasoning tasks.

Keywords: mobile reasoning, ubiquitous semantic web, client-side reasoning

1 Introduction

To address scalability concerns that arise with high numbers of simultaneous re-
quests, web application designers dispose of several tools, among which caching
static data and deferring code execution from the server to the client side. But
even if in average, client processing resources augment at a fast pace, they re-
main heterogeneous and in some cases, too limited to execute heavy calculation
processes. Adaptivity and flexibility depending on the client resources is there-
fore necessary. This concern also arises with semantic web technologies: solving
SPARQL queries for a large number of clients can require heavy reasoning pro-
cesses and cause endpoints unavailability. Client-side reasoning is therefore to
consider while designing a semantics-enabled web application. Moreover, mobile
devices and smart appliances provide an opportunity for semantic technologies
to exploit the paradigm of ubiquitous computing and provide knowledge sharing
and reasoning facilities wrt. standards on different devices. But again, their di-
versity and heterogeneity require the ability to defer reasoning tasks on a client
or to perform them on the server if the client is unable to handle them.

In this paper, we propose an approach and a corresponding architecture for
locating the different steps of a reasoning process on either server or client side,
and evaluate the execution times of each of these steps depending on their loca-
tions. We overview different approaches allowing mobile reasoning in Section 2.
In Section 3, we propose our contribution: we distinguish between the reasoning
steps that can be pre-processed and those that must be processed at request

time. We then present an architecture to deploy these steps on either server or
client-side. We evaluate performances in three different deployment situations.
We discuss our results in Section 4 and give work perspectives in Section 5.

2 DMobile reasoning state of the art

On the one hand, web servers are often facing breakdowns and unavailability
issues when serving semantic data as SPARQL endpoints. On the other hand,
client-side semantic processing must deal with resource limitations, especially on
mobile devices. The main motivation that conducted to the following reasoning
approaches was the need to optimize reasoning for resource-constrained devices.

Krishnaswamy and Li [3] discuss challenges in mobile OWL reasoning. They
describe how to reduce load by configuring reasoners for precise tasks using lim-
ited description logics. Kollia and Glimm [2] propose to rewrite costly-to-evaluate
axiom templates into smaller templates. A Triple Pattern Fragments [7] (TPF)
interface is a Web API to RDF data where clients can ask for triples matching
a certain triple pattern. This approach relies on intelligent clients that query
TPF servers to address the problem of scalability and availability of SPARQL
endpoints. However, the use of a server is necessary.

Current existing mobile reasoners are based on first-order logic (FOL), man-
aging Thox (schema), Rbox (roles) and Abox (assertions). Sinner and Klee-
mann’s KRHyper [6] is a novel-tableaux based algorithm for FOL, but encoun-
ters memory exhausting problems when the reasoning task becomes too large for
the device, as pointed out in [3]. Based on ALCA, Mine-ME 2.0 from Ruta et
al. [5] is used on Android devices. Embedded reasoners such as the ££+ reasoner
proposed by Grimm et al. [1] are capable of reasoning on large Thoxes due to the
limitations of ££ (no individuals nor concept disjointness). But neither [5] nor [1]
provide web client access. An approach to embed a reasoner in mobile devices is
to rely on web standards and run it in a web browser in Javascript. Other works
are oriented towards web-based technologies. They rely on Javascript reasoners
that can be embedded in mobile devices and ran on the device browser. EYE!
is a NodeJS2-compatible reasoner capable of inferring on FOL rules, perform-
ing server-side reasoning while a client widget renders a graphical interface for
SPARQL querying. As far as we know, the reasoner has not been ported onto
the client side. Based on the JSW Toolkit, OWLReasoner® allows client-side
processing of SPARQL queries on OWL 2 EL ontologies. After parsing an on-
tology, a “classification” step performs its deductive closure to return its Thox
and Abox and converts them into a relational database. SPARQL queries sent
to the reasoner are rewritten into SQL queries, and processed on the database.
To the best of our knowledge, OWLReasoner is the only full-JavaScript OWL
2 EL that can be used offline in a web client. However, its SPARQL engine is
limited to basic rule assertions.

! http://reasoning.restdesc.org/
2 https:/ /nodejs.org/
3 https://code.google.com/p/owlreasoner/

3 Contribution

Our contribution aims at designing reasoning processes that “bridge the gap
between the web and the semantic web”4. The first envisioned means to tackle
this problem is to make better use of standard web mechanisms, such as HTTP
caching and proxying. The second one is to cope with recent advances in web
applications and exploit client resources by deferring code execution on the client.
We focus on JavaScript-enabled reasoners, so that the same parts of code can
both be deployed on the client and server sides, to provide an adaptable reasoning
task. We also plan to build an architecture with respect to W3C standards, using
description logics over FOL. For these reasons, our implementation is based on
OWLReasoner.

