
Secure and Privacy-preserving Execution Model
for Data Services

Mahmoud Barhamgi1, Djamal Benslimane1, Said Oulmakhzoune2, Nora
Cuppens-Boulahia2, Frederic Cuppens2, Michael Mrissa1, and Hajer Taktak1

1 LIRIS Laboratory, Claude Bernard Lyon1 University
69622 Villeurbanne, France

{fisrtname.lastname}@liris.cnrs.fr
2 IT/Telecom-Bretagne, 2 Rue de la Chataigneraie, 35576 Cesson Sevigne - France
{said.oulmakhzoune,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

Abstract. Data services have almost become a standard way for data
publishing and sharing on top of the Web. In this paper, we present
a secure and privacy-preserving execution model for data services. Our
model controls the information returned during service execution based
on the identity of the data consumer and the purpose of the invocation.
We implemented and evaluated the proposed model in the healthcare
application domain. The obtained results are promising.

Keywords: Data Services, Privacy Preservation, RDF Views

1 Introduction

Recently, Web services have started to be a popular medium for data publishing
and sharing on the Web. Modern enterprises are moving towards service-oriented
architectures for data sharing on the Web by developing Web service frontends
on top of their databases, thereby providing a well-documented, interoperable
method for interacting with their data [9, 8, 13, 19]. We refer to this class of
services as data services in the rest of the paper. Data services are software com-
ponents that encapsulate a wide range of data-centric operations over “business
objects” in underlying data sources. They abstract data consumers from the de-
tails of where data pieces are located and how they should be accessed and allow
data providers to restrain the way their business objects are manipulated and en-
force their own business rules and logic. The growing importance of data services
in the movement toward a hosted-services world is evidenced by the number of
contexts within which they have been utilized in recent years: data publishing [9,
14], data exchange and integration [11], service-oriented architectures (SOA) [8],
data as a service (DaaS) [19], and recently, cloud computing [5].

Most of the time data services are used to access privacy-sensitive informa-
tion. For example, in the healthcare domain, data services are widely used to
access and manipulate the electronic healthcare records [11]. Given the sensitive
nature of the accessed information and the social and legal implications for its

2 Barhamgi et al.

disclosure [1], security and privacy are considered among the key challenging
issues that still impede the widespread adoption of data services [4].

A considerable body of recent research works have been devoted to security
and privacy in the area of Web services [10, 12, 20, 18]. Their focus was on pro-
viding mechanisms for ensuring that services act only on the authorized requests
and for ensuring SOAP message confidentiality and integrity. However, this is
not sufficient as control over who can invoke which service is just one aspect
of the security and the privacy problem for data services. A fine-grained con-
trol over the information disclosed by data service calls is required, where the
same service call, depending on the call issuer and the purpose of the invocation,
can return more or less information to the caller. Portions of the information
returned by a data service call can be encrypted, substituted, or altogether re-
moved from the call’s results. We explain the privacy and the security challenges
for data services based on a concrete example.

1.1 Motivating Scenario

Let us consider a healthcare scenario in which a nurse Alice needs to consult
the personal information (e.g., name, date of birth, etc.) of patients admitted
into her healthcare organization NetCare for some medical purposes (e.g., to
ensure that patients receive the right medical dosages corresponding to their
ages, etc.). The NetCare organization involves many specialized departments
(cardiology, nephrology, etc.) and laboratories, and follows a data service based
approach [9, 11, 13] to overcome the heterogeneity of its data sources at their
various locations; i.e. data services are created on top of heterogeneous data
sources to mask their heterogeneity for data consumers. We assume that Alice
works in the cardiology department, and that she issued the following query: “Q:
return the names and dates of birth DoB for all patients”. We also assume that
she has the following service at her disposal: S1($center, ?name, ?dob), where
input parameters are preceded by “$” and output parameters by “?”.

Obviously, the query Q can be resolved by simply invoking S1 with the value
center = NetCare. However, executing the service S1 involves handling security
and privacy concerns that could be associated with the service’s accessed data.
For example, nurses may be only allowed to access the information of patients
from their own departments (e.g., nurses working at the cardiology department
are not allowed to access the information about patients at the nephrology de-
partment); physicians may be only allowed to access the information of their own
patients, etc. These are security concerns that are typically defined in security
policies. Furthermore, the patients should also be allowed to control who can
access their data, for what purposes and under what conditions. For example,
two patients Bob and Sue whose data are accessed by S1 may have different
preferences regarding the disclosure of their ages to a nurse for medical treat-
ment purposes. These are privacy concerns that relate to individuals and their
requirements about their data. They are typically defined in privacy policies.

