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Abstract — The composition of DaaS (Data-as-a-Service) 

services is a powerful solution for building value-added 
applications on top of existing ones. However, privacy concerns 
are still among the key challenges that keep hampering DaaS 
composition. Indeed services may follow different, conflicting 
privacy specifications with respect to the data they use and 
provide. In this paper, we propose an approach for privacy-
aware composition of DaaS services. Our approach allows 
specifying privacy requirements and policies and verifying the 
compatibility of services involved in a composition. We propose 
an adaptation protocol that makes it possible to reconcile the 
privacy specifications of services when incompatibilities arise in a 
composition. We validate the applicability of our proposal 
through a set of experiments. 

Index Terms—DaaS, composition, service, adaptation, privacy. 

I. INTRODUCTION 
ERVICES of type DaaS (Data-as-a-Service) have been 
considered during the last few years as first-class objects 

that can manipulate data much like database management 
systems do [2][17]. They also have started to be a popular 
medium for data publishing and sharing on the Web. Besides, 
modern enterprises across all spectra are moving towards 
service-oriented architectures by wrapping their data sources 
in DaaS services for more efficient data integration [2][6][17]. 

DaaS Composition consists in combining several DaaS 
services to realize Business-to-Business (B2B) interactions 
described according to a business process [3][4][5][1]. While 
initial service composition approaches have been a powerful 
solution for building value-added services on top of existing 
ones, the issue of privacy is still considered as an important 
topic in the field of service computing [1][16][31][33]. Indeed, 
despite important efforts aimed at preserving privacy [32], 
privacy leakage incidents on the Web continue to make the 
headlines. As example, in 2011, 535 breaches, involving a 
combined 30.4 million sensitive records have been identified 
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[45]. Besides, the emergence of analysis tools makes it easier 
to analyze and synthesize huge volumes of information, hence 
increasing the risk of privacy violation. According to a recent 
report [44], the number of reported electronic health data 
breaches has increased by 32% from the year 2010 and 
electronic medical data breaches cost the industry about $6.5 
billion. The concept of privacy itself generates much debate. 
On the one hand, some might argue that the term privacy can 
be applied only to humans and not to institutions. On the other 
hand, there is no unanimous agreement about which 
information should be considered private. For example, some 
individuals choose to publish personal information such as 
pictures, videos, and their phone number, while others keep 
this information private and under no circumstances want it to 
become public. During service composition, the issue of 
privacy is more challenging task. Let us illustrate some 
privacy challenges through the following scenario. 

A. Scenario and Challenges  
We consider the following epidemiologist’s query Q (as a part 
of a global request R): “What are the ages, genders, zips, DNA 
and salaries of patients infected with H1N1; and what are the 
global weather conditions of the areas where these patients 
reside?” and a subset of services shown in Table 1. 

TABLE I 
A SUBSET OF DAAS SERVICES 

DaaS services Semantics services Description 

S1.1 ($x, ?s) 
S1.2 ($x, ?s) 

Returns “SSN” of patient infected with a disease= “x” 

S2.1 ($s, ?d, ?g) 
S2.2 ($s, ?d, ?g) 

Returns d =“DoB”, and g =“gender” of patient 
identified by s =“SSN” 

S3.1 ($s, ?z, ?p) 
Returns z =“zip”, and p =“salary” of patient identified 

by s =“SSN” 
S4.1 ($s, ?n) 
S4.2 ($s, ?n) 

Returns n =“DNA” of patient identified by s =“SSN” 

S5.1 ($z, ?w) Returns w = “Weather-condition” of address z =“zip” 

 
We have proposed in [5] a mediator-based approach to 
compose services (based on a query-rewriting algorithm) and 
answer this kind of queries. In this approach, the mediator 
selects, combines and orchestrates (i.e., gets output data from 
a service and uses it as input data to call another service) 
services to answer queries. It also carries out all the 
interactions between composed services (i.e., relays 
exchanged data among interconnected services in the 
composition). The result of the composition process is a 
composition plan, CP (depicted in Fig. 1), which consists of a 
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set of services that must be executed in a particular order 
depending on their access patterns (i.e., the connections 
between their input and output parameters). Input parameters 
are identified with a first “$” character and output parameters 
with a “?”. Hence, service S($a, ?b) requires an input value a 
and provides an output value b. Then, Q can be answered as 
follows: First, S1.1 is invoked with H1N1 as input value, then 
for each obtained SSN, S4.1, S2.2 and S3.1 are invoked to obtain 
their DNA, DoB (i.e. date-of-birth), zip and salary. Finally, S5.1 
is invoked with the patients’ zip to get information about the 
weather-conditions (note that other solution CP can be found 
with the services of Table I). 

 
Fig. 1. Composition plan of Q. 
 
In fact, services in CP may have conflicting privacy concerns 
with respect to their exchanged data. Some services may 
require some input data that other participating services cannot 
disclose because of their privacy specifications. For instance, 
let us assume that S1.1 discloses its data (i.e., SSN) to a third-
party service for use with a “limited time” restriction. S3.1 
meanwhile attests that it keeps collected data (i.e., SSN) for an 
“unlimited time”. S1.1 and S3.1 are incompatible in terms of 
privacy with respect to SSN. S1.1 (which provides SSN) judges 
that a long retention of SSN by a third-party is a risk for 
privacy, while S3.1 would use that data as long as possible to 
perform several tasks that are not considered as a privacy risk. 
Such a conflict invalidates the CP of Fig. 1 in terms of 
privacy. Then, it becomes important on the one hand to extend 
service descriptions with privacy specifications, and on the 
other hand to insure the privacy compatibility of services 
selected for a composition. 

B. Summary of Contributions 
The previous scenario calls for a solution that must be 
expressive enough to capture the different needs for privacy 
concerns of services as well as simple and coherent with our 
previous service composition algorithm [5]. Since composing 
services is already a complex task, any target solution should 
involve minimal processing costs. Existing approaches based 
on secure multi-party computation [39] are usually 
characterized by their high computation time and complexity, 
which makes them impractical for database operations 
working over a large number of elements [34]. Data privacy 
through access control is among the classical goals of data 
management with countless proposals, e.g., [35]. However, 
our system is designed to be open, which means that the 
mediator (in charge of composing services and answering 
queries) does not have any knowledge about the requester of 
data. Such a circumstance makes traditional access control 
mechanisms ineffective, as they are mainly based on 
preliminary authentication of the requester.  

In this paper, we focus on the privacy issue from the point 
of view of data usage and expectation during the design phase 
of DaaS composition. We build our contribution around: 

 
Formal Model for Privacy Specification: to capture and 
reason about privacy concerns from a service perspective. Our 
proposed model allows each service S to define Privacy 
Policies PP (specifying how S manages collected data) and 
Privacy Requirements PR (specifying how S expects 
consumers to manage the data it provides). Our privacy model 
is defined with both expressiveness and simplicity in mind. 
Privacy Compatibility-aware Composition: detecting 
incompatibilities between the PR and PP of services involved 
in a composition is a core concept of our approach. Our 
matching algorithm is based on the notion of privacy 
subsumption and on a cost model. Then, we extend our service 
composition approach to take into account the privacy 
specifications and compatibility of services. 
Privacy-aware Adaptation: our third contribution is devoted 
to resolve detected incompatibilities by allowing services to 
define adaptation sets in order to obtain valid composition 
plans and enhance the efficiency of our system of 
composition. We introduce an adaptation protocol to 
automatically reconcile the adaptation sets in order to make 
the PR and PP of conflicting services compatible. The 
adaptation of PR and PP of service is decided by service 
reputations, individual’ requirements subsumption by PR of 
service and a cost function. We also devise protocols to speed-
up the adaptation process. 