AN
0
Ontology Classifi- Relational DB

Parsin q \ Py
D::> 9 '::> cation WSON) Sy %,

(JSON) %,
%
Query %

SPARQL SPARQL answering \s\o
Fig. 1. Steps of classification and reasoning processes in OWLReasoner

We therefore aim at separating reasoning tasks executed once and prepro-
cessed on server side (parsing and classification steps) and tasks executed when a
query is sent to the reasoner (SPARQL query parsing, rewriting and reasoning).
These steps are depicted in Figure 1. The following subsections characterize the
most suitable architecture by evaluating the reasoning efficiency wrt. several pa-
rameters: client resource limitation, number of simultaneous clients requesting
the SPARQL endpoint, size of the processed ontology and network latency.

3.1 Implementation

We here introduce the Hybrid Location-Agnostic Reasoner (HyLAR)® architec-
ture, used to perform our experiments. HyLAR is based on the separation of
OWLReasoner JSW modules that perform ontology classification (JSW Classi-
fier), ontology and SPARQL query parsing (JSW Parser) and reasoning (JSW
Reasoner). These steps are packaged as Node.js modules and AngularJS® ser-
vices. This way, they can be executed on either the server or client. On the client
side, the reasoner modules can be embedded either in a regular angular service,

* Phil Archer, W3C, Semweb.Pro Paris, Nov. 2014

® https://github.com /ucbl/HyLAR (GitHub)
http://dataconf liris.cnrs.fr/owlReasoner/ (website)

S http://www.angularjs.org

or in a web worker. They are queried by an independent angular service using
an asynchronous promise pattern, so that the main service is totally agnostic
about the location of the reasoning modules.

FULL) = =0 9
o : File =| Jsw Jsw Jsw S
AgsﬂﬁgigH Sl -> System' Parser | Classifier Reasoner :‘al‘"
. 1 % ontology
— g) AL A)
O
1
=TT ar ¥ B l_ Parsed
CLIENT -> E Jsw ‘ JSW ‘ szJ File = ontology
O ifi) System
RPeRONGH : Parser DClassmer 3F!easoner Y 5
— (3)”(6&:}{_‘}—@# & o
ontology
(3) N———— <
. () _g¥ ¥ o
HYBRID > JSW File 7/ Jsw || Jsw
APPROACH : Reasoner System | Parser [Classifier SS‘JZSL
@—X s |__

Fig. 2. Architectures used for our evaluation

3.2 Evaluation

We consider four scenarios, representing all possible steps of the reasoning pro-
cess: the scenario (0) for loading client scripts; (1) for loading a raw ontology; (2)
for performing ontology parsing, classification and loading the resulting JSON
object; (3) for SPARQL query processing. We used the architecture presented
above to evaluate the overall reasoning process times in three situations: full
server-side, full client-side and hybrid (server-side parsing and classification, and
client-side query processing). Figure 2 shows (1), (2) and (3) for each situation.
Additionally, for the hybrid and full client-side variants, client-side parts are eval-
uated both with and without web worker. We assume that scripts and ontologies
are available on the server. All scenarios conform to a query-processing-response
pattern. In the result tables, we noted [Q] the time for the client’s request to
reach the server; [P] the processing time and [R] the time for the server response
to reach the client. Depending on the scenario and location of the calculations,
some parts of this steps/patterns are considered immediate (e.g. querying the
local reasoner to process a query). They are noted in the result tables as not
applicable. Each evaluation is tested on two ontologies”: A (1801 class assertions
and 924 object property assertions) and B (12621 class and no object property

assertions)®.

7 We chose ontologies of “reasonable” sizes, representing datasets that a web appli-
cation can require. For instance, ontology B has actually been used to perform
client-side recommendation in [4]

8 Due to OWLReasoner query engine limitations that does not currently allow query-
ing individuals nor data property assertions, our evaluations are limited to class and
object property assertions. The reader will see in the discussion that even if ontology
complexity changes calculation times, it leads to the same conclusions.

Ontologies A / B| [RO]| [Q1] [R1] Q2] [R2] [Q3] [R3]
Remote server | 334 | 54 | 110 / 275| 119 / 120| 167 / 647| 146 / 154] 61 / 85
Table 1. Network delays (in ms)

Ontologies A / B [P2] (no worker)| [P2] (worker)| [P3] (no worker)| [P3] (worker)
Inspiron (Chrome) 790 / 27612 764 / 26464 28 / 101 24 / 88
Lumia (IE) 1089 / 54702 | 1883 / 53801 156 / 198 144 / 185
Galaxy Note (Firefox) 2954 / 81255 2872 / 79752 465 / 2988 440 / 2872
Server (Node.js) 780 / 20972 n/a 35 /37 n/a

Table 2. Classification [P2] and reasoning [P3] times (in ms)

A first evaluation shows network request and response delays for each sce-
nario. It is realized by simulating a remote server with Clumsy 0.2°. [RO0] is the
time for the client to load scripts and following are the respective query/response
times for [Q1]/[R1] retrieving the raw ontlogy, [Q2]/[R2] retrieving the classifi-
cation result and [Q3]/[R3] sending the SPARQL query and retrieving results. A
second evaluation compares processing times for [P2] classification and [P3] rea-
soning in three different configurations: a Dell Inspiron (with Chrome), a Nokia
Lumia 1320 (Snapdragon S4 @ 1700 MHz, with Internet Explorer), a Samsung
Galaxy Note (ARM cortex A9 Dual-Core @ 1,4 GHz, with Firefox) and a Node.js
server set up in the Inspiron.

