A Resource Oriented Architecture to Handle
Data Volume Diversity

Pierre De Vettor!, Michaél Mrissa', and Djamal Benslimane'

Université de Lyon, CNRS
LIRIS, UMR5205, F-69622, France
Lyon, France
firstname.surname@liris.cnrs.fr

Abstract. Providing quality-aware techniques for reusing data available
on the Web is a major concern for today’s organizations. High quality
data that offers higher added-value to the stakeholders is called smart
data. Smart data can be obtained by combining data coming from di-
verse data sources on the Web such as Web APIs, SPARQL endpoints,
Web pages and so on. Generating smart data involves complex data pro-
cessing tasks, typically realized manually or in a static way in current
organizations, with the help of statically configured workflows. In addi-
tion, despite the recent advances in this field, transfering large amounts
of data to be processed still remains a tedious task due to unreliable
transfer conditions or transfer rate/latency problems. In this paper, we
propose an adaptive architecture to generate smart data, and focus on
a solution to handle volume diversity during data processing. Our ap-
proach aims at maintaining good response time performance upon user
request. It relies on the use of RESTful resources and remote code exe-
cution over temporary data storage where business data is cached. Each
resource involved in data processing accesses the storage to process data
on-site.

Keywords: resource oriented architecture, data integration, data se-
mantics, smart data

1 Introduction

During the last few years, governments, companies and organizations have opened
their databases and information systems to the world across the Web, thanks to
initiatives such as the open data project [8]. These data sources are typically ex-
posed via Web APIs [11] or SPARQL endpoints and can be combined in service
mashups [1] to produce highly valuable services. As an/For example, the sets of
APIs provided by Twitter, Amazon, Youtube or Flickr are reused/used again in
thousands of mashups'.

This smart use of data has caught the interest of the community as a natural
development. The objective of smart data [13] is focused on producing high-
quality data that is directly useful to users. Automatically integrate data from

! See also http://www.programmableweb.com/

diverse sources in order to produce smart data is currently a hot research topic.
Despite these advances, data quantity still hampers data exchanges and remains
a bottleneck in architectures, especially when it comes to data transfer between
resources. By taking advantage of REST architectural style and the use of re-
sources, we unfortunately suffer from the limitations of Web protocols, and it is
sometimes difficult to transfer large quantities of data through HTTP. There is a
need for an approach that minimizes data transfer and performs data processing
tasks closer to the data source to reduce network traffic.

In this paper, we present our adaptive architecture and propose a solution,
through the use of adaptive data access strategies and remote code execution on
temporary data storage unit resources, to handle latency and architecture issues
that appear when processing data volume diversity. Our architecture optimizes
and adapts workflows to handle the variety of data sources involved in the query.
In this approach, we present this resource oriented architecture and explain our
solution for reducing latency in resource oriented architecture.

This paper is organized as follows. Section 2 presents related approaches
to handle volume diversity in data sources in RESTful architectures. Section 3
presents our resource oriented architecture and our solution to minimize data ex-
change. Section 4 gives an evaluation of our prototype in terms of responsiveness
and shows how it responds to user requests with acceptable timings. Section 5
discusses our results and provides guidelines for future work.

2 Related Work

Over the past few years, big data has generated a lot of interest from researchers
and industrials, answering to four challenges, known as the four Vs: Volume, Va-
riety, Velocity and Veracity. Defining our smart data architecture [3], we provide
data source models and strategies to support the Variety challenge and analy-
sis, combination and data cleaning for Veracity. Finally, Velocity is managed by
adapting workflows and optimizing resource orchestration at runtime to improve
response time. On top of that, we put more focus on data quality through the
use of semantics, metadata and intelligent processing techniques. In this smart
data context [13], propositions focus on data quality rather than quantity and
build smarter architecture. In this data-driven context, Web standards comes as
a solution, but limits data exchanges. The following appproaches have addressed
the data issue in HTTP-based solutions.