C. Paper Organization 
Our paper is structured as follows. We overview the basic 
definitions for modeling and composing DaaS services in 
Section 2. Then, we describe our privacy model in Section 3. 
We show how our DaaS composition approach is extended 
within privacy compatibility in Section 4. We introduce our 
adaptation approach in Section 5 and detail how privacy 
compatibility in the composition is reached with our 
adaptation protocols. We present our experiments in Section 6 
and discuss related work in Section 7. We discuss obtained 
results and future work in Section 8. 

II. BACKGROUND: THE PAIRSE PROJECT 
The approach presented in this paper is implemented as a part 
of the PAIRSE project1, which deals with privacy issues in 
P2P data sharing environments in the area of epidemiological 
research [29]. To support the decision process, scientists 
consider multiple data sources related to patients’ data. Data 
are provided via DaaS services, which are set in an 
unstructured and unstable P2P network. In this paper, we 
consider DaaS services that only provide data. DaaS services 
are modeled as RDF views over domain ontologies to capture 
the semantic relationships between their input and output 
parameters. Fig. 2 summarizes the architecture of our project. 

 
1 This research project is supported by the French National Research 

Agency under grant number ANR-09-SEGI-008. URL https://picoforge.int-
evry.fr/cgi-bin/twiki/view/Pairse/Web/ 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

 
Fig. 2. PAIRSE global architecture. 
 
The Multi-Peer Query Processing Interface component is in 
charge of answering the global user query. The latter has to be 
split into local queries. The component determines which peer 
is able to solve a local query. Each local query is expressed in 
SPARQL, the de facto query language for RDF [7]. Each peer 
includes a Mediator Query Processing component. Such a 
mediator selects the services that can be combined to answer 
the local query using a DaaS Composition component. Then, it 
processes the interactions to be performed between the 
composed services and generates a set of composition plans 
(CP), where each CP is a set of services that can answer the 
related local query. Once a CP is found, the Privacy 
compatibility component will check if all services in CP are 
compatible with respect to their privacy specifications. 
Subsequently, the different CP related to local queries are 
aggregated and executed to calculate an entire result into a 
final table that will be released to user. A privacy-preserving 
mechanism (embedded into Privacy Mechanism of Global 
Result component) is applied to this table and aims at 
forbidding all misuses of the data privacy. However, this last 
step is not detailed in this paper. 

III. FORMAL MODEL FOR PRIVACY SPECIFICATION 
In this section, we build on our recent proposals [9][10] for 
privacy specification to enhance our privacy model with 
adaptation features for service composition. This model allows 
a S2 provider to define on the one hand a set of privacy 
requirements (noted as PRS) specifying a set of privacy 
expectations that a third-party service must meet to consume 
S’s provided data, and on other hand, a set of privacy policies 
(noted as PPS) specifying the set of privacy practices 
applicable on any data that S collects. 

A. Privacy Specification Model 
In order to define an expressive model of privacy for Web 
service, it is necessary first to examine the nature of data and 
to formally describe what we mean by privacy, so that we can 
argue that we protect such private data. In our case, the term 

 
2 In the rest of this paper, the symbol S refers to “DaaS service” 

of privacy relates to the right of an entity to determine why, 
for whom, and for how long some information should be 
released. Due to the privacy subjectivity, each service has to 
identify which data are considered as private (noted as rs). If S 
provides some private data rs then a set of privacy 
requirements applies to rs, and if S collects some private data 
rs then a set of privacy policies also applies to rs. The 
specification of these sets is based on privacy rules.   
 
1) Privacy Rule 
A privacy rule Ri is defined by a tuple (Ti, Di, Gi) where Ti is 
the topic of Ri giving the privacy facet. For instance, the topic 
can describe3: purpose, recipient or retention. Purpose topic 
states the intent for which a given private data rs (collected or 
provided by S) will be used; the recipient topic mentions if 
and to whom rs can be revealed; the retention topic specifies 
whether and until when rs is stored by a third-party service. 
Then, for each topic Ti a set Di defines the value domain of the 
topic. The definition of Di is based on an ontology domain.  
For example, we consider the privacy rule R1 which 
corresponds to the topic T1 =“recipient” and the domain D1 = 
{“public”, “government”, “private-lab”, “research-lab”, 
“hospital”, “university”}. We define Gi ={“total”, “partial”} 
as a granularity indicator, which states whether or not the data 
in rs, on which Ri applies, represent the totality of the service 
input or output. For instance, if the output of S contains n 
attributes and rs is composed of n’ attributes where |n’| < |n| 
then Gi=“partial”. In this paper, for the sake of simplicity we 
only consider the case where Gi=“total”4. The definition of 
privacy rules, called Rule Set (RS), is described independently 
of any private data and maintained by the administrators of the 
PAIRSE system. 
 
2) Privacy Assertion 
The application of a rule Ri = (Ti, Di, Gi) on private data rs is a 
privacy assertion noted as A(Ri, rs) = pf. S specifies its 
privacy concerns for rs through A(Ri, rs) with a propositional 
formula pf = (vip∧…∧viq) where vip,…,viq ∈ Di. For example, 
we consider rs=DoB and R1 which corresponds to the topic T1 
=“recipient” and the domain D1. A privacy assertion on 
rs=“DoB” through R1, which states that rs will be shared with 
government agencies and research-lab, is noted as A(R1, 
DoB)=“government ∧ research-lab”. 
 
3) Privacy Requirements PRS 
A service S providing some private data rs as its output 
specifies a set of privacy requirements, denoted as PRS, in 
terms of usage expectations that a third-party service must 
meet to consume rs. Initially, the S provider has to select and 
identify the set (noted Pout) of its own private data. Secondly, 
for each element rs ∈ Pout S selects the privacy rules Ri from 
RS and instantiates them with an assertion: Aj(Ri, rsk) = pf. In 
addition, the provider of S may give to each assertion Aj a 

 
3 The PAIRSE administrator with respect to the privacy laws in Europe and 

United-States can define other kinds of topic. 
4 Our model fully supports partial granularity without any modifications. 
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logical value Neg={“T”, “F”}, which indicates if Aj could be 
adapted or not (cf. Section 5). Hence,  
PRS = {(Aj(Ri, rsk)=pf, Neg), j ≤ |PRS|, i ≤ |RS|, k ≤ |Pout|, rsk ∈ 
Pout, Ri ∈ RS, Neg=T iff Aj can be adapted}.  
 