4 Discussion

As expected, we can see in Table 2 that the server has the best results for the
classification processing time and can use caching. Even if the raw ontology is
faster to load than the classification results, loading scripts and data on the
client is much faster than performing the same classification step on each client.
Therefore, it makes no sense to defer and duplicate heavy calculations onto
clients, rather than pre-calculating them on the server and caching results. Ta-
ble 2 shows an important difference between configurations: we keep reasonable
processing time for the query answering task in good to average configurations
(e.g. Inspiron and Lumia), but the older Galaxy Note is ten times slower than
the server. For such limited resource devices, the server could therefore take over
the answering process. More generally, for M clients and N queries/client, the
three configuration calculation times can be calculated as follows!'?:

— server-side: P2gerper + M X N X (Q3 + P3server + R3)

— client-side: M x (RO + Ql + Rl) + P2client + N X P3client

— hybrid: P2serper + M x (RO + Q2+ R2) + N X P3jient

Globally, the evaluation shows that choosing a location for the query answer-

ing process is not as simple as for the classification step. For low client resources,
ontology usage (number of queries per client) and server load (number of clients),

9 http://jagt.github.io/clumsy/
Server-side classification (performed once and then cached) and client-side calcula-
tions (performed in parallel) are only counted once.

it can be more efficient to perform this step on the server. But as these parame-
ters grow, it appears that relocating query processing on the client can be a good
strategy, since queries can be processed autonomously on each client. A more
powerful server would shorten server-side response times, resulting in shifting
the strategy switching point, but higher performance, and therefore scalability,
can be achieved by deferring this step on clients.

5 Conclusion and future work

In this paper we propose HyLAR, an adaptable architecture for OWL reasoning,
based on OWLReasoner. The main benefit of our architecture is the possibility
to switch the different parts of the reasoning code on either client or server
side. We evaluate three implementations (full server, full client or hybrid) on
different devices, using two ontologies of different sizes. Experiments show that
deductive closure should be performed on the server side. Besides that, client-
side processing has an important initial cost and is, as always, dependent on
the client resources. Therefore, as performing the whole process makes sense
for a restricted number of queries, it is worth deploying a reasoner and loading
ontologies on clients when scalability concerns come into play. Our next move is
to define a context-aware approach to automatically adapt the reasoning process
to ontology size, client and network conditions. Another perspective for our
approach is to study the impact of INSERT and UPDATE queries, as well as
other reasoning approaches. To do this, we need to improve or replace the limited
reasoner embedded in HyLAR.

Acknowledgement

This work is supported by the French ANR (Agence Nationale de la Recherche)
under the grant number <ANR-13-INFR-012>.

References

1. Grimm, S., Watzke, M., Hubauer, T., Cescolini, F.: Embedded £L+ reasoning
on programmable logic controllers. In: The Semantic Web—-ISWC 2012, pp. 66-81.
Springer (2012)

2. Kollia, I., Glimm, B.: Optimizing sparql query answering over owl ontologies. arXiv
preprint arXiv:1402.0576 (2014)

3. Krishnaswamy, S., Li, Y.F.: The mobile semantic web. In: Proceedings of the com-
panion publication of the 23rd international conference on World wide web compan-
ion. pp. 197-198. International World Wide Web Conferences Steering Committee
(2014)

4. Médini, L., Bacle, F., Nguyen, H.D.T.: DataConf: Enriching conference publications
with a mobile mashup application (May 2013), http://liris.cnrs.fr/publis/?id=6032,
IIME’2013 Workshop at WWW’2013 conference

5. Ruta, M., Scioscia, F., Loseto, G., Gramegna, F., leva, S., Di Sciascio, E.: Mini-
me 2.0: powering the semantic web of things. In: 3rd OWL Reasoner Evaluation
Workshop (ORE 2014)(jul 2014) (2014)

6. Sinner, A., Kleemann, T.: Krhyper—in your pocket. In: Automated Deduction—
CADE-20, pp. 452-457. Springer (2005)

7. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Van-
der Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Querying
datasets on the web with high availability. In: The Semantic Web-ISWC 2014, pp.
180-196. Springer (2014)