Secure and Privacy-preserving Execution Model for Data Services 3

1.2 Challenges

Based on our scenario, we identify the following two challenges which are ad-
dressed in the paper. The first challenge is how to enable the service providers
(e.g., NetCare) to handle the cited security and privacy constraints. A common
approach in the database field to handle such constraints is to push them to
the underlying DBMS by rewriting the query to include these constraints [16].
However, this may not be applicable to data services as the same service may
access a multitude of heterogeneous data sources that may not necessarily have
a DBMS (e.g., XML files, flat files, silos of legacy applications, external Web ser-
vices, etc.). An alternative approach is to enforce privacy and security policies
at the application level [7], by modifying, in our case, the source code of data
services. However, this also may not always be applicable nor advisable as most
of current data service creation platforms (e.g., AquaLogic [8]) provide data ser-
vices as black boxes that cannot be modified; i.e., their internal data integration
procedures and logics are not accessible. Even if the code was modifiable, this
solution often leads to privacy leaks [16], as the dropped programming code may
contain flaws; i.e., its correctness is hard to be proven (especially for complex
queries), compared to declarative rewritten queries in the first approach. The
second challenge is how to specify and model the security and privacy concerns
associated with data services. There is a need for a model that provides explicit
description of these concerns to ensure the correct execution of services (e.g.,
to make sure that services are executed by entitled bodies, etc.) and the proper
usage of their returned data (e.g., if data were modified for some privacy con-
cerns, the type of applied modifications needs to be declared so that users can
interpret data correctly).

1.3 Contributions

In this paper, we propose a secure, privacy-preserving execution model for data
services allowing service providers to enforce their privacy and security policies
without changing the implementation of their data services (i.e., data services
are considered as black boxes). Our model is inspired by the database approach
to enforce privacy and security policies. It relies on a declarative modeling of data
services using RDF Views. When a data service is invoked, our model modifies
the RDF view of the corresponding service to take into account pertaining secu-
rity and privacy constraints. Our model uses the mature query rewriting tech-
niques to rewrite the modified view in terms of calls to data services (including
the initial one). Services are then executed, and the constraints are enforced on
the returned results. Our contributions are summarized as follows:

• We propose a semantic modeling for data services, privacy and security poli-
cies. The modeling is based on RDF views and domain ontologies.

• We propose a secure and privacy-preserving execution model for data ser-
vices. Our model exploits the mature works in the areas of query rewriting

4 Barhamgi et al.

and modification, and defines new filtering semantics to protect the service’s
accessed data.

• We integrated our model in the architecture of the widely used Web services
container AXIS 2.0, and carried out a thorough experimental evaluation.

The rest of the paper is organized as follows. In Section 2, we present our
secure and privacy-preserving execution model for data services. We present
also our modeling to data services, security and privacy policies. We evaluate
our model in Section 3, survey related works in Section 4 and then conclude the
paper in Section 5.

2 A Secure and Privacy-Preserving Execution Model for
Data Services

In this section, we describe the proposed model for data service execution.

2.1 Model Overview

Our model is inspired by the database approach to “declaratively” handle the
security and privacy concerns. Specifically, our model relies on modeling data
services as RDF Parameterized Views over domain ontologies to explicitly define
their semantics. An RDF view captures the semantics of the service’s inputs and
outputs (and their inter-relationships) using concepts and relations whose se-
mantics are formally defined in domain ontologies. Views can be integrated into
the service description files (e.g., WSDL) as annotations. Our model, as Figure 1
shows, enforces the privacy and the security constraints associated with data
services “declaratively” as follows. Upon the reception of a service invocation re-
quest for a given service (e.g., Si), it extracts the RDF view of the corresponding
service from the service description file and the contextual information (e.g., the
recipient of requested data, the purpose, the time and location, etc.) from the
invocation request. Then, the RDF view is rewritten to include the security and
privacy constraints that pertain to the data items referred in the view. These
constraints are defined in the security and privacy policies and have the form
of SPARQL expressions (which simplifies their inclusion in the RDF view). The
generated extended view may include now additional data items necessary for
the evaluation of the constraints (e.g., the consent of patients, the departments
of nurses, etc.) that are not covered by the initial service. Therefore, the ex-
tended view is rewritten in terms of calls to (i) the initial service Si and (ii) the
services covering the newly added data items. Finally, the obtained composition
(i.e., the rewriting) is executed, and the constraints are evaluated and enforced
on the obtained results. The obtained results now respect the different security
and privacy concerns, and can be returned safely to the service consumer. We
explain and illustrate these steps in details in subsequent sections.