4) Privacy Policy PPS 
A service S requesting some private data rs′ (where rs′ ≠ rs 
referring output data of S) as input specifies its privacy policy, 
noted PPS, stating how S is going to use rs′. We define the set 
Pin of private data that is collected. For each rs′ ∈ Pin, S 
specifies assertions through the instantiation of Ri, and 
indicates for each assertion Aj a logical value Neg, which 
indicates whether or not Aj can be adapted. Then, we define 
PPS = {(Aj(Ri, rs′k)=pf, Neg), j ≤ |PPS|, i ≤ |RS|, k ≤ |Pin|, rs′k  
∈ Pin, Ri ∈ RS, Neg = T iff Aj can be adapted}. 
 
This distinction between provided and collected private data is 
crucial to describe the privacy requirements and policy of 
DaaS services. The content of and the assertions that apply to 
Pout and Pin vary from a service to another. Let us illustrate our 
definition with a concrete example: 
 
Example 1: We consider two rules defined in RS:  
R1 = (T1, D1, G1) where  
- T1 = “recipient”,  
- D1 = {“public”, “government”, “private-lab”, “research-

lab”, “hospital”, “university”}, 
- G1 = “total”.  

R3 = (T3, D3, G3) where  
- T3 = “retention”,  
- D3  = [0, 1,.., Unlimited] (defining retention in days),  
- G3 = “total”.  

S1.1 and S3.1 of Table I specify their privacy as follows. S1.1 
considers Pout={SSN} and S3.1 considers Pin={SSN}. S1.1, S3.1 
defines its PR respectively PP as:  
- PRS1.1 = {(A1 (R1, SSN) = “hospital”, Neg =T); 

     (A3 (R3, SSN) = “10”, Neg = T)}.  
- PPS3.1 = {(A1’ (R1, SSN) = “research-lab”, Neg =T); 
         (A3’ (R3, SSN) = “100”, Neg = T)}.       
PRS1.1 states that S1.1 provides SSN only to the “hospital” 
recipient (A1.R1), and with a right of data usage limited to 10 
days (A1.R3). PPS3.1 states that S3.1 shares collected SSN with 
any users identified as “research-lab” (A1’, R1), and that it 
keeps them for 100 days (A3’, R3). We note that S3.1 considers 
Pout={zip, salary} and for each rs it will specify its 
corresponding PR. ♦ 

B. Privacy Annotation for DaaS 
The WSDL standard gains considerable momentum as the 
language for Web service description. However, WSDL 
provides no support for privacy description of services. 
Existing standards such as WS-Security [43] focus on “access 
control”-oriented vision of privacy and does not offer the 
possibility for describing requirements and policies as with 
our model. Moreover, policy adaptation is not supported. In 
order to describe the privacy concerns of Web services, we 
extend WSDL with privacy references [8]. We exploit its 

extensibility elements to associate service operations, inputs 
and outputs with their corresponding PRS and PPS. More 
precisely, we extend the operation, input and output elements 
with a “privacy-reference” attribute that contains a link to a 
privacy file, thus keeping a clear separation between the 
functional description of the service (WSDL) and its privacy 
concerns (PRS and PPS described in the privacy XML file). 

IV. PRIVACY COMPATIBILITY WITHIN SERVICE COMPOSITION 
There are two different aspects to be considered when dealing 
with the privacy issue in the context of service composition. 
The first aspect is related to describing Web service concerns 
with respect to privacy. The proposed model in Section III is 
devoted to that. The second aspect relates to evaluating how 
services can work together in the composition. As a result to a 
local query Q, the mediator returns a set of composition plans 
CP = {CP1,…,CPn}. Each CPl ∈ CP (where 1 ≤ l ≤ n) answers 
Q. In order to validate CPl in terms of privacy, we check the 
compatibility between the sets of PR and PP of concerned 
services with respect to their order in CPl. In this section, we 
explain how privacy compatibility is verified within 
composition. 

A. Dependency Graph 
The algorithm presented in [5] construct CPl ∈ CP by building 
a dependency graph DGl as a directed acyclic graph in which 
nodes represent services and edges correspond to functional 
dependencies between services. The execution order of 
services in DGl depends on the connections between their 
inputs and outputs parameters as described in the dependency 
graph. If a service Sj has some input $x obtained from the 
output ?y of a service Si then Sj must be executed after Si in 
CPl ; we say that Sj depends on Si. Fig. 3 depicts the DG of CP 
represented in Fig. 1 (related to Q) and shows the different 
steps that determine the execution order of CPl. The main 
issues discussed in the following are: how to make sure that 
the privacy specifications of services in CPl are compatible? 
How to deal with an eventual incompatibility? 

 
Fig 3. DG related to the CP of Q of the motivating example 
 
1) Privacy Subsumption 
Defining an assertion A(Ri, rs)=pf involves assigning value(s) 
from Di to Ti (of Ri). Let us consider D1={“public”, 
“government”, “private-lab”, “research-lab”, “hospital”, 
“university”} which represents a domain values for T1 
=“recipient” (related to R1). In terms of privacy, let us assume 
that the value public is more general than any other values in 
D1, then, any rs’ recipient declared as public (i.e., shared with 
any entity) also includes government, research-lab, etc. with 
respect to privacy. In order to capture privacy relationships 
among domain values, we introduce the notion of privacy 
subsumption (noted p). For each domain Di, a corresponding 
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matrix Mp: Di × Di is defined, by PAIRSE administrators upon 
a common ontology, to compute the privacy subsumption of 
all values in Di. For instance, the following subsumptions can 
be stated: government p public; research-lab p public; 
university p public. Note that privacy subsumption is 
transitive like the typical “is-a” relationship. We use p* to 
refer to the transitive closure of p. In what follows, we 
explain how the PAIRSE mediator checks privacy 
compatibility of services connected in a DG. 

B. Checking the Privacy Compatibility 
Checking the privacy-compatibility between PR and PP of 2 
services in a CP involves making sure that the assertions in 
PPS’ are respecting the assertions in PRS for all the data flows 
described in the DG of the CP. 
 
1) Privacy Compatibility Matching Algorithm 
In order to check the compatibility between assertions of two 
services S and S’ respectively, we introduce a Privacy 
Compatibility Matching algorithm (PCM). 

Algorithm: PCM 
 

 
 

The semantics of PCM is described as follows: For each 
assertion A ∈ PRS (A is defined on rs) and A′ ∈ PPS’ (A′ is 
defined on rs′) to be compatible, A must subsume A′ in terms 
of privacy (noted A′ p A). Privacy subsumption is reached 
when A and A′ are specified on the same data (i.e., rs=rs′), 
with the same privacy rule and at the same granularity 
(Gi=Gi’), (lines 1-4 of the algorithm PCM) where Ri’ = (Ti’, Di’, 
Gi’). Besides, with respect to the matrix Mp defined above the 
expectation of S as stated by pf should subsume the practice of 
S’ as given by pf′. In other words, pf′ should be true each time 
where pf is true. For instance, if pf =“government ∧ research-
lab” and pf′ =“government”, then pf ⇒ pf′ (where ⇒ is the 
symbol for implication in propositional calculus). Hence, A 
subsumes A′ (noted A′ p A) (lines 5-6 of the PCM algorithm). 
Although some literals used in pf are syntactically different 
from the ones used in pf′, they may be semantically related via 
privacy subsumption relationships. For instance, let us assume 
that pf =“public ∧ research-lab” and pf’ =“university”. Since 

university p public, we can state that public ⇒ university. In 
this case, PCM recognizes that pf ⇒ pf′ and hence A′ p A. 
PCM returns a set, noted InC, (line7) containing assertions 
couples (in PR and PP respectively) that are not compatible. 
We note that the compatibility check is not symmetric and that 
privacy subsumption is satisfied iff all assertions in PRS 
subsume all assertions in PPS’. If InC={}, then PRS and PPS’ 

are compatible.  