Devresse et Al. [4] propose a library called libdaviz allowing high performance
computing world to benefit from HTTP and the RESTful principles. This ap-
proach focus on adapting the HTTP protocol, maximizing the reutilization of
TCP connections, by providing a dynamic connection pool coupled with the us-
age of the HTTP Keep-Alive feature. By avoiding useless protocol handshakes,
reconnections and redirections, their approach improves efficiency of large data
transport through HTTP. In Fast Optimised REST (FOREST) [9], Ko et Al
propose a non-invasive technique relying on TCP data encapsulation in UDP-
based data transfer payloads [6]. Evaluations shows good results, but the ap-

proach does not seem to provide a real solution, it is a low level fixing to benefit
from advantages of other protocols. Zheng et al. [15] provide an overview of
service-generated big data as well as big data-as-a-service, a flexible infrastruc-
ture providing common big data management functionalities. Their approach
rely on cloud computing techniques to handle collection, storing, processing and
visualization of data and they address some significant challenges, particularly
about variety or volume and how infrastructure must support (and adapts) this
variety and volume to provide fast data access and processing. Van Der Pol et
Al. [14] propose an approach based on multiple paths TCP [5] to transfer huge
data sets over networks. Their approach relies on load balancing transfer through
the different available paths relying on parallel multiple TCP requests. Their ap-
proach can handle different paths with different bandwidths, balanced over the
different interface offered by the system. They propose a prototype According to
these approaches, it becomes clear that the most powerful solution is to minimize
data transfers, process data volumes closer from the source to reduce the unnec-
essary traffic. In the next section, we present our resource-oriented architecture,
the models that helps to build it, and finally, we present our solution to handle
data volume diversity in our smart data architecture.

3 Contribution

In order to handle our smart data challenges, we envision a resource-oriented
architecture, generating adaptive workflows at runtime to adapt to data source
characteristics. We rely on the data source models presented in our previous
work [3] to represent data source characteristics such as uri, request format,
volume, latency, etc. Relying on these models, we are thus able to generate
adaptive data processing workflows according to characteristics that appears on
data source descriptions.

Then we define an resource oriented architecture to manage these adaptive
workflows and the resources involved.

3.1 Architecture

In our approach, we define different necessary steps to complete the data aggre-
gation process and produce smart data. The main steps are extraction from
data source and transformation into a pivot format, semantic annotation of
the extracted data set ([2], [7]), combination [12] of obtained data sets, filter-
ing of data sets in order to remove inconsistent or duplicated data. We divide
each of these tasks as RESTful resources in our architecture and orchestrate
them as workflows. In order to handle data flows between resources, we define
an orchestrator, which acts as a data bus. This orchestrator forwards messages
and data from and to resources, builds HTTP request and handles requests re-
sponses. Fig. 1 shows the different resources and components of our architecture.
On top of that, we provide our architecture with management API and resources
to avoid manual configurations as much as possible.

Architecture Components
o > 5 =
w =] = Py
o ||8 |28 ||& g || &
= o e ER] wx g S = 2
) @ ° a o g o S o 5.3 =] Generated
o 03 =c =« 3 =Y 5.0 3
= = ® 3 o= o S o o Data
] = a [Shr] m 5 =
g o = o
Sy
o
o
Data Bus

- : |
Web Source | |Data External |

Database | | Opendata | | File Data |
Sources

Fig. 1. Our Resource Oriented Architecture

3.2 Handling Volume Diversity

In order to handle volume diversity in our RESTful architecture, and to maintain
a good response time performance, we propose a solution which reduces data
transfer to a required minimum.

In our architecture, upon query request, an adapted workflow is generated,
involving resources and services, to handle the required processing tasks. This
workflow is executed, our data bus handles data exchanges, generating HTTP
requests and retrieving responses from resources. We identified the following data
transfers during the process: extraction from data sources, data transfer between
core resources, and data download by the user. In this context, data extraction
and download are required, but transfer between resources can be avoided or
modified.

Based on this observation, we modify our architecture to decrease the volume
of exchange data between resources. We design our API to only manipulate
queries and metadata (data models, etc.). Computing this metadata, remote
processing codes are generated in order to complete the process managed by this
resource. These processes are handled close to data, minimizing execution time
by lowering latency and network time.

3.3 Storing data

In order to temporarily store data, our proposal is based on temporary data
storage units, generated at each user request. Storage units act as file hosting
services, they are generated at runtime, for each new user request, for a limited
amount of time and contains the data and metadata for this request. They are
provided with an engine capable of processing remote processing tasks generated
by resources. Storage units are erased after a certain amount time, which has
been fixed to a default value of 24 hours. This delay is customizable for each

request. Time counter is reset each time a user reissues the query or reaccesses
the storage. Storage units are accessible as RESTful resources, for management
purpose or to retrieve query responses when data processing is over. When the
processing tasks are over, the storage URI is given to the user, so that he could
download the data sets answering to his request.

3.4 Processing engine

In order to handle the different tasks required to complete the smart data process,
we provide the storages with a functional engine capable of executing remote
processing tasks directly above the data instances. These codes are generated by
the tasks resources and transfered instead of data.