Secure and Privacy-preserving Execution Model for Data Services 5

RDF View & Contextual

information Extraction

RDF View

Rewriting

Service-based

View Rewriting

Privacy and Security

Enforcement
S

Composition

Si

Security & Privacy

Policies WSDL-S

(Si)
WSDL-S

(Si)
WSDL-S

(Si)

Refers to

Service

Consumer

Si invocation

request

Privacy-sanitized

response

S

Si

S

S

S
i’

s
C

o
n
ve

n
ti

o
n
a
l

In
vo

ca
ti

o
n

Service

Registry

Si’s RDF View,

<Recipient, purpose>

The Invocation Process of Si at the service provider side

RDF View with

S&P constraints

Service description

file WSDL

Fig. 1. Overview of the Privacy and Security aware Execution Model

2.2 Semantic models for data services and policies

Semantic model for data services: The semantics of data services should be
explicitly defined to allow service consumers to correctly interpret and use the
services’ returned data. In this work, we model data services as RDF Parameter-
ized Views (RPV s) over domain ontologies Ω. RPVs use concepts and relations
from Ω to capture the semantic relationships between input and output sets of
a data service.

Formally, a data service Si is described over a domain ontology Ω as a pred-
icate: Si($Xi, ?Yi) : − < RPVi(Xi, Yi, Zi), Ci >, where:

• Xi and Yi are the sets of input and output variables of Si, respectively.
Input and output variables are also called as distinguished variables. They
are prefixed with the symbols “$”and “?” respectively.

• RPVi(Xi, Yi, Zi) represents the semantic relationship between input and
output variables. Zi is the set of existential variables relating Xi and Yi.
RPVi(Xi, Yi, Zi) has the form of RDF triples where each triple is of the
form (subject.property.object).

• Ci is a set of data value constraints expressed over the Xi, Yi or Zi variables.

Figure 2 (Parts a and b) shows respectively the RDF view of S1 and its
graphical representation. The blue ovals (e.g., Patient, Center) are ontologi-
cal concepts (ontological concepts and relations are prefixed by the ontology
namespace “o:”).

RDF views have the advantage of making the implicit assumptions made
about the service’s provided data explicit. These assumptions may be disclosed
implicitly to service consumers. For example, the names and DoBs returned by
S1 are for patients “who have diabetes”; i.e., the service consumer will know
-implicitly- in addition to the received names that these patients have diabetes.
Modeling and explicitly describing this implicit knowledge is the first step to han-
dle this unwanted implicit information disclosure. Note that RDF views can be
integrated to the service description files as annotations (e.g., using the WSDL-S

6 Barhamgi et al.

(a) (b)

o:Patient

P

rdf:type

o:
ha

sD
is

ea
se o:hasN

am
e

?y

?z

o:hasDoB

C

o:admittedIn

rdf:type

$x

o:
na

m
e

o:Center

"Diabetes"

PREFIX o:<http://hospital.fr/>

S1($x,?y,?z):-

?C rdf:type o:Center

?C o:name ?x

?P rdf:type o:Patient

?P o:admittedIn ?C

?P o:hasName ?y

?P o:hasDoB ?z

?P o:hasDisease “Diabetes”

Fig. 2. Part-A: the RDF View of S1; Part-B: its graphical representation

approach (www.w3.org/Submission/WSDL-S/).

Security and privacy policies: In this work, we suppose the accessed data
are modeled using domain ontologies. We express therefore the security and
privacy policies over these ontologies. We adopt the OrBAC [3] and its extension
PrivOrBAC [6] to express the security and the privacy policies respectively. In
the Organization-Based Access Control model (OrBAC), privileges are expressed
in terms of permissions. A permission is a predicate Permission(org, r, a, d, c);
it is read as follows: the organization org grants permission to the role r to realize
the activity a on the data item d and in the context c. In this work, org and r refer
to ontological concepts in the ontology, d refers to the properties defined in the
ontology. The context c is used to specify fine-grained access control constraints
(e.g., constraints on the working hours, emergency, etc.).