2)  Mediator Operation 
From the PAIRSE mediator point of view, any service Sc 
which depends on Sp (with respect to the dependency order of 
corresponding DG) is showed as a consumer to some data 
provided by Sp and the latter is showed as a producer. For 
each edge in DG, the PAIRSE mediator extracts the dependent 
rs and assertions in PRSp (related to rs) of the producer service 
Sp (since PRSp specifies the requirements of Sp on the usage of 
its rs) and assertions in PPSc (related to rs) of the consumer 
service Sc (since PPSc specifies the usage Sc makes of the 
collected data) and checks the compatibility of these assertions 
by using the PCM algorithm. Then, a given CPl is considered 
as privacy-compatible if the privacy compatibility is fully 
satisfied for all the dependencies in DGl. 

The mediator is committed through an e-contract [27] to 
only validate a CPl iff InC={}. In other words, if at least one 
dependency in CPl (regarding rs) presents incompatible 
assertions in PR and PP, then CPl violates privacy and is 
discarded from CP.  
 
Example 2: Let us consider DG of Fig. 3. Firstly, the mediator 
identifies service consumers, producers and data dependencies 
from DG. The attribute s=“SSN” is an input parameter for S2.2, 
S3.1 and S4.1, and an output parameter for S1.1. Therefore S2.2, 
S3.1 and S4.1 depend on S1.1 for providing s=“SSN”. Similarly, 
z=“zip” is an input parameter for S5.1 and an output parameter 
for S3.1, therefore S5.1 depends on S3.1. Consequently, S2.2 and 
S4.1 are considered as consumers, while S1.1 is considered once 
as a consumer and once as a producer. The same reasoning is 
observed for S3.1. In step 1 of the execution order (see Fig. 3), 
the producer is the query Q, and the consumer is S1.1. So, if we 
consider that S1.1 considers defined a PP for rs=“Disease”, 
then the mediator checks the compatibility of PRQ and PPS1.1, 
where PRQ is the set of privacy requirements provided with 
the user query regarding the “Disease” attribute. In step 2, the 
producer is now S1.1, consumers are S2.2, S3.1 and S4.1 and the 
dependent data is “SSN”. Similarly, the mediator checks the 
compatibility of PRS1.1 and PPS2.2, PRS1.1 and PPS3.1, PRS1.1 and 
PPS4.1 (we also assume that S1.1 defined assertions in PR for 
rs=“SSN”). In step 3, S3.1 is the producer for S5.1 and rs=“zip” 
and the compatibility of assertions defined on rs=“zip” in 
PRS3.1 and PPS5.1 respectively is checked. For instance, we 
consider sets PPS3.1 and PRS3.1 (described in example 1) the 
compatibility of PPS3.1 and PRS3.1 at step 2 is not held 
according to the PCM algorithm, since “hospital” ⇒ 
“research-lab” and “10” ⇒ “100” are false according to 
privacy subsumption. Then InC={(A1, A1′), (A3, A3′)}. ♦ 
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The mediator should discard any CP which is subject to 
privacy incompatibility from the response set CP. However, 
sometimes no compatible CPs are found, in which case it 
becomes interesting to be able to adapt a priori incompatible 
CPs in order to reach a solution. We intend (to help scientists 
in achieving their epidemiological tasks) and avoid as possible 
such empty responses in order to improve the usefulness of the 
system. In the next section, we propose an adaptation 
mechanism to reach compatibility between services in DG.  

V. PRIVACY-AWARE ADAPTATION 
In the previous section, we showed how privacy is checked 
within composition plans using dependency graphs and our 
PCM algorithm. In order to improve the flexibility and 
adaptability of our system, we propose a privacy-aware 
adaptation approach to reach a compatible CPl from an 
incompatible one, to be detailed in the following. 

A. Overview of the Adaptation approach 
In Section II, we show how our mediator selects a service 
from several candidate services to answer a sub-part of the 
user query. Several approaches in literature use non-functional 
quality of service (QoS) properties to select services [38][40], 
where services provide contracts that can guarantee a certain 
level of QoS. Contract compliance can be evaluated via a 
reputation mechanism [41]. We use a similar notion to define 
a non-functional “reputation” property as a criterion to select 
services during composition. The mediator ranks reputation of 
services according to their availability for composition (cf. 
Fig. 2). Reputation is defined in formula (1) as the number of 
times that S has adapted its PR/PP, divided by the number of 
times S received PRS/PPS adaptation requests from the 
mediator. The more S is willing to adapt its PRS/PPS, the 
higher is its reputation. Each adaptation is weighted with a 
time factor (denoted as Δrt) that decreases the importance of 
the oldest adaptations in order to keep services active and 
make reputation a up-to-date indicator. 
Reputation(S)= (Δrt × AccAdapt(PR/PP))/ReqAdapt(PR/PP)    (1) 

 
Consequently, service providers will be more and more 
conscious about their reputation [26][30]. This is the main 
motivation that makes service willing to adapt their PR/PP 
(i.e., assertions assigned with Neg=T) while preserving 
privacy. Our adaptation approach works as follows. The 
provider formulates two boundary values (detailed below) 
between which it generates an adaptation set. Please note that 
the S’s provider is able to take such decisions only if PRS p 
(subsumes) the individuals’ requirements whose data are 
provided by S. If the adaptation set is related to PP, S’s 
provider should refer to a cost function to take the decision of 
adapting PP (cf. Section V.B). This cost function gives 
provider gain estimation for keeping or adapting PP. Thus, in 
case of incompatibility, the mediator checks if the concerned 
services are willing to adapt their assertions in PR/PP in InC 
and automatically carry out a reconciliation of adaptation sets 
through automated protocols. 

B. Service Adaptation Strategy 
The adaptation set should supply S with the means to express 
other alternatives for their own PRS/PPS. Adaptation is 
cautiously operated with respect to pre-defined set of 
conditions without any privacy loss with respect to initial 
PRS/PPS. 
 