We rely on functional languages to define processing tasks, since our data sets
are stored as tabular data sets (lists or dictionary in JSON or JSON-LD[10]).
We provide data store with different processing engines, each representing an
environment or an engine. Each data store is provided with an API, which al-
lows its management, but also to register engine libraries or plugins, required
to process the different langages or functionnalities This data store is provided
with an API, allowing to register different engine libraries or plugin to handle
specific languages or functionnalities.

4 Implementation and Evaluation

In this paper, we focus our work on handling data volume diversity in our archi-
tecture for smart data management.

In order to evaluate the scalability of our architecture, we demonstrate the
evolution of performance, evaluating request response time when answering to a
set of complex semantic queries over multiple data sources. We vary the number
of data sources and measure response times.

4.1 Use Case Scenario

We focus our work on the enrichment and reusability of data, and based our
models and implementation on the data handled by a communication company,
which has a need for an adaptive system able to automatically refine and combine
data coming from their internal information system and enrich it with help from
open Web data sources. This solution has for objectives to study the impact of
campaign broadcasts over a list of customers and to provide decision support
tools for future broadcasts. This scenario describes the following data sources,
presenting several characteristics, specific to our scenario:

Source 1 is a linked service giving access to our company small business
data set. Data that come from this source are subject to privacy constraints.
Source 2 is a SQL endpoint to a database that contains millions of tuples
with a low update frequency. Source 3 is another SQL endpoint to a database
that contains customer daily activities, updated regularly. Source 4 is a RSS

stream that contains user update requests (removal requests from customers,
request form architecture’s user). Other sources are represented by a set of
Web sources: FOAF and vcard ontologies that help to annotate data, as well as
a Dbpedia SPARQL endpoint. Relying on the scenario presented above, we create
two request, involving different concepts subgraphs. We populate our scenario
with a set of data sources, covering the different subgraphs.

PREFIX al: <http://restful.alabs.i0o/concepts/0.1/>
PREFIX xsd: <http://www.w3.org/TR/xmlschema—2/>
SELECT 7email_value ?campaign WHERE {
?7email a al:email ;
al:has_email_value ?email_value ;
al:blacklist_status ?7status

?clic a al:clic ;
al:clic_email 7email ;
al:clic_date 7date
FILTER (?status != 1 && ?date >= "1411477450"" "xsd:date)

Listing 1.1. Query 1.1 involving the different concepts

PREFIX al: <http://restful.alabs.io/concepts/0.1/>
SELECT ?email_value WHERE {
7email a al:email
al:has_email_value 7email_value
al: blacklist_status ?7status
FILTER (?status != 1)

3

)

Listing 1.2. Query 1.2 introducing a user specific filters

Query 1.1 involves four subgraphs, implying data sources with different char-
acteristics such as high volume (scenario’s big database) and privacy sensitive
information (scenario linked service). This query also presents user specific fil-
ters. Query 1.2 involves only a few number of concepts, and present less data
manipulations. Tests are performed on a double core 2.3 GHz machine, with 4
GB of RAM. Restful resources and architecture are implemented through PHP
frameworks, Zend and Slim? and hosted on scenario company servers (Apache).

4.2 Evaluation

We evaluate our architecture response time to query @1, and Q2 respectively,
when the number of data sources increases. We compared response time evolution
for the same queries and data, with and without our optimisation process.

As can be seen in Fig. 2 and Fig. 3, the volume of data increase with the
number of data source, and the classical approach response time suffer, due to
HTTP transfers. In parallel, optimized approach response time increase linearly,
but stays acceptable standing under the treshold of 4 seconds. In this case,
transfer and network latency consumes time exponentially. Query (2 involves
less concepts, and as a result less data manipulations, but our architecture still
suffer from a very high latency due to data transfer. When the number of data
source exceed 24, the classical approach is unable to provide a response in an
acceptable delay. This graph clearly show that our architecture can adapt to
large volumes of data, using our optimisation technique.