The security rules corresponding to the motivating example, i.e. nurses may
be only allowed to access the information of patients admitted in the same de-
partment, can be expressed in the OrBAC model as follows:

SecRule-1= Permission(NetCare, Nurse, Read, o:hasName, SameDepartment)

SecRule-2= Permission(NetCare, Nurse, Read, o:hasDoB, SameDepartment)

SecRule-3= Permission(NetCare, Nurse, Read, o:hasDisease, SameDepartment),

where the “SameDepartment” context is defined against domain ontologies as a
SPARQL expression. It can be expressed in the Datalog notation as follows
(“o:” denotes the ontology’s namespace):

SameDepartment:- o:Patient(P), o:hasName(P,name), o:treatedIn(P,D),

o:Department(D), o:employedIn(recipient,D),

o:composedOf(NetCare,D)

The PrivOrBAC model [6] extends the OrBAC model with the privacy re-
quirements specified by much of current privacy legislations [1, 2]. These require-
ments are consent, data accuracy, provisional obligations and purposes. Con-
sent is the user agreement for accessing and/or processing his/her data. It is

Secure and Privacy-preserving Execution Model for Data Services 7

rdf:type

Prp:Preferences

p:hasPurpose

p:hasRecipient

T

p
:h

as
T

ar
g
et

p:hasDecision

p:propertyName

rdf:type

p:Target

o:PatientP

rdf:type
“Medical

Treatment”

“Nurse”

“o:hasName”

“Yes”

p:hasPreferences

Consent:- o:Patient(P),

 p:hasPreferences(P,Pr),

 p:Preferences(Pr),

 p:hasPurpose(Pr,"Medical_Treatement"),

 p:hasRecipient(Pr, “Nurse”)

 p:hasTarget(P,T),

 p:Target(T),

 p:hasTargetName(T, "o:hasName")

 p:hasDecision(T, "Yes")

Fig. 3. The SPARQL and the graphical representations of the patient’s consent

required before delivering personal data to third parties. Accuracy is the level
of anonymity and/or level of accuracy of disclosed data. Provisional obligations
refer to the actions to be taken by the requestors after the access. Purpose is the
goal that motivates the access request. The proposed model in this paper consid-
ers only the consent and the purpose requirements. Expressions in PrivOrBAC
have the form Permission(org, r, p, a, d, c), where p denotes the purpose, the
context c is used to represent the consent; org, r, a and d have the same seman-
tics as above. As the consents of data owners can be regarded as any other data
items in underlying data sources, we model them in the underlying ontology and
include them in the context part of the PrivOrBAC’s permissions.

The privacy rules of our example are as follows:

PrivRule-1= Permission(NetCare,Nurse,Medical_Treatment,Read,o:hasName,Consent),
PrivRule-2= Permission(NetCare,Nurse,Medical_Treatment,Read,o:hasDoB,Consent),
PrivRule-3= Permission(NetCare,Nurse,Medical_Treatment,Read,o:hasDisease,Consent)

where the “Consent” context is defined against domain ontologies. Figure 3
shows the Consent expressed as a SPARQL expression as well as its graphical
representation (we factored out the concepts and properties that are needed to
model the consent in a specialized ontology denoted by the prefix “p:”).

2.3 RDF views rewriting to integrate security and privacy
constraints

In this step, the proposed model extends the RDF view of the queried service
with the applicable security and privacy rules (from the policies) as follows.

Our model extracts the RDF view of the invoked service from the service
description file, and consults the associated security and privacy policies to de-
termine the applicable rules for the given couple of (recipient, purpose). With
respect to security policies, our model applies the access rules associated with
each of the data items declared in the view to remove unauthorized data items.
In some cases, the access to a given data item is granted only under certain con-
ditions. For example, the security rules in our example restrict the access to the
patient’s personal information to the nurses working in the department where

8 Barhamgi et al.

o:Patient

P

rdf:type

o:
ha

sD
is

ea
se o

:h
asN

am
e

?y

?z

o:hasD
oB

C

o:admittedIn

rdf:type

$x

o
:n

am
e

(a)

rdf:type

P1p:Preferences

p:hasPurpose

p:hasRecipient

T1

p:hasTarget

p:hasDecision

p:propertyName

"HealthCare"

"Nurse"

"hasName"

?w

rdf:type

P2p:Preferences

p:hasPurpose

p:hasRecipient

T2

p:hasTarget

p:hasDecision

p:propertyName

"HealthCare"