1) PR Adaptation 
If the provider is abundantly perceptive to participate in 
composition and increase its services reputation, that does not 
mean in any way that PR should be relaxed at the expense of 
privacy. For that aim, the PR adaptation strategy of service S 
is defined according to the individuals’ own requirements that 
are given to S when individuals’ data are integrated. The 
requirements that come from individuals are always respected, 
since the service S takes advantage of the fact that its own 
requirements must always be more restrictive than what is 
effectively required by individuals (i.e., PRS p PR of 
individuals whose data are provided by S). Individuals can 
unequally value the assertions. For instance, some individual’s 
requirements about SSN may be stronger than his/her 
requirements for “zip”. Besides, some individual may consider 
an assertion more essential than another, even if both 
assertions are about the same rs. For example, an individual 
may view the rule constraining the recipients of SSN as more 
valuable than the rule stating the duration for which the 
service can retain SSN. All these privacy features are taken 
into account through an e-agreement [27] between the service 
provider and concerned individuals. Thus, when the provider 
of a service S specifies the PRS of the service, it selects, with 
respect to the individuals’ requirements, the assertions Aj in 
PRS that it is willing to adapt and assigns them the value 
Neg=T. Then, for each A with (Neg=T), S specifies an 
alternative value set of A called Adaptation Set noted  
which is defined as follows: 
                                    

€ 

TA
S = (DT , fA

S )     (2) 

where DT ⊆ Di and

€ 

fA
S  is the adaptation function of assertion A 

defined as,

€ 

fA
S : DT→[0, 1].

€ 

fA
S (vi) is called the grade of vi in 

€ 

TA
S  

and it is a float value ∈ [0, 1] (where vi ∈ DT). DT is a finite set 
and

€ 

fA
S is an injective function on DT (i.e., it does not exist two 

elements from DT that have the same grade). Each element in 

€ 

TA
S  is indicated with its grade (denoted as

€ 

fA
S (vi)/vi). 

Hence,

€ 

TA
S is totally ordered. S exposes  to the mediator as 

follows: 
          

€ 

TA
S = { fA

S (vL ) /vL ,... , fA
S (vi ) /vi ,..., fA

S (vU ) /vU}  (3) 
where the values vL and vU are respectively the lower and 
upper bound for 

€ 

fA
S . Hence, the higher is the grade of vi, the 

more adaptable is the corresponding assertion. The set 

€ 

TA
S  is 

characterized as a gradual set [12] since each element vi is 
associated with a grade

€ 

fA
S (vi). 

€ 

TA
S  contains all the possible 

values that S will take in descending order to adapt its 
assertion A (instead of the initial value of A).  
2) PP Adaptation 
PP adaptation differs from PR adaptation. Indeed, when a 
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provider specifies its PP, it takes into consideration (in 
addition to the privacy features and their impact on its 
reputation) other QoS features that may help improving its 
performance. Studies have demonstrated how personal data, 
such as information captured by the index of desktop user-
trace, local analyses, etc. can be used in order to enhance QoS, 
for example with personalization functionalities and 
consequently greatly improve the relevance of service 
behavior [25]. However, the usage and storage of such 
information may conflict with the PR of other services. 
Obviously, the foremost challenge for S provider is to take the 
best decision between keeping its PPS unchanged and adapting 
them. Inevitably, a cost function on privacy-efficiency of 
trade-offs is needed in order to measure the gain earned in 
terms of reputation value by adapting PPS and the gain earned 
by keeping PPS unchanged. We give service providers the 
ability to use the following cost function for evaluating the 
best choice by using the two measures   

€ 

U Rep
PPS  and   

€ 

U Pri
PPS  as 

follows: 
                              

€ 

CS
Ad-Ke =ψ(U Rep

PPS ,U Pri
PPS ) (4) 

where the superscript parameter Ad-Ke of 

€ 

CS
Ad-Kerefers to the 

Adaptation-Keeping of the PPS ;   

€ 

U Rep
PPS is a utility function 

based on formula (1) that measures the reputation gain earned 
by adapting PPS.   

€ 

U Pri
PPS is a utility function measuring the 

reputation gain when PPS is kept unchanged. If 
  

€ 

U Rep
PPS ≥U Pri

PPS , 

€ 

CS
Ad-Ke  returns an estimation set, denoted as PPS

Ad, of the 
relevant assertions that affect the overall process of PPS 
adaptation. These assertions are assigned with Neg=T 
(obviously, PPS

Ad ⊆ PPS). The function 

€ 

CS
Ad-Ke  is inspired from 

the numerous economic models proposed in [24]. Then guided 
by

€ 

CS
Ad-Ke , S generates adaptation set for the assertions with Neg 

=T. It follows the same procedure as PR adaptation and 
defines its  according to the formulas (2) and (3).  
 
Example 3: Assume that S1.1, S3.1 have found it advantageous 
to adapt their PR (while PR p PR of individuals whose data 
are provided by S1.1, S3.1), resp. PP (according to formula (4)). 
The adaptation sets are defined (according to formulas (2) and 
(3)) as follows:  
For A1, S3.1 defines: 

€ 

TA1
S1.1 = {0.6/private-lab, 0.5/university, 0.1/government} 

For A1’, S3.1 defines:  

€ 

TA1'
S3.1 = {0.8/university, 0.6/government, 0.3/hospital} 

The grade of each value in 

€ 

TA1
S1.1 , resp. in 

€ 

TA1'
S3.1 , is assigned 

according to the function 

€ 

fA1
S1.1 , resp.

€ 

fA1'
S3.1 .  For instance, the 

element “0.6/private-lab” in 

€ 

TA1
S1.1 is the most easily adaptable 

element and illustrates the upper bound. For A3, S1.1 defines a 
function

€ 

fA3
S1.1  and S3.1 defines for A3’ a function

€ 

fA3 '
S3.1 . The 

corresponding sets 

€ 

TA3
S1.1 and 

€ 

TA3'
S3.1 are depicted in the Fig. 4. 

 
Fig 4. Adaptation Set for A3 and A3’ 

  
For example, the element “16” in 

€ 

TA3
S1.1 illustrates the upper 

bound. Then, “1/16” it is the best value of adaptation for S1.1 
regarding retention (which is initially defined as “10”). ♦ 
 
The provider of S updates its adaptation sets when: (a) S has 
continually been invoked during the last Δtime and S was 
frequently not compatible and (b) the cost function 

€ 

CS
Ad-Ke  

defined in formula (4) helps defining which assertions should 
be adaptable. Thanks to our reconciliation protocols presented 
below, the mediator calculates among these sets, the couples 
of assertions that will be compatible. The best alternative for 
both consumer and producer service will be automatically 
adopted. 

C. Reconciliation Protocols 
Drawing on the previous definitions, we now introduce the 
protocols for PR and PP reconciliation. In our context, 
reconciliation has for objective to determine which adapted 
assertions two parties have in common. In the course of 
conventional reconciliation protocols, at least one of the two 
parties learns more of the other party’s policies than what the 
two parties have in common. This fact is a major problem in 
situations where privacy is of primary concern. Our objective 
for privacy-aware reconciliation is to reveal nothing more 
about a party’s adapted assertions than the adapted assertions 
the two parties have in common. Since it is the mediator that 
performs the composition, it is also in charge of the adaptation 
process. The first constraint is that neither the consumer 
service Sc nor the producer service Sp are able to know about 
the adaptation function of the other entity. Another important 
constraint is that the mediator also appoints through the e-
contract [27] its commitment not to disclose any information 
related to the adaptations sets of services. It handles the 
adaptation protocol, which is established by the exchanges of 
digital credentials of services that do not have any knowledge 
on the adaptation sets of each other. 
 