2 See http://www.slimframework.com/

—~ 10
°
£
=5
8
o~

0

Classic Optimized

004 sources08 sources BB 12 sources BB 16 sources IB20 sources IM24 sources

Fig. 2. Evaluation of average response time for query 1.1

Resp. time (s)
I
T

76 0.95 1.191.39

Classic Optimized

002 sourcesD4 sources 006 sources B8 sources BB 10 sources BB 12 sources

Fig. 3. Evaluation of average response time for query 1.2

5 Conclusion

In this paper, we describe a resource-oriented architecture that relies on adap-
tive data processing strategies to optimize data exchanges between resources that
process data. We focus on the latency problems that appear when dealing with
diverse data volumes especially when transferring data between the different ar-
chitecture components. All along the smart data construction process, we rely on
a temporary data storage where business data is stored. Our architecture han-
dles the communication between the different resources, by transferring metadata
about the query and the data storage URI. Resources generate adapted remote
processing codes, which are forwarded to storage units and executed on-site by
the data storage engine. Therefore, data manipulation is performed on-site, and
the data does not flow through the architecture. By reducing latency due to
data transfers, we alleviate our decentralized and distributed architecture from
the burden of data tranfer, and improve the responsiveness of data-driven re-
source workflows. We support our implementation with a set of evaluations and
tests through our use case scenario. As future work, we envision to investigate
the appearance of data uncertainty in data aggregating approach, relying on
probabilistic integration techniques.

References

1.

10.

11.

12.

13.

14.

15.

Djamal Benslimane, Schahram Dustdar, and Amit P. Sheth. Services mashups:
The new generation of web applications. IEEE Internet Computing, 12(5):13-15,
2008.

Christian Bizer. D2rq - treating non-rdf databases as virtual rdf graphs. In In
Proceedings of the 3rd International Semantic Web Conference (ISWC2004, 2004.
Pierre De Vettor, Michaél Mrissa, and Djamal Benslimane. Models and architecture
for smart data management. Technical Report RR-LIRIS-2014-017, LIRIS UMR
5205 CNRS/Université Claude Bernard Lyon 1/Université Lumiére Lyon 2/Ecole
Centrale de Lyon, December 2014.

Adrien Devresse and Fabrizio Furano. Efficient HTTP based I/O on very large
datasets for high performance computing with the libdavix library. CoRR,
abs/1410.4168, 2014.

A Ford, C Raiciu, M Handley, S Barre, and J Iyengar. Architectural guidelines for
multipath tcp development. In IETF, RFC 6182. Citeseer, 2011.

Robert L. Grossman, Yunhong Gu, Xinwei Hong, Antony Antony, Johan Blom,
Freek Dijkstra, and Cees de Laat. Teraflows over gigabit {WANs} with {UDT}.
Future Generation Computer Systems, 21(4):501 — 513, 2005. High-Speed Networks
and Services for Data-Intensive Grids: the DataTAG Project.

Lushan Han, Tim Finin, Cynthia Parr, Joel Sachs, and Anupam Joshi. Rdf123:
From spreadsheets to rdf. In The Semantic Web - ISWC 2008, volume 5318 of
Lecture Notes in Computer Science, pages 451-466. Springer Berlin Heidelberg,
2008.

Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data
Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers,
2011.

R.K.L. Ko, M. Kirchberg, Bu-Sung Lee, and E. Chew. Overcoming large data
transfer bottlenecks in restful service orchestrations. In Web Services (ICWS),
2012 IEEE 19th International Conference on, pages 654-656, June 2012.

Markus Lanthaler and Christian Gutl. On using json-1d to create evolvable restful
services. In Proceedings of the Third International Workshop on RESTful Design,
WS-REST ’12, pages 25-32, New York, NY, USA, 2012. ACM.

M. Maleshkova, C. Pedrinaci, and J. Domingue. Investigating web apis on the
world wide web. In Web Services (ECOWS), 2010 IEEE 8th European Conference
on, pages 107-114, Dec 2010.

Michael Mrissa, Mohamed Sellami, Pierre De Vettor, Djamal Benslimane, and
Bruno Defude. A decentralized mediation-as-a-service architecture for service com-
position. 2012 IEEFE 21st International Workshop on Enabling Technologies: In-
frastructure for Collaborative Enterprises, 0:80-85, 2013.

Amit Sheth. Transforming big data into smart data: Deriving value via harnessing
volume, variety, and velocity using semantic techniques and technologies. In Data
Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 2-2,
March 2014.

R. van der Pol, S. Boele, F. Dijkstra, A. Barczyk, G. van Malenstein, J. H. Chen,
and J. Mambretti. Multipathing with mptcp and openflow. High Performance
Computing, Networking Storage and Analysis, SC Companion:, 0:1617-1624, 2012.
Zibin Zheng, Jieming Zhu, and M.R. Lyu. Service-generated big data and big
data-as-a-service: An overview. In Big Data (BigData Congress), 2018 IEEE In-
ternational Congress on, pages 403—410, June 2013.

