
PAIRSE: A Privacy-Preserving Service-Oriented Data
Integration System

Djamal Benslimane
Claude Bernard University
69622 Villeurbanne, France

djamal.benslimane@univ-
lyon1.fr

Mahmoud Barhamgi
Claude Bernard University
69622 Villeurbanne, France

mahmoud.barhamgi@univ-
lyon1.fr

Frederic Cuppens
Telecom-Bretagne

2 Rue de la Chataigneraie
35576 Cesson Sevigne,

France
frederic.cuppens@telecom-

bretagne.eu
Franck Morvan

IRIT, Paul Sabatier University
118 Route de Narbonne, 31062

Toulouse, France
franck.morvan@irit.fr

Bruno Defude
Institut TELECOM

CNRS UMR Samovar
Evry, France

bruno.defude@it-
sudparis.eu

Ebrahim Nageba
Claude Bernard University
69622 Villeurbanne, France
ebrahim.nageba@univ-

lyon1.fr

ABSTRACT
Preserving data privacy is among the key challenges that
still hamper answering business data integration needs
in many sectors, including healthcare, e-commerce, and
e-government. The PAIRSE project aims at providing
a flexible, loosely-coupled and privacy-preserving data
integration mechanism in P2P data integration environ-
ments. The project exploits recent Web standards and
technologies such as Web services and ontologies to ex-
port data from autonomous data providers as reusable
services, and proposes the use of service composition as
a viable solution to answer data integration needs on the
fly. The project proposed new composition algorithms
and service/composition execution models that preserve
privacy of the manipulated data and prevent the differ-
ent actors (e.g., data consumers, service providers, etc.)
from learning/inferring any extra information, beyond
what is permitted. The proposed integration system was
demonstrated at EDBT 2013 and VLDB 2011.

1. INTRODUCTION
Data integration has been a long-standing chal-

lenge for the database community. This is moti-
vated by the number of contexts in which the need
for a flexible data integration mechanism has be-
come critical, including Web and enterprise data in-
tegration, data sharing for scientific research, data
exchange in government agencies, building eCom-
merce marketplaces, etc.

Much of the literature on data integration across
autonomous data sources has tacitly assumed that
data on the side of each data source can be revealed

and shared with other sources. In practice, however,
data integration scenarios in many contexts and
application domains are often hampered by legiti-
mate and widespread data privacy concerns. In the
healthcare application domain for example, medical
data are subject to many legislations and privacy
protection laws (e.g., [2, 1]) around the world that
restrict collection, processing, and disclosure of per-
sonal data, and hold data holders accountable for
any unintended data disclosure or misuse.

The PAIRSE project addresses the challenge of flex-
ible and privacy-preserving data integration in peer-
to-peer data sharing environments. Driven by the
recent trends of using SOA-oriented architectures
for data integration in modern enterprises, PAIRSE
assumes that data sources are exposed to the data
sharing environment as Web services. This type of
services is commonly known as data services [13]
(a.k.a. Data as a Service [16]), where data services
provide a well-documented, platform (and source)
independent, interoperable and uniform method of
interacting with data. PAIRSE proposes a service
composition-based approach for on-demand data in-
tegration; i.e., heterogeneous data services from au-
tonomous service providers are selected and com-
posed on the fly to answer users’ queries. Data
privacy preservation is a key objective of PAIRSE.
Users in PAIRSE are allowed only to access the in-
formation they are entitled to for a given purpose.
PAIRSE focuses on modeling, discovering, selecting
and composing data services to efficiently answer

users’ queries. Specifically, the project addresses
the following key challenges:

• Query resolution by automatic service
composition . In PAIRSE queries are resolved
by automatically selecting and composing rel-
evant data services from the P2P data inte-
gration environment. This involves handling
different challenging issues. First, the seman-
tics of data services should be explicitly rep-
resented to automate their discovery, selection
and composition. Second, a P2P service dis-
covery mechanism is needed to efficiently lo-
cate relevant data services on the P2P net-
work based on their semantics. Third, rele-
vant services that can be combined to answer
the query need to be selected and orchestrated.

• Privacy preservation . Privacy of data sub-
jects whose data are manipulated by services
is among the key barriers to data service com-
position. Two particular issues need to be ad-
dressed. First, as compositions may generally
involve autonomous data services (i.e., services
provided by autonomous service providers), ser-
vices involved in a composition should not be
able to learn or infer any information about
the data that the other services provide, be-
yond what is permitted. Second, service providers
should be allowed to enforce locally their pri-
vacy and security policies without changing
the implementation of their services.