1) The basic protocol 
Our adaptation protocol looks for the best value, noted vr, 
common to the producer and consumer adaptation sets 

€ 

TAj

Sp and 

€ 

TAj '
Sc  respectively defined for Aj, Aj’. The value vr is 

calculated as follows: 
                            

€ 

Max(Min(TAj

Sp ,TAj '
Sc )) (5) 

where 

€ 

Min(TAj

Sp ,TAj '
Sc )  is a gradual set and represents the 

intersection of two gradual sets; 

€ 

TAj

Sp and 

€ 

TAj '
Sc . The operator 
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Min5 is a conjunction gradual operator. Hence, vr is calculated 
as the element with the highest grade in the set 

€ 

Min(TAj

Sp ,TAj '
Sc )  

and the operator Max6 of formula (5) is a disjunction gradual 
operator. We note that there are a variety of methods available 
in the literature to calculate the intersection and disjunction of 
gradual sets [12]. We rely on the Min and Max operators since 
they keep most properties of classical logic. 
 
Example 4: We consider the previous adaptation sets of 
example 3. According to (5), the best value vr1 that reconciles 
these sets is computed as follows. 
vr1=Max(Min( 
{0.6/private-lab, 0.5/university, 0.1/government},  

{0.8/university, 0.6/government, 0.3/hospital})   ) 
vr1 = Max ({0.5/university, 0.1/government}) = 0.5/university. 
 
The same reasoning is applied to compute vr2 to reconcile 
adaptation sets related to A3 and A3’. Upon successful 
reconciliation the consumer is granted access to the required 
data for the composition. The mediator requests S1.1 and S3.1 to 
adapt respectively their PR and PP with respect to assertions    

A1=“university”, A3=“vr2” for S1.1 and  
A1’ $ =“university”, A3’ $=“vr2” for S3.1 where  
vr2 $ =Max(Min (

€ 

TA3
S1.1 ,

€ 

TA3'
S3.1 )).  ♦ 

 
A given service defines an original PR (resp. PP) and may 
have several adapted versions of that PR (resp. PP), which 
result from the adaptation protocols. The mediator manages 
these versions and for each one of them, it indexes them with 
the related service and the corresponding CPl. If S’ does not 
define any adaptation set (i.e., all assertions are assigned with 
Neg=F) and its current PPS’ is not compatible with PRS of S 
which has a adaptation strategy, then the mediator refers to the 
formula (1) and looks for a candidate S’’ that is exactly 
equivalent to S’ (i.e., S” has the same input and output like S’) 
and that is willing to adapt its PPS’’(if the current PPS’’ are not 
compatible). Incompatible CPl with the smallest InC are 
prioritized and selected prior to the adaptation process. The 
protocol described above is related to the case where one 
consumer depends on one producer in CPl. We propose the 
following protocols for multiple dependencies. 
 
2) Protocols for Multiple Dependencies 
With respect to the dependency steps in DG of CP, the 
mediator can execute, in addition to the above protocol, one of 
the following protocols in order to find the best value that 
reconciles adaptation sets of services. 

 
5 The Intersection of two gradual sets A and B with membership functions 

µA and µB respectively is defined as the minimum of the two individual 
membership functions. This is called the minimum criterion µA∩B=Min(µA, 
µB). 

6 The Union of two gradual sets A and B with membership functions µA 
and µB respectively is defined as the maximum of the two individual 
membership functions. This is called the maximum criterion µA∪B=Man(µA, 
µB) 

a)  Protocol for 1-N Adaptation sets  
In the 1-n case, during the step m of DG, the inputs of N 
consumers are connected to the output of one producer and 
these N+1 services are not compatible. According to the PCM 
algorithm, InC={(A1, A1’ $), (A1, A2’ $),...,(A1, An’ $)} (where A1’ is 
an assertion of consumer Sc1, A2’ $ is an assertion of consumer 
Sc2, and so on). In addition, if N consumers Sc1 to Scn are 
willing to respectively adapt their PP, then we have N sets, 

€ 

TA1'
Sc1 ,...,TAn '

Scn  and vr is calculated as follows: 

vr =

€ 

Max(Min(TA1

Sp ,Min(TA1'
Sc1 ,...,TAn '

Scn )))  

b) Protocol for M-1 Adaptation sets 
Similarly in the m-1 case, during step m of DG, the input of 
one consumer is connected to the output of M producers and 
these 1+M services are not compatible. Hence, InC={(A1, A1’), 
(A2, A1’ $), ..., (Am, A1’ $)}(where A1 is an assertion of producer 
Sp1, A2 is an assertion of producer Sp2 , and so on). Then, if we 
consider that the M producers, Sp1 to Spm, have adaptation sets, 
then we have M sets, 

€ 

TA1

Sp1 ,...,TAm

Spm  and vr is calculated as 
follows: 

vr =

€ 

Max(Min(Min(TA1
Sp1 ,...,TAm

Spm ), TA1'
Sc )) 

D. Discussion  
In order to analyze our privacy adaptation approach, we 
discuss the two following factors:  
 
1) Adaptation Soundness 
It is worth noting that the pieces of information services could 
deduce from the adaptation protocols is equivalent to knowing 
what can be deduced from Max(Min(

€ 

TAj

Sp ,TAj '
Sc )). While 

deviation from the adaptation strategy may imply privacy 
violations, a malicious service will not necessarily benefit 
from deviation in terms of maximizing its adaptation set 
values. This is due to the fact that the combined adaptation of 
the sets values (i.e., Min(

€ 

TAj

Sp ,TAj '
Sc )) depends on the value 

grade of the honest service. In order to profit from the 
deviation, a malicious service would need to know the honest 
service’s value grade in the adaptation set at reconciliation 
time and that is not possible since neither consumer Sc nor 
producer Sp are able to know about the adaptation strategy of 
the other party. Consequently, our adaptation protocols are 
secure at the applicative level since no information about 
adaptation can be disclosed outside the mediator. Moreover, 
these protocols are sound since the value vr (of formula (4)), if 
it exists, is consistent with both adaptation sets and hence, 
supports the determination of all mutually compatible PR/PP 
on one round with no further adaptation. 
 
2) Privacy Adaptation vs. Reputation Increase 
The principles of privacy adaptation could be compared to 
anonymization approaches that aim at finding the best ratio 
between data protection and data utility. The cost function 
(given by formula (4)) is devised to give an estimation of the 
best choice between keeping and adapting PPs. In our work, 
services propose their own privacy requirements (PRs), which 
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must always be more restrictive in terms of privacy than what 
individuals require (we use the notion of privacy subsumption, 
which has been formally defined in our work, to verify this 
property). Then, the adaptation is made possible between the 
requirements of the service (that can be adaptable) and the 
requirements previously expressed by individuals (data 
owners). Hence, the privacy requirements that come from 
individuals are always respected, and the service takes 
advantage of the fact that its own requirements are always 
more restrictive than what is effectively required by 
individuals. Thus, adaptation, if applicable, is strictly bound 
between the requirements of services and those of individuals. 

However, we argue that a compatible composition plan 
(CPl) is not entirely protected. Several types of attack [13][32] 
can be performed against composition execution (i.e., a the 
result table of CPl execution) in order to disclose the identity 
of published data. The Privacy Mechanism of Global Result 
component (cf. Fig. 2) is devoted to deal with this issue. 
Service providers need to be aware of this privacy-preserving 
mechanism that will be applied to the result table of CPl. In 
this paper we focus on providing individuals with the means to 
express their privacy requirements so that they are respected 
by services. Hence, our goal is not to evaluate how much 
information can be inferred with respect to attacker's 
knowledge. Indeed, quantifying and modeling attacker is a 
NP-hard problem [28]. However, with respect to this 
challenge, the solution we deem the most appropriate is based 
on the work detailed in [28] that allows to efficiently model 
the attacker’s knowledge through several dimensions. The 
approach allows calculating the probability for an adversary to 
re-identify the data contained in TCP (in our case TCP being the 
table of the compatible CP execution). The goal of an 
adversary is to predict whether a target individual t (contained 
in TCP) has a target sensitive value s. In making this prediction, 
the attacker has access to the released candidate of T*CP, 
where T*CP is a result of k-anonymity on TCP, as well as his 
own knowledge K. The objective is to calculate the function: 
maxt,s Prediction(t has s | K, T*CP) that allows to calculate the 
breach probability, which represents the adversary’s 
confidence in predicting the sensitive value s of the least 
protected individual t (in T*CP). The result of this function 
must be < c, where c is a threshold value defined by the 
mediator. The final released table to be returned to the 
requester must verify maxt,s Prediction(t has s | K, T*CP) < c. 

VI. PROTOTYPE AND EXPERIMENTS 
In this section, we illustrate the viability of our approach. 
First, we show how we implemented our prototype for 
querying and composing DaaS services while ensuring privacy 
compatibility with our algorithms. Then, we show a set of 
experiments to analyze the impact of the PCM algorithm and 
adaptation on service composition. 

A. Prototype Architecture 
The architecture of our prototype is organized into four layers 
as depicted in Fig. 5. The first layer contains a set of 
Oracle/MySQL databases that store the medical data. The 

second layer includes a set of proprietary applications; each 
application accesses databases from the first layer. These 
proprietary applications are exported as DaaS services to the 
system. These services constitute the third layer. The WSDL 
files of DaaS services in the third layer are annotated with 
RDF views enriched with PR and PP annotations. Annotated 
description files are published to service registries. The upper 
layer includes a Graphical User Interface (GUI) and a Web 
Service management system (WSMS). Users access the 
system via the GUI and submit queries to the composition 
system. WSMS is composed of several modules: Interactive 
Query Formulator, RDF Query Rewriter, Service Locator, 
Composition Plan Generator, Execution Engine, and Up-
Cast/Down-Cast Message Transformer.  

 
Fig 5. Architecture of the PAIRSE prototype 
 
We used the deployment kit bundled with GWT (Google Web 
Toolkit) and the Apache Tomcat 6 to build and deploy our 
DaaS services (running on Mac OS X 10.6.8).  
 

 
Fig 6. The PAIRSE Platform 
 
Fig. 6 shows the WebService, CPMSC (Compatibility-Privacy-
Matching of service Composition) and Combination WS 
components of the main interface implementing our prototype 
platform. Through the WebService component, service 
providers specify their PP and PR as well as adaptation sets. 
The CPMSC component implements the PCM algorithm to 
check assertion compatibility. If any compatible CP is found 
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the Combination WS component is called and performs the 
adaptation approach among candidate CPl. 

B. PCM Evaluation  
To evaluate the impact of privacy compatibility checking on 
composition process, we implemented our PCM algorithm 
(described in Section IV.A.2) in Java and integrated it into the 
composition algorithm. We ran the composition system with 
and without compatibility checking. Each service defined it 
PR and PP. Time1 in Table II is the time to compute CP for Q 
without checking compatibility (we have obtained eight 
different CP). Time2 is the time to compute CP for Q with 
checking the privacy compatibility; only two CP were valid. 
(CP={CP3, CP4}). Obviously, PCM does not introduce an 
important cost; the time needed to apply PCM is less than 60 
milliseconds for query Q (given in our previous scenario). 

TABLE II 
COMPOSITION PLANS ANSWERING Q WITHOUT AND WITH PCM 

ENFORCING 

Composition without PCM Time1(ms) 
CP1= (S1.1, S2.1, S3.1, S4.1, S5.1) 
CP2= (S1.1, S2.1, S3.1, S4.2, S5.1) 
CP3= (S1.1, S2.2, S3.1, S4.1, S5.1) 
CP4= (S1.1, S2.2, S3.1, S4.2, S5.1) 
CP5= (S1.2, S2.1, S3.1, S4.1, S5.1) 
CP6= (S1.2, S2.2, S3.1, S4.1, S5.1) 
CP7= (S1.2, S2.1, S3.1, S4.2, S5.1) 
CP8= (S1.2, S2.2, S3.1, S4.2, S5.1) 

680 

Composition with PCM Time2 (ms) 
CP3= (S1.1, S2.2, S3.1, S4.1, S5.1) 
CP4= (S1.1, S2.2, S3.1, S4.2, S5.1) 

738 

 
In order to demonstrate the feasibility of our privacy 
compatibility approach, we applied the prototype to a real 
scenario drawn from the healthcare domain. In the context of 
the PAIRSE project, we were provided with access to 100 
medical Web services. For each service, we have randomly 
generated PR and PP regarding the manipulated resources 
(i.e., inputs and outputs). Assertions were generated randomly 
and stored in XML files. The computational complexity of our 
PCM algorithm is of order O(n2). The total number of 
assertions that must be checked among PRS (containing n 
assertions) and PPS’ (containing m assertions) that are related 
to the same private data and with respect to one dependency in 
CP is n ×m. We conducted a set of experiments to analyze the 
scalability of our PCM as the size of PR and PP increases 
according to the number of data and number of assertions. 
Then, we have generated a synthetic composition plan for 
which we changed the number of services (i.e., the size of 
CP). Fig. 7 shows the performance of PCM as the 
composition, PR, and PP size increase, for values of k ranging 
between 3 and 7 (where k is the number of rs). Each service in 
the composition plan had k sets of data, associated with 13 
assertions each. In Fig. 7-(b), each service in PC had k sets of 
data, associated with 40 assertions each (we have generated 
more than 7 privacy rules). The reported durations in both 
parts of Fig. 7 are the durations needed to check the privacy 
compatibility. Thus, in Fig. 7-(a), the execution time of PCM 

slightly increases when k increases (105ms for PR=13, PP=13, 
k=3 and 170ms for k=7, 100 services are processed). In Fig. 7-
(b), a small increase (execution time) is observed (150ms for 
PR=40, PP=40, k=3 and 210ms for k=7, and 100 services are 
processed). The time requirements of PCM are linear with the 
number of assertions, and we expect PCM to scale well on 
larger sets of PR and PP. 