"Nurse"

"hasDoB"

?q

rdf:type

P3p:Preferences

p:hasPurpose

p:hasRecipient

T3

p:hasTarget

p:hasDecision

p:propertyName

"HealthCare"

"Nurse"

"dName"

?u

rdf:type

P4p:Preferences

p:hasPurpose

p:hasRecipient

T4

p:hasTarget

p:hasDecision

p:propertyName

"HealthCare"

"Nurse"

"hasDisease"

?r

p:
ha

sP
re

fe
re

nc
es

(c)

o:Center

rdf:type
p:Target

rdf:type

p:Target

rdf:type

p:Target

rdf:type

p:Target

Const1 =

"Diabetes"

D

o:Department
rdf:type o:dName

Const2 = "cardiology"

o:composedOf o:treatedIn

o:Patient
P

rdf:type

o:
ha

sD
is

ea
se o

:h
asN

am
e

?y

?z

o:hasD
oB

C
o:admittedInrdf:type

$x

o
:n

am
e

o:Center

Const1 =

"Diabetes"

D

o:Department
rdf:type o:dName

Const2 = "cardiology"

o:composedOf o:treatedIn

o:Patient
P

rdf:type

o:
ha

sD
is

ea
se

o
:h

asN
am

e

?y

?z

o:hasD
oB

C
o:admittedInrdf:type

$x
o
:n

am
e

o:Center

Const1 =

"Diabetes"

(b)

Fig. 4. (a) The original view of S1; (b) The extended view after applying the security
policy; (c) The extended view after applying the privacy policy

the patients are treated. These conditions (which have concretely the form of
SPARQL expressions) are accommodated in the RDF view. The parts (a) and
(b) of Figure 4 shows respectively the initial and the extended view; the added
RDF triples are marked in red. Similarly, our algorithm rewrites the extended
view to integrate the privacy rules. Returning to our example, the condition
related to the patient’s consent are added to the view. Figure 4 (Part-c) shows
the extended view, where the added RDF triples are marked in blue.

2.4 Rewriting the extended view in terms of data services

The extended RDF view vextended may include additional data items (denoted by
∆v = vextended − voriginal) required to enforce security and privacy constraints.
These data items may not be necessary covered by the initial service. In our
example (Figure 4, Part-c), ∆v includes the RDF triples ensuring that the pa-
tients and the nurse have the same departments, and the RDF triples querying
the patient’s consent relative to the disclosure of his personal and medical data.

Secure and Privacy-preserving Execution Model for Data Services 9

o:Patient

P

rdf:type

o
:h

asN
am

e

$a

C

rdf:type

?c

o
:n

am
e

D

o:Department

rdf:type

o
:d

N
am

e

o:composedOf o:treatedIn

o:Center

?b

rdf:type

Rp:Preferences

p:hasPurpose

p:hasRecipient

T

p
:h

as
T

ar
g

et

p:hasDecision

p:propertyName

?e

rdf:type

p:Target

$d

$c

$b

o:PatientP
rdf:type

o
:h

asN
am

e

$a

(a) (b)Service S2 Service S3

Fig. 5. A graphical representation of the services S2 and S3

In this step, we find the data services covering ∆v to prepare for the enforce-
ment of privacy and security conditions (in a later step), and rewrites vextended in
terms of these services along with the initial service. In this work, we assume the
data items necessary for the evaluation of the security and privacy constraints
(e.g., consent, time, location, etc.) are also provided as data services.

Table 1. The sample services along with the covered parts of the extended view V ′

Service Partial Containment Mapping Covered nodes &
object properties

S1($x, ?y, ?z) V ′.P → S1.P , V ′.D → S1.D, V ′
C → S1.C P(y,z,const1), admittedIn(P,C),

x → x, y → y, z → z, const1 → const1 C(x)
S2($y, ?x, ?b) V ′.P → S2.P , V ′.D → S2.D, V ′

C → S2.C composedOf(C,D),D(const2)
x → c, y → a, const2 → b treatedIn(P,D), C(x), P(y)

S3($y, $b, $c, $d, ?w) V ′.P → S3.Pa, V ′.P1 → S3.P , P (y), hasPreferences(P, P1)
V ′.T1 → S3.T , y → a, b → “HealthCare”, P1(“HealthCare”,“Nurse”),
c → “Nurse”, d → “hasName”, w → e hasTarget(P1, T1),