The contributions of our PAIRSE data integra-
tion system, which was demonstrated at EDBT 2013
[7] and VLDB 2011 [11], are summarized as follows:

• Semantic description model for data ser-
vices. We propose an ontology-based descrip-
tion for data services [10]. Services are mod-
eled as “RDF Views” over domain ontologies.
An RDF view captures the semantics of a data
service by defining the semantic relationship
between the service’s input and output param-
eters in a “declarative” way using “concepts”
and “relations” whose semantics are formally
defined in domain ontologies. The service de-
scription files (e.g., WSDLs for SOAP services,
HTML for RESTful services, etc.) are anno-
tated with the defined views.

• Query resolution by service composition .
We proposed a novel service composition al-
gorithm [10]. The algorithm exploits the ma-
ture query rewriting techniques to relieve users
from having to manually select and compose

services, a task that would generally require
important programming skills. Users need only
to formulate their composition queries over do-
main ontologies using the de facto ontology
query language SPARQL1. The algorithm will
then select and compose the services based
on the proposed semantic modeling (i.e., RDF
views). We proposed also an efficient algo-
rithm to locate the services that are relevant
to a given query in a P2P environment [19].

• Privacy preservation . We proposed a pri-
vacy preserving composition execution model
[7, 21, 8]. Our model is twofold. First, it allows
services providers (whose services are involved
in a composition) to enforce locally the privacy
and security policies that may be associated
with their provided data without changing the
implementation of their services. Second, our
model provides means to execute the compo-
sition without revealing extra information to
any of the involved services; i.e., none of in-
volved services (and their providers) is able to
learn/infer any information about the data the
other services provide beyond what is permit-
ted.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of our service-based inte-
gration system. Section 3 describes our semantic
modeling of data services. Section 4 presents our
composition approach and describes its originali-
ties. Section 5 presents our techniques to ensure
privacy protection. Section 6 applies our work in
two application domains, and summarizes our con-
ducted evaluations and obtained results. Section 7
concludes the paper.

2. PAIRSE’S ARCHITECTURE
The PAIRSE data integration system has a hy-

brid peer-to-peer infrastructure (Figure 1)[19], where
peers form communities of interest, called Virtual
Organizations VOs. Each VO has a common do-
main ontology modeling its expertise, and peer mem-
bers that may have relations with members from
other VOs. Relations between peers exist only if
there is a mapping between the ontologies modeling
the expertise of their respective VOs. PAIRSE does
not impose any constraint on the topology graph
formed by the ontologies and the different map-
pings. Peers export their (sharable) data sources
as data services. The adoption of a service-oriented
view of data has many advantages, including pro-
viding an abstraction layer between data consumers
1http://www.w3.org/TR/rdf-sparql-query/

Service-based Query Processing

DB DB DB DB

Sa
SnSi

Sb

Modeling Services as RDF views

over Domain Ontologies

+

Annotating the Service Descriptions

with the Defined Views

Ontologies

Annotated WS

descriptions

Service

Registry

Composition

Plan Generation

RDF Query

Rewriting

Privacy-preserving

Composition

Execution

Composition

P2P Service

Discovery

Peer Structure

Virtual Organization

VO1

Virtual

Organization

VO2

Virtual

Organization

VO3

peer

peer

peer

peer

DHT

DHT

DHT

m
ap

pi
ng

s

mappings

mappings

Hybrid P2P

Network

SPARQL Query

Results

Client

Data Services

Data Sources

Figure 1: An overview of the proposed data integration system

and the peer’s heterogeneous data sources, and prepar-
ing the ground for a flexible and loosely-coupled
data integration by service composition [13]; i.e.,
data services from different peers can be quickly
composed to answer evolving data business needs.

To automate the discovery and the composition
of data services, we model them as RDF Views over
domain ontologies. RDF views capture in a faith-
ful and declarative way the semantic relationships
between input and output parameters using onto-
logical concepts and relations whose semantics are
well defined in domain ontologies. RDF views are
incorporated into service description files as anno-
tations.