C. Adaptation Evaluation  
In a second set of experiments, we simulated the performance 
of our adaptation approach. The adaptation sets 

€ 

TA
Si  (1 ≥ i ≥ 

100) were generated randomly and each one of them is 
defined on DT =[0,...,100] with respect to the “Retention” 
topic.  

 

 
Fig 7. PCM Evaluation 
 

 
Fig 8. Adaptation Evaluation 
 
Fig. 8 shows the obtained results. The reported durations 
includes time needed to compute

€ 

Max(Min(TA
S1 ,...,TA

S100 )) and 
to adapt the related assertions of involved services. Fig. 8-(a) 
shows that even for a large number of adaptation sets (e.g., 
100), the adaptation time remains negligible (344 milliseconds 
for 100 sets) compared to Time1 needed for computing the 
compositions for a given query. Note that in the general case 
we may have P adaptation processes related to P different 
privacy assertions at the same level of dependency graph and 
in such case they could be all carried out in parallel. Fig. 8-(b) 
shows the performance when we execute five adaptation 
strategies. Time execution are close; the largest interval is 
between [60ms - 145ms] related to the sets of A3 and A3’’’’. 

VII. RELATED WORK 
In the following, we review the close work in related areas and 
discuss how our work leverages and advances the current 
state-of-the-art techniques. 

A. Privacy-aware Data Modeling 
A typical example of modeling privacy is the Platform for 
Privacy Preferences (P3P)[22]. This standard is destined to 
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specify privacy policies, but presents several limitations, for 
example it does not support adaptation, as mentioned 
previously in the paper. The approach in [15] assumes privacy 
only takes into account a limited set of data fields and rights. 
Data providers specify how to use the service (mandatory and 
optional data for querying the service), while individuals 
specify the type of access for each part of their personal data 
contained in the service: free, limited, or not given by using a 
DAML-S ontology. Individuals specify their privacy 
preferences in different permission levels on the basis of 
domain specific service ontology. However, privacy 
preferences do not include the point of view of individuals 
over data usage restrictions. The approach described in [33] is 
based on the definition of fine-grain security markup of 
service parameters in profile and process models by the 
addition of annotations about the security and privacy policies 
of services expressed in a logic-based language. A policy is 
utilized in service selection and invocation. OWL-S profile is 
then extended with policies. Privacy constraints are not related 
to the published data but rather to the service. An interesting 
approach is described in [11]. It aims at providing an 
expressive form of authorization rules which define on the join 
path of relations and they also devise an algorithm to check if 
a query with given query plan tree can be authorized using the 
explicit authorization rules. The approach of [42] is typically 
based on the definition of an access pattern associated with 
each relation/view that defines how it can be accessed. It is 
rather devoted to deal with the optimization issue for 
conjunctive queries. In our work, privacy data is specified and 
may be related to individuals, data and service providers, and 
not only to the provided data, and allows defining complex 
restrictions on data usage (recipient, purpose, retention, and 
possibly other aspects) rather than simply defining access 
policies.  

B. Privacy-aware Service Composition 
Despite the relatively large body of work in the area of service 
composition, few efforts have specifically addressed the issue 
of privacy in service composition. In [20] a framework for 
enforcing data privacy in workflows is described. Privacy- 
preserving mechanism for data mashups is presented in [14]. 
Both these works aim at integrating private data from different 
data providers in a secure manner. The authors in [16] discuss 
the integration and verification of privacy policies in SOA-
based workflows. Previous approaches focus on algorithms 
(such as k-anonymity) for preserving data privacy in a given 
table, while in our work we go further and propose a model 
that takes into account usage restrictions and client 
requirements. The works in [16][17] use third parties as 
database service providers. None of the previous works appear 
to be fully related to ours, as our proposal is situated at the 
level of privacy specification. We allow every service to 
outline its specification for the use and expectation of the 
manipulated data. Consequently, our work can be seen as a 
complement to these previous works. Additionally, during the 
final execution of the composition a mechanism of type k-
anonymity can be applied to forbid all misuses of the data. 

C. Privacy-aware Adaptation 
The proposal in [18] is based on privacy policy lattices, which 
is created for mining privacy-preference/service-item 
correlations. Using this lattice, privacy policies can be 
visualized and privacy negotiation rules can then be generated. 
The Privacy Advocate approach [19] consists of three main 
units: privacy policy evaluation, signature and entity 
preference units. The negotiation focuses on data recipients 
and purpose only. An extension of P3P is proposed in [21]. It 
aims at adjusting a pervasive P3P-based negotiation 
mechanism for a privacy control. It implements a multi-agent 
negotiation mechanism on top of a pervasive P3P system. The 
approach proposed in [23] aims at accomplishing privacy-
aware access control by adding negotiation protocol and 
encrypting data according to classification levels. Previous 
works are suffering from two major short- comings: The first 
one is the “take-it-or-leave-it” principle, i.e. a service can only 
accept or refuse the other service’s proposal as a whole. The 
second is the “one-size-fits-all” principle: once the service 
producer has designed its privacy policy, it will be proposed to 
all interested services no matter what their requirements are. 
Languages such as XACML[37] or ExPDT[36] can be 
deployed over a variety of enforcement architectures. They are 
on the one hand syntactically expressive enough to represent 
complex policy rules, and offer on the other hand a formal 
semantics for operators to reason about policies, e.g. their 
conjunction and recently difference. Unfortunately, they do 
not provide adaptation mechanism when incompatibility 
occurs. Our privacy-aware adaptation approach goes beyond 
previous approaches and aims at ensuring privacy 
compatibility of involved services in the composition without 
any additional overload. It allows services to define adaptation 
sets and reconciles them through dynamic protocols for 
finding the best choice without any loss of privacy. 

VIII. CONCLUSION AND FUTURE DIRECTIONS 
In this paper, we proposed a semantic and formal privacy 
model for DaaS services. This model allows services to 
specify their privacy expectation/practices via privacy 
requirements and policies, respectively. Both privacy 
requirements and policies refer to rules that may be added, 
deleted, and modified at any time. The granularity of our 
privacy model allows defining the widest range of policies and 
requirements with rich expression capabilities and in a flexible 
manner. We introduced a cost protocol bas on our model for 
checking the compatibility of privacy requirements and 
policies. We have presented a privacy compatibility-aware 
DaaS composition approach to resolve privacy concerns at the 
composition time. We also proposed a privacy-aware 
adaptation approach based on service reputation to tackle the 
incompatibilities between requirements and policies using 
dynamic reconciliation protocols. We have presented a 
gradual-based approach that applies flexible modeling to 
characterize the adaptation sets. As future work, we intend to 
deal with the issue of finding the set of quasi-identifier 
attributes (QI). The process of obtaining k-anonymity for a 
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given table is to anonymize the QI quasi-identifier attributes 
values.  Consequently, when QI is not properly determined, 
the appearance of QI attribute values in a released table may 
give out private information. Another perspective worth 
studying in the context of service composition is the role of 
anonymization. We would like to study whether 
anonymization methods can mitigate the vulnerability and 
keep the utility of anonymized data useful. 
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