Towards semantic resource
mashups

Lionel Médini, Pierre-Antoine Champin, Michaél Mrissa, Amélie Cordier

Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69622, France
{firstname.lastname} -at- liris.cnrs.fr

Abstract. This paper presents an architectural framework to build semantic re-
source mashups that query, process and integrate data from business objects,
Linked Open Data sources and Web APIs, as semantic resources. Such re-
sources can be queried locally or distantly in an HTTP-like manner and ex-
change representations as RDF graphs. We illustrate this work with an applica-
tion that mashes up sensor and actuator data for the Web of Things.

Categories and Subject Descriptors
E.1.2 [DATA]: Data structures — Distributed data structures.

General Terms
Design, Standardization.

Keywords
RDF, REST, RDF-REST, Backbone.js, framework, semantic mashup.

1 Introduction

The Web of services forms a graph in which nodes can produce and consume data.
Each node can be regarded as a mashup that queries other nodes, processes the data
locally and serves back enriched data. Semantic mashups are Web applications that
rely on shared vocabularies to understand and enrich RDF graphs, such as DataConf
[2], built on the Backbone.js' framework. Each node may also query data through one
or several REST resources. The RDF-REST framework [1] exposes internal business
objects as resources with a uniform HTTP-based interface and RDF representations.
Semantic mashups can benefit from the RDF-REST framework by handling local and
external resources using a common, HTTP-based semantic interface. Conversely,
RDF-REST allows building applications that query distant resources, but does not
provide a routing engine, nor perform resource aggregation.

' http://backbonejs.org/


http://backbonejs.org/

In this paper, we propose an architecture integrating these two frameworks, based
on the notion of Semantic Resource Mashup (SRM). SRMs are applications that can
retrieve, transform and match graphs representing resources from different endpoints
into a common graph representing an enriched resource. This paper is organized as
follows: it presents the architecture of our framework and illustrates its use in a Web
of Things application. We then conclude and draw perspectives of this work.

2 SRM Framework

We herein propose to combine RDF-REST and the DataConf mashup engine into an
SRM framework. The framework aims at building applications that mash up Seman-
ticResource objects that extend Backbone Model objects so that they conform to the
RDF-REST resource interface. The architecture of an SRM (see Fig. 1) relies on the
following domain-specific elements: i) a Backbone router” that provides to the SRM
the ability to identify the routes corresponding to each type of known resource: de-
pending on the hash part of the current URL, the router identifies the resource brokers
(see below) that can provide descriptions or enrich the requested resource; ii) a re-
source ontology that describes the RDF types of all the resources that the application
can handle in the Hydra vocabulary [3], as well as the existing object properties
among these types; iii) Resource brokers that represent data sources that can be queried
locally or over the Web to enrich the requested resource graphs. Each resource broker
possesses a ResourceBrokerDescription (in the Web Intents’ sense) indicating the re-
source types it can enrich, based on the resource ontology classes and properties. The
router uses these descriptions to select the appropriate brokers for a given route; iv)
implementations of the local semantic resources that represent the application business
objects: these resources must fit the RDF-REST scheme (i.e. be queried using HTTP
methods and exchange RDF graphs with their clients); v) a set of RDF-REST parsers
and serializers that perform the inter-resource communication scheme of the RDF-
REST framework: they are used by the SRM to transform the data structures managed
by the resource brokers into RDF graphs and conversely “feed” the brokers with data
corresponding to RDF resource representations; vi) a SemanticResourceAggregator that
finally performs the mashup operation. Currently, it relies on a set of aggregation rules
to provide the enriched resource representation: it links the RDF graph of the request-
ed resource with the origin of each graph retrieved by the brokers, according to the
properties stated in the rules (most commonly, an owl:sameAs property).

Each time an SRM application is queried about a particular SemanticResource in-
stance using a particular HTTP verb, it uses its own router to determine the appropri-
ate Route based on the resource type and available resource broker descriptions, using
the hash part of the URI (as does Backbone’s router). It then identifies the resource
brokers that can enrich this resource and invokes them through the RDF-REST engine,
regardless of the fact that the resource broker addresses a local or distant source. The

2 In this work, we thus assume SRM:s to be single-page, client-side applications.

https://dvcs.w3.org/hg/web-intents/raw-file/tip/spec/Overview.html


https://dvcs.w3.org/hg/web-intents/raw-file/tip/spec/Overview.html

resource and the resource brokers exchange RDF graphs through RDF-REST parsers
and serializers. Each graph is mapped to the existing one using the local semantic
resource aggregator that produces the complete graph of the enriched resource.

- GET http://nodeX.myinfra.org/#A/a

Resource ontology Local Resourcea:A

igpe

@xo

Local resource a, Local Resourcea”:A’
Broker1, Broker? .- rdftype

< g
iy f@ﬂ%ﬁ

Fig. 1. Logical view of a Semantic Resource Mashup architecture.

3 Application example

We illustrate the applicability of our work in the domain of the Web of Things, using
the concept of “avatar”. Avatars are software artifacts that represent physical objects
on the Web, expose object high-level behaviors (aka “functionalities”) as REST re-
sources and collaborate with other avatars [4]. When an avatar is requested for a func-
tionality, it can use local object resources or functionalities exposed by other avatars.
Let a user require temperature regulation in a smart house that includes a temperature
sensor, a heater and an air conditioner. The avatar of the sensor exposes a functionali-
ty called TemperatureRegulator as a resource. When requested, it uses the following
resources: TemperatureSensor (local), TemperatureHeater (distant) and Tempera-
tureDecreaser (distant).

The avatar of the temperature sensor receives a POST request containing a graph
that states that the temperature should be regulated to 22°C. The router identifies that
the resource broker that handles the local TemperatureRegulator resource can handle
this graph. It transmits the graph to the resource and its internal logics determine that
it first needs to know the actual temperature. It sends a GET query to the local Temper-
atureSensor resource, which returns a graph informing that the temperature is 20°C. It
then determines that the room should be heated and sends a PUT request to start the
heater, which is handled by the avatar of the heater using the same architecture and
returns a graph stating that the heater is on. The TemperatureRegulator resource then



returns to its client a graph stating that the thermoregulation is active, using the Tem-
peratureSensor and TemperatureHeater resources, while internally continuing to regular-
ly send requests to the sensor and heater resources. This work is funded by the French
National Agency for Research (ANR), under the reference <ANR-13-INFR-012>.

4 Conclusion

In this paper, we present an architecture for Semantic Resource Mashups that relies on
the RDF-REST and Backbone.js frameworks to process distributed RESTful re-
sources. It mainly relies on: i) semantic resources that exchange RDF representations
of business objects and expose uniform HTTP-compliant interfaces, ii) a resource
ontology that describes the domain resource types and relations and iii) an RDF-based
engine for routing and aggregating data flows. We illustrate our approach with a tem-
perature regulation example for the Web of Things.

SRMs can be used to query RESTful endpoints such as RDF stores or to build a
network of collaborative nodes. They also enable adaptive resource deployment on the
server or client side without changing the application-level interactions between ob-
jects. Future work includes enabling SRMs to create, update, delete locally enriched
resources, while being able to propagate these changes to appropriate endpoints. An-
other perspective is to replace the currently static broker descriptions and aggregation
rules with dynamic discovery infrastructures such as RESTdesc [4], so that mashup
applications can discover new data sources at runtime.

5 References

[1] Champin P-A. RDF-REST: A Unifying Framework for Web APIs and Linked
Data. In Services and Applications over Linked APIs and Data (SALAD), work-
shop at ESWC, Montpellier (FR). pp. 10-19. CEUR 1056. (2013)

[2] Médini L., Bacle F., Le Peutrec F. & Durant de la Pastelliére B. DataConf and Its
Linked Open Data Ecosystem: Produce, Link and Consume Scientific Conference
Metadata. In LinkedUp Veni Competition on Linked and Open Data for Educa-
tion, at Open Knowledge Conference 2013. M. d'Aquin, S. Dietze, H. Drachsler,
M. Guy, E. Herder eds. Geneva. pp. 3-10. CEUR 1124. ISSN 1613-0076. (2014).

[3] Lanthaler, M., & Giitl, C. (2013). Hydra: A Vocabulary for Hypermedia-Driven
Web APIs. In Proceedings of the 6th Workshop on Linked Data on the Web
(LDOW2013) at the 22nd International World Wide Web Conf. (WWW2013).

[4] Mrissa M., Médini L., Jamont JP. Semantic Discovery and Invocation of Func-
tionalities for the Web of Things. In IEEE International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises, Parma, June 23-25
2014 (to be published).

[5] Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Vallés, J. G., & Van de
Walle, R. (2012, April). Functional descriptions as the bridge between hyperme-
dia APIs and the Semantic Web. In Proceedings of the Third International Work-
shop on RESTful Design (pp. 33-40). ACM.