The PAIRSE system follows a declarative approach
to compose data services. Specifically, users pose
their queries on domain ontologies using SPARQL
query language. Then, our system exploits the de-
fined RDF views in service description files to se-
lect the services that can be combined to answer
the query using an RDF query rewriting algorithm
that we have devised for that purpose. Then, it
generates an execution plan for the composition and
executes it to provide the user with the requested
data. As data services may manipulate privacy-
sensitive information, PAIRSE proposed new ser-
vice and composition execution models to preserve
privacy (see section 5).

Queries may necessitate the use of remote data
services, in which case an efficient P2P service dis-
covery algorithm [19] is used to locate and retrieve

the descriptions of relevant services from remote
peers.

3. SEMANTIC MODELING FOR DATA
SERVICES

Modeling and explicitly specifying the semantics
of data services are the first step towards the au-
tomation of service selection and composition. Dif-
ferent semantic Web service description languages
and models have been proposed in the literature,
including OWL-S2, WSMO3, SAWSDL4. However,
these languages were designed with the conventional
services5 in mind, where services are seen as “ac-
tions” that can be characterized by their inputs,
outputs, preconditions and effects (a.k.a. IOPEs).
Their focus was, therefore, on semantically mod-
eling IOPEs. Unfortunately, this action-oriented
modeling is insufficient for data services, where the
focus should be on representing the semantic rela-
tionship between inputs and outputs. This is cru-
cial, as different data services may have the same
input and output sets, but completely different se-
mantics.

In PAIRSE, we proposed in [10] to model data
services as RDF Parameterized Views (RPVs) over
domain ontologies. A parameterized RDF view uses

2http://www.w3.org/Submission/OWL-S/
3http://www.w3.org/Submission/WSMO/
4http://www.w3.org/2002/ws/sawsdl/
5Services encapsulating software artifacts (i.e. software-
as-a-service services)

(a) (b)

o:Patient

P

rdf:type

o:
ha

sD
is

ea
se o:hasN

am
e

?y

?z

o:hasDoB

C

o:admittedIn

rdf:type

$x

o:
na

m
e

o:Center

"Diabetes"

PREFIX o:<http://hospital.fr/>

S1($x,?y,?z):-

?C rdf:type o:Center

?C o:name ?x

?P rdf:type o:Patient

?P o:admittedIn ?C

?P o:hasName ?y

?P o:hasDoB ?z

?P o:hasDisease “Diabetes”

Figure 2: (a) a parameterized RDF view; (b)
its graphical representation

concepts and relations whose meanings are formally
defined in domain ontologies to define the semantic
relationships between input and output parameters
sets of a data service. A parameterized view is a
technique that has been used to describe content
and access methods in Global-as-View (GaV) inte-
gration architectures [18]. It has been also used to
model privacy constraints in [23]. A parameterized
view requires a particular set of inputs (the param-
eter values) in order to retrieve a particular set of
outputs; i.e., outputs cannot be retrieved unless in-
puts are bound. Figure 2 shows an RPV of a service
returning the personal information (i.e., name and
dates of birth) of patients admitted in a given medi-
cal center. Note that input parameters are prefixed
with the symbol “$” and output parameters are pre-
fixed with the symbol “?”.

RDF views may also specify constraints to char-
acterize the data manipulated by their correspond-
ing services. These constraints may have different
forms, including simple interval constraints (e.g.,
X ∈ [a, b], where X is a variable used in an RDF
view), and fuzzy constraints interpreted according
to a fuzzy membership function (e.g., the medica-
tions returned by a service have “High” concen-
tration of hydroxypropy1-β-cyclodextrin; i.e., X is
High, where the fuzzy term “High” is interpreted
by a membership function specifying for each value
of the concentration parameter the degree to which
it is high).

We adopted an approach similar to SAWSDL to
associate data services with their RPVs. We ex-
ploited the extensibility feature of the WSDL stan-
dard to annotate the WSDL files with RPVs.

4. QUERY RESOLUTION IN PAIRSE
In PAIRSE, users’ queries are resolved by com-

posing relevant data services on the fly. Each virtual
organization in PAIRSE’s hybrid P2P architecture
has a DHT (Distributed Hash Table) to index its
published services [19]. Services are indexed accord-
ing to the ontological concepts used in their RPVs.
When a query is issued at a given peer, the peer
extracts the different ontological concepts used in

the query and launches service discovery requests
for services annotated (via their RPVs) with these
concepts. Services are first sought in the same V O
where the query is posed, then the service discovery
request is propagated to connected V Os. The de-
scriptions of discovered services are then sent back
to the initial peer, where the relevant services will
be selected and composed. Furthermore, for each
discovered service we return the mapping path be-
tween the ontologies associated with the expertise
domains (i.e., VOs) of the discovered service and the
initial peer. This mapping path allows the transla-
tion of RPV views.

We proposed a Query Rewriting based service
composition algorithm to select and compose data
services on the fly [10, 11, 9]. The algorithm, given
a SPARQL query formulated over a domain ontol-
ogy, and a set of data services represented by their
RPVs, rewrites the query in terms of calls to rele-
vant services.

The problem of query rewriting using views was
well studied and formalized in the last decade ([18]
is a good survey on the topic). Different rewriting
algorithms (e.g., Bucket, Inverse Rules, Minicon,
etc.) were proposed and used in different integra-
tion systems (e.g., InfoMaster, Manifold, Ariadne,
etc.). Our algorithm extends the earlier works on
query rewriting and data integration in the follow-
ing aspects:

Compliance with the RDF/S data models:
while most of previous work has focused on rela-
tional [22, 18] and XML data integration [26], we
considered the case of RDF/RDFS-based data inte-
gration. Specifically, we designed and implemented
an RDF/RDFS query rewriting algorithm that takes
into account the RDF schema constraints such as
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, and
rdfs:range when comparing RPVs to a user’s SPARQL
query. It rewrites the SPARQL query into a set of
service calls. Evaluating the union of these calls has
essentially the same effect as running the query on
a target RDF instance. The consideration of RDFS
constraints is of great importance in Web data inte-
gration. For example, suppose there is a statement
in an RDFS domain ontology specifying that :Med-
ication rdfs:subClassOf :Drug. Given a data ser-
vice S returning the medications administered to a
given patient, and a query Q for the drugs admin-
istered to a given patient, our rewriting algorithm
automatically infers that S can be used to generate
rewritings for Q. In other words, the consideration
of the RDFS constraints allows our system to infer
more results than the previous rewriting techniques.

Answering parameterized queries: the key fo-
cus of previous data integration systems has been on
answering specific user queries. In contrast, PAIRSE
focused on answering parameterized queries; i.e. the
focus is on constructing compositions of services
(i.e., parameterized integration plans) that are in-
dependent of a particular input value (i.e., they re-
spond to a range of input values). One implication
of considering parameterized queries is that compo-
nent services cannot be chosen at the composition
time. The selection of those services depends on
the actual values of input parameters, which are
only known at the execution time.

Example: assume a parameterized queryQ($x, ?y)
for the medications y that may interact with a given
medication x. Assume also two data services:
S1($x,?y), where x ∈ [1, 5] and y ∈ [100,150],
S2($x,?y), where x ∈ [6,10] and y ∈ [150,200]
If Q was a specific query (Qx=2), then S2 would not
be considered in the rewriting (i.e., composition) as
x = 2 is not covered by S2. In contrast, both of S1

and S2 are usable for Q, to cover as much as possible
of the potential values of x. Furthermore, the user
may customize the parameterized query by specify-
ing ranges on its different parameters and variables.
For example, by specifying that the final composi-
tion corresponding to Q will be invoked with values
x ∈ [1, 10], and by being only interested in values
of y ∈ [100, 200].

In this context, an important issue is to deter-
mine the minimum number of similar data services
that satisfy together the range constraints of a sub-
graph of the query. This assumes that, in the gen-
eral case, a query may contain different sub-graphs,
where each one could be matched to different simi-
lar services with different ranges of input and out-
put parameters. Our rewriting algorithm extends
the previous work on data integration with a prob-
abilistic subsumption test allowing to compute for
each sub-graph of the query, the minimum number
of services in polynomial time [9]. Note that this
problem is known to be NP-Complete [24], as ser-
vices may have in the general case N constrained
input and output parameters (not only 2 in the ex-
ample.). The optimization of the generated com-
position plan is another important issue involved in
handling parameterized queries. Our composition
algorithm analyzes the service descriptions in order
to automatically insert filtering conditions in the
composition plans that result in fewer requests to
component services.

Inclusion of user’s preferences: often the num-
ber of candidate compositions that may be used

to answer the same query is very large. We pro-
posed in PAIRSE a novel approach [11] to compute
the top-k data service compositions based on user
preferences. In our approach, we modeled user’s
preferences using fuzzy sets and incorporated them
into the composition query. We match the (fuzzy)
constraints of the relevant services (selected by our
RDF rewriting algorithm) to those of the query
and determine their matching degrees using a set
of matching methods from the fuzzy set theory. We
then rank-order the candidate services based on a
fuzzification of Pareto dominance and compute the
top-k Data service compositions. In addition, we
introduce a new method to increase the diversity of
returned top-k compositions while maintaining as
much as possible the compositions with the highest
scores.

5. PRIVACY PRESERVATION IN PAIRSE
In this section, we present briefly our models to

(i) allow service providers to ensure the security and
privacy of data returned by their services, and (ii)
to execute a composition without revealing extra
information to any of the involved services about
the data that each other holds.

5.1 Privacy-preserving Service Execution
Model

Data returned by a data service may be subject to
different security and privacy concerns. For exam-
ple, different people may have different access rights
over the same data item; data subjects6 may have
different preferences about the disclosure of their
data, etc. A common approach in the database
field to handle such concerns is to push them to
the underlying DBMS by rewriting the query to
include these constraints [20]. However, this may
not be applicable to data services as the same ser-
vice may access a multitude of heterogeneous data
sources that may not be necessarily managed by
a DBMS (e.g., XML files, flat files, silos of legacy
applications, etc.). An alternative approach is to
enforce privacy and security policies at the applica-
tion level [6], by modifying, in our case, the source
code of data services. However, this may not al-
ways be applicable nor advisable as most of cur-
rent data service creation platforms (e.g., AquaLogic
[14]) provide data services as black boxes that can-
not be modified; i.e., their internal data integration
procedures and logics are not accessible. Even if
the code was modifiable, this solution often leads

6We use the term data subject to mean the individual
whose private information is manipulated by data ser-
vices.

Si’s RDF View

Rewriting

Service-based

View Rewriting

Composition

Security & Privacy

Enforcement

Si’s RDF View
extended with
S&P constraints

Si’s privacy-preserving execution

S
i’

s
co

n
v
en

ti
o
n
al

ex
ec

u
ti

o
n

ResultsSSi

Service
Registry

Security & Privacy
policies

Si invocation

 request

Privacy-sanitized

response

Figure 3: A Privacy-preserving Service Exe-
cution Process

to privacy leaks [20], as the dropped programming
code may contain flaws; i.e., its correctness is hard
to be proven (especially for complex queries), com-
pared to declarative rewritten queries in the first
approach.

We proposed a secure, privacy-preserving execu-
tion model for data services allowing service providers
to enforce their privacy and security policies with-
out changing the implementation of their data ser-
vices (i.e., data services are considered as black boxes).
Our model takes its inspiration from the database
approach to “declaratively” handle the security and
privacy concerns. It involves the following steps (re-
fer to Figure 3):
Step 1: View rewriting to integrate the security
and privacy constraints. When a data service is in-
voked, our model rewrites its corresponding RDF
view to take into account applicable security and
privacy rules from the service’s associated policies,
which are expressed using the OrBAC and PrivOr-
BAC models [3, 5] over domain ontologies and take
into account the data recipient (i.e., the service con-
sumer), his purpose for requesting the data, and
the consents of data subjects. Security and pri-
vacy rules may contain conditions to specify fine-
grained access control constraints (e.g., constraints
on working hours, time, locations, etc.), or to query
the data subjects’ consents. These conditions have
the form of SPARQL expressions over domain on-
tologies, which eases their integration to the view.
The soundness and the correctness features of our
rewriting algorithm are demonstrated in our work
[21, 8].
Step 2: Rewriting the extended view in terms of
data services. The extended RDF view vextended
may include additional data items (denoted by ∆v =
vextended−voriginal) required to enforce security and
privacy constraints. These data items may not be
necessary covered by the initial service. In this step,
we find the data services covering ∆v to prepare for
the enforcement of privacy and security conditions

(in a later step), and rewrites vextended in terms
of these services along with the initial service. Our
rewriting algorithm is detailed and evaluated in [10].
Step 3: Enforcing security and privacy constraints.
The services selected in the previous step are or-
chestrated into a composition plan and executed us-
ing the conventional service execution process. The
composition returns (i) the data items returned by
the invoked service along with (ii) the data items
necessary to evaluate the security and privacy con-
straints. We defined a privacy filter that evaluates
the privacy constraints of the different items that
are subject to privacy constraints in the view. Null
values will be returned for items whose privacy con-
straints evaluate to False.

We demonstrated the validity of our model by ex-
tending the architecture of the famous service con-
tainer AXIS7 2.0 with a new module implementing
our privacy-preserving service execution model.

5.2 Privacy-preserving Composition Exe-
cution Model

Executing compositions may disclose confidential
information to component services. Assume, for ex-
ample, a composition of two services: S1 returns
HIV patients in a given city, and S2 checks whether
a given patient has been treated for psychiatric dis-
orders (S1 and S2 are provided by different health-
care providers). Such composition could be needed
(by a pharmaceutical researcher) to investigate the
connection between a chemical component present
in HIV medicines and the development of severe
psychiatric disorders at HIV patients. Assume also
Bob is a common patient for both S1 and S2. If S2

is invoked with Bob’s identifier, and the provider
of S2 has an access to the composition plan (i.e.,
he knows that Bob was outputted by S1), then he
will infer that Bob is an HIV patient. On the other
hand, if the data returned by S1 were completely
privacy-sanitized (e.g., by removing identifiers and
sensitive information), then the composition could
not be executed.

We proposed a privacy-preserving composition ex-
ecution model [7] implementing the following inter-
esting property (which we called the k-protection
property): the knowledge leaked to any data ser-
vice Sj about the data held by another service Si in
the composition (denoted by <Sj (Si)) must be lower
than or equal to 1/ki, where ki is defined by Si.

Our model assumes a honest-but-curious environ-
ment [17] and distinguishes between the following
entities: (i) the services involved in the composi-
tion, (ii) the execution engine, and (iii) the recipi-

7http://axis.apache.org/axis2/java/core/

ent of the final results. It relies on two key ideas:
First, data services use the same order-preserving
encryption scheme OPES [4] to encrypt the iden-
tifier attributes that are needed to connect the in-
formation of the same data subject across the dif-
ferent services. They are still free to protect non-
identifier attributes with their own techniques (e.g.,
anonymization, suppression, etc.). This way the ex-
ecution engine has only access to protected data and
can still link data subjects across the different ser-
vices using the encrypted identifier attributes (note
that OPES allows for applying equality queries on
encrypted data). It cannot decrypt the encrypted
identifier attribute values, as it does not have the
encryption key, which is held only by services. By
the end of the composition execution, it removes
from the final results the encrypted identifier at-
tributes before returning them to the recipient, who
will thus get only privacy-sanitized data.
Second, we proposed a value k-generalization algo-
rithm implementing the K-protection property. Our
algorithm allows the execution engine to generalize
the encrypted value ve received from a service Si

before proceeding with the invocation of the subse-
quent service Sj in the composition, such that the
generalized value Gen(ve) corresponds to k input
encrypted values for which Sj has outputs; e.g., the
identifier of Bob is generalized to cover k -1 other pa-
tients for which S2 has an output (i.e., S2 will not
be able to distinguish between Bob and k -1 other
patients).

6. IMPLEMENTATION AND
EVALUATION

We evaluated our different techniques and algo-
rithms in the healthcare and bioinformatics appli-
cation domains. Both of these domains have widely
embraced Web standards, such as XML and Web
services [15, 12], and both are characterized by the
need for a flexible and privacy-preserving data inte-
gration approach. In the healthcare domain, health
actors (e.g., physicians, healthcare planers, medical
researchers, etc.) need daily to combine data from
autonomous health facilities and organizations (e.g.,
hospitals, labs, health authorities, etc.) for differ-
ent purposes, such as providing better treatments
for patients, preventing disease outbreaks, etc. In
Bioinformatics, scientists conduct the so-called in
silico experiments by combining biomedical data
Web services [12].

To evaluate our techniques in the healthcare do-
main, the cardiology hospital of Lyon provided us
with access to two medical databases. The iden-
tities of patients in these databases were changed.

We also generated synthetic medical data about the
same patients. We implemented about /400/ data
Web services on top of our real and synthetic data.
Services were all deployed on an extended version of
AXIS 2.0 implementing our service execution model
presented in Section 5.1. We built a medical on-
tology based on the building blocks and the data
types defined in the HL7 standard, and used it for
the annotation of service description files. To evalu-
ate our techniques in the bioinformatics domain, we
used a set of /300/ services from the BioCatalogue
registry8.

Figure 4 shows the query interface to PAIRSE.
Users are assisted in formulating their SPARQL queries
over domain ontologies. The figure shows also the
composition plan of a selected composition, along
with the obtained results.

We conducted exhaustive experiments to evalu-
ate the performance of our integration system in
the different settings. We summarize below the ob-
tained results9:

Composition construction : Our experiments in
[10] showed that our query rewriting based compo-
sition algorithm can handle hundreds of data Web
services in a reasonable time. For example, for chain
queries [25] and RPVs with a length of 3 or 4 ob-
ject properties the algorithm was able to handle up
to 400 services in less than 4 seconds; and for star
queries [25] the algorithm was able to handle up to
400 services in less than one second. In the con-
text of parameterized queries, our experiments in
[9] showed that our algorithm to find the minimum
set of services introduced only a small cost at the
composition construction time (i.e., in all experi-
ments the algorithm required less than 10% of the
time needed to rewrite the query), and improved
substantially the composition execution time (i.e.,
in all experiments the composition execution time
was reduced to less than 0.75% of the time needed
without optimization), as it removes redundant ser-
vices. In the context of preferences queries, our ex-
periments in [11] considered that services can be
grouped in service classes. The experiments showed
that the top-k compositions can be computed effi-
ciently. For instance, for services classes containing
about 400 services, the top-k compositions are com-
puted in less than 4 seconds.

8http://www.biocatalogue.org/
9As our experiments were conducted on different ma-
chines, please refer to the corresponding paper of each
cited set of experiments for detailed information about
the considered hardware and software settings.

a

b

c

Figure 4: (a) Query interface; (b) The selected composition; (c) Obtained results

Privacy preserving service execution : The con-
ducted experiments in [8] showed that security and
privacy handling adds only a small increase (of an
order of magnitude less than 10%) in the service
invocation time. This could be due to the follow-
ing reasons: (i) the time needed to inject the se-
curity and privacy constraints in the service’s RDF
view is almost negligible, (ii) rewriting the vextended
in terms of services is not expensive, as most of
vextended’s graph is already covered by voriginal and
the size of (∆v) does not exceed generally 20% of
the size of voriginal, and finally (iii) there is no net-
work overhead incurred in invoking the additional
services as they are already deployed on the server.
They showed also that the cost incurred in secu-
rity and privacy constraints enforcement is still rel-
atively low if compared to the time required for ex-
ecuting the services without addressing the security
and privacy concerns.

Privacy preserving composition execution : The
conducted experiments for the evaluation of our com-
position execution model [7] showed that the time
required to execute the composition with privacy
preservation is at most three orders of magnitude of
the time required without privacy preservation (Ki

was set to 4 in all tests). We cut down further that
cost to two orders of magnitude by reusing the se-
lectivities and ranges computed in past invocations
of the same services (and during the same compo-
sition execution).

7. CONCLUSION

The main objective of the PAIRSE project was
to develop new methods and techniques for flexi-
ble and privacy-preserving data integration. This
project has led to significant advances in the field.
The results were published in international journals
and conferences. Original and efficient tools have
been developed and experimented in the health-
care application domain. Finally, the project has
enabled the development of collaborations between
partners.

8. ACKNOWLEDGMENTS
This research work is funded by the French Na-

tional Research Agency under the grant number
ANR-09-SEGI-008

9. ADDITIONAL AUTHORS
Francois Paulus (Semsoft Company,

francois.paulus@semsoft-corp.com),
Stephane Morucci (Swid Company,
stephane.morucci@swid.fr),
Michael Mrissa (Lyon 1 University,
michael.mrissa@univ-lyon1.fr),
Nora Cuppens (Telecom-Bretagne,
nora.cuppens@telecombretagne.eu),
Chirine Ghedira (IAE Lyon - Ecole universitaire de
management,
chirine.ghedira-guegan@univ-lyon3.fr),
Riad Mokadem (IRIT, Paul Sabatier University,
Riad.Mokadem@irit.fr),
Said Oulmakhzoune (Telecom-Bretagne,
said.oulmakhzoune@swid.fr) and Jocelyne FAYN
(Universit Lyon 1, INSA-Lyon,

Jocelyne.Fayn@insa-lyon.fr).

10. REFERENCES
[1] E.u. directive on data protection, official

journal of the european communities, 23
november 1995.

[2] Health insurance portability and
accountability act of 1996, united states
public law 104-191.

[3] A. Abou El Kalam, R. El Baida, P. Balbiani,
S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miège, C. Saurel, and G. Trouessin.
Organization based access control. In 4th
IEEE POLICY, Italy, June 2003.

[4] R. Agrawal, J. Kiernan, R. Srikant, and
Y. Xu. Order-preserving encryption for
numeric data. In SIGMOD Conference, pages
563–574, 2004.

[5] N. Ajam, N. Cuppens-Boulahia, and
F. Cuppens. Contextual privacy management
in extended role based access control model.
In DPM/SETOP, pages 21–35, 2009.

[6] P. Ashley and D. Moore. Enforcing privacy
within an enterprise using ibm tivoli privacy
manager for e-business. In VLDB, pages
108–119, 2003.

[7] M. Barhamgi, D. Benslimane, Y. Amghar,
N. Cuppens-Boulahia, and F. Cuppens.
Privcomp: A privacy-aware data service
composition system. In EDBT, 2013 (To
appear - Demo paper).

[8] M. Barhamgi, D. Benslimane, C. Ghedira,
S.-E. Tbahriti, and M. Mrissa. A framework
for building privacy-conscious daas service
mashups. In IEEE ICWS, pages 23–30, 2011.

[9] M. Barhamgi, D. Benslimane, C. Ghedira,
S.-E. Tbahriti, and M. Mrissa. Optimizing
daas web service based data mashups. In
IEEE SCC, pages 464–471, 2011.

[10] M. Barhamgi, D. Benslimane, and
B. Medjahed. A query rewriting approach for
web service composition. IEEE Transactions
on Services Computing, 3(3):206–222, 2010.

[11] K. Benouaret, D. Benslimane, A. HadjAli,
and M. Barhamgi. Fudocs: A web service
composition system based on fuzzy dominance
for preference query answering. PVLDB,
4(12):1430–1433, 2011.

[12] J. Bhagat, F. Tanoh, E. Nzuobontane,
T. Laurent, J. Orlowski, and M. Roos.
Biocatalogue: a universal catalogue of web
services for the life sciences. Nucleic Acids
Research, 38(5):689–694, 2010.

[13] M. J. Carey, N. Onose, and M. Petropoulos.

Data services. Commun. ACM, 55(6):86–97,
2012.

[14] M. J. Carey, P. Reveliotis, and S. Thatte.
Data service modeling in the aqualogic data
services platform. In SERVICES I, pages
78–80, 2008.

[15] A. Dogac. Interoperability in ehealth systems
(invited tutorial). PVLDB, 5(12):2026–2027,
2012.

[16] S. Dustdar, R. Pichler, V. Savenkov, and
H. L. Truong. Quality-aware service-oriented
data integration: requirements, state of the
art and open challenges. SIGMOD Record,
41(1):11–19, 2012.

[17] F. Emekçi, D. Agrawal, A. E. Abbadi, and
A. Gulbeden. Privacy preserving query
processing using third parties. In ICDE,
page 27, 2006.

[18] A. Y. Halevy. Answering queries using views:
A survey. VLDB J., 10(4):270–294, 2001.

[19] I. Ketata, R. Mokadem, and F. Morvan.
Resource discovery considering semantic
properties in data grid environments. In
Globe, pages 61–72, 2011.

[20] K. LeFevre, R. Agrawal, V. Ercegovac,
R. Ramakrishnan, and Y. Xu. Limiting
disclosure in hippocratic databases. In VLDB,
pages 08–19, 2004.

[21] S. Oulmakhzoune, N. Cuppens-Boulahia,
F. Cuppens, and S. Morucci. fQuery:
SPARQL Query Rewriting to Enforce Data
Confidentiality. Proc. of the 24th IFIP
WG11.3 Working Conference on Data and
Applications Security and Privacy. Rome,
Italy, 21-23 June 2010.

[22] R. Pottinger and A. Y. Halevy. Minicon: A
scalable algorithm for answering queries using
views. VLDB J., 10(2-3):182–198, 2001.

[23] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and
P. Roy. Extending query rewriting techniques
for fine-grained access control. In SIGMOD
Conference, pages 551–562, 2004.

[24] D. Srivastava. Subsumption and indexing in
constraint query languages with linear
arithmetic constraints. Ann. Math. Artif.
Intell., 8(3-4):315–343, 1993.

[25] M. Steinbrunn, G. Moerkotte, and
A. Kemper. Heuristic and randomized
optimization for the join ordering problem.
VLDB J., 6(3):191–208, 1997.

[26] C. Yu and L. Popa. Constraint-based xml
query rewriting for data integration. In
SIGMOD Conference, pages 371–382, 2004.