T1(“hasName”, w)
S3($y, $b, $c, $d, ?q) V ′.P → S3.Pa, V ′.P2 → S3.P , P (y), hasPreferences(P, P2)

V ′.T2 → S3.T , y → a, b → “HealthCare”, P2(“HealthCare”,“Nurse”),
c → “Nurse”, d → “hasDoB”, q → e hasTarget(P2, T2),

T2(“hasDoB”, q)
S3($y, $b, $c, $d, ?u) V ′.P → S3.Pa, V ′.P1 → S3.P , P (y), hasPreferences(P, P3)

V ′.T3 → S3.T , y → a, b → “HealthCare”, P3(“HealthCare”,“Nurse”)
c → “Nurse”, d → “dName”, u → e hasTarget(P3, T1),

T3(“dName”, u)
S3($y, $b, $c, $d, ?r) V ′.P → S3.Pa, V ′.P1 → S3.P , P (y), hasPreferences(P, P4)

V ′.T4 → S3.T , y → a, b → “HealthCare”, P4(“HealthCare”,“Nurse”),
c → “Nurse”, d → “hasDisease”, r → e hasTarget(P4, T4),

T4(“hasDisease”, r)

Our rewriting algorithm that implements this step has two phases:
Phase 1: Finding the relevant services: In this phase, the algorithm com-
pares vextended to the RDF views of available services and determines the parts
of vextended that are covered by these views. We illustrate this phase based on
our example. We assume the existence of a service S2 returning the centers
and the departments where a given patient is treated, and a service S3 re-
turning the privacy preference of a given patient regarding the disclosure of
a given property (e.g., name, DoB, etc.) relative to a given couple of recipient
and purpose. The RDF views of these services are shown in Figure 5. Table 1
shows our sample services and the parts they cover of vextended. The service

10 Barhamgi et al.

S1

Begin

Composition Execution Plan

S2

S3

(x, y, z, di)
S3

S3

S3

Join Filter

(x, y, z, di, dep)

(x, y, z, di, w)

(x, y, z, di, u)

(x, y, z, di, q)

(x, y, z, di, r)

(x, y, z, di, dep,

w, u, q, r)
Select Select

(x, y, z, di, dep,

w, u, q, r)
Project

End
(y, z)

dep="Cardiology" di="Diabetes"

Fig. 6. The Obtained Composition

S2 covers the properties composedOf(C,P) and treatedIn(P,D) and the node
D(const2 = “cardiology”), and covers from the nodes P and C the functional
properties (i.e., identifiers properties) hasName and dName that could be used
to make the connection with the other parts of vextended that are not covered
by S2. The service S3 covers the identical sub graphs involving a node of a
Preferences type (e.g., P1, P2, P3, P4), a node of Target type (e.g., T1, T2,
T3, T4) and the object properties hasPreferences and hasTarget, hence its
insertions in the third, fourth, fifth and sixth rows of the Table 1.

Phase 2: Combining the relevant services: In the second phase, the algo-
rithm combines the different lines from the generated table (in the first phase)
to cover vextended entirely. In our example we need to combine all of Table-1’s
lines to cover vextended. vextended is written in the Datalog notation as follows

Vextended($x,?y,?z,?w,?q,?u,?r):- S1($x,?y,?z)$ ∧ const1="Diabetes"

∧ S2($y,?x,const2)∧ const2="cardiology"

∧ S3($y,"HealthCare","Nurse","hasName",?w)

∧ S3($y,"HealthCare","Nurse","hasDoB",?q)

∧ S3($y,"HealthCare","Nurse","dName",?u)

∧ S3($y,"HealthCare","Nurse","hasDisease",?r)

2.5 Enforcing security and privacy constraints

The services selected in the previous step are orchestrated into a composition
plan to be executed. The composition plan defines the execution order of services
and includes filters to enforce privacy and security conditions. Figure 6 shows
the execution plan of the running example. The service S1 is first invoked with
the name of the healthcare center (x= “NetCARE”); the patient names obtained
(denoted by the variable y) are then used to invoke the service S3 which returns
the patients’ preferences relative to the disclosure of their properties (name,
DoB, department, and disease). In parallel, the service S2 is invoked to retrieve
the departments where the patients are treated. The results of these services are
then joined. Figure 7 gives the outputs of the join operator.

Secure and Privacy-preserving Execution Model for Data Services 11

y

Bob

John

z

1940

Null

The output of the Join operator The output of the Filter operator

The output of Select(const2= "cardiology")

The output of Project(y, z)

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t1

t2

y

Bob

x

John

Sue

Andy

Stacy

z

1940

1983

1977

1990

1980

w

Yes

Yes

Yes

Yes

Yes

u

Yes

q

Yes

YesNo

YesYes

NoYes

YesYes

r

Yes

Yes

No

Yes

Yes

cardiology

cardiology

cardiology

cardiology

Surgery

NetCare

NetCare

NetCare

NetCare

NetCare

Diabetes

Diabetes

Diabetes

Diabetes

Diabetes

y

Bob

x

John

Sue

Andy

Stacy

z

1940

Null

1977

1990

1980

w

Yes

Yes

Yes

Yes

Yes

u

Yes

q

Yes

YesNo

YesYes

NoYes

YesYes

r

Yes

Yes

No

Yes

Yes

cardiology

cardiology

cardiology

Null

Surgery

NetCare

NetCare

NetCare

NetCare

NetCare

Diabetes

Diabetes

Null

Diabetes

Diabetes

y

Bob

x

John

Sue

z

1940

Null

1977

w

Yes

const2

Yes

Yes

u

Yes

q

Yes

YesNo

YesYes

r

Yes

Yes

No

cardiology

cardiology

cardiology

NetCare

NetCare

NetCare

Diabetes

Diabetes

Null

const1 const2const1 const2

The output of Select(const1= "Diabetes")

t1

t2

y

Bob

x

John

z

1940

Null

w

Yes

Yes

u

Yes

q

Yes

YesNo

r

Yes

Yes

cardiology

cardiology

NetCare

NetCare

Diabetes

Diabetes

const1 const2const1

Fig. 7. The intermediate and final results

After the join operation has been realized, the obtained results are processed
by a privacy filter that uses the values of the properties that were added to the
initial view to evaluate the privacy constraints of the different properties that
are subject to privacy constraints in the view. Null values will be returned for
properties whose privacy constraints evaluate to False.

Privacy filters are added to the outputs of services returning privacy sensitive
data. The semantics of a privacy filter is defined as follows:

Definition 1. Let t (resp., tp) be a tuple in the output table T (resp., Tp) of
a service S returning privacy sensitive data, let t[i] and tp[i] be the projected
datatype properties that are subject to privacy constraints, and let constraint(t[i])
be a boolean function that evaluates the privacy constraints associated with t[i].
A tuple tp is inserted in Tp as follows:

For each tuple t ∈ T
For i = 1 to n /* n is the number of columns in T */

if const(t[i]) = true Then tp [i] = t[i]
else tp [i] = null

Discard all tuples that are null in all columns in Tp

Continuing with our running example, the added filter computes the values of
y, z, const1 (i.e, department) and const2 (i.e, disease) as follows:

y = y if w = “Yes”, otherwise y = Null

z = z if q = “Yes”, otherwise z = Null

const1 = const1 if u = “Yes”, otherwise const1 = Null

const2 = const2 if r = “Yes”, otherwise const2 = Null

After applying the privacy filter, the composition execution plan applies the
predicates of the extended view (e.g., dep =“cardiology”, and di=“Diabetes”)
on the filter’s outputs. This operation is required for two reasons: (i) to remove
the tuples that the recipient is not allowed to access according to the security
policy, and (ii) to remove the tuples that the recipient has access to, but whose
disclosure would lead to a privacy breach.

12 Barhamgi et al.

Figure 7 shows the output of the Select(dep= “cardiology”) operator. The
tuples t4 and t5 have been removed. t5 has been removed in compliance with
the security policy which requires the patient and recipient to be in the same
department - the patient Stacy is treated in the surgery department, whereas
the recipientAlice works in the cardiology department). t4 was removed despite
the fact that the patient and the recipient are in the same department. Note that
if t4 were disclosed, then the recipient Alice would infer that the patient Andy is
treated in the cardiology department which violates Andy ’s privacy preferences.

The Select(di= “Diabetes”) operator removes the tuple t3 by comparing the
value “Null” with the constant “Diabetes”. Note that if t3 was disclosed, then
the recipient Alice would infer that the patient Sue has Diabetes which violates
Sue’s privacy preferences.

3 Implementation and Evaluation

3.1 Implementation

In order to validate and evaluate our proposal, we exploited the extensibility
support provided by Axis 2, specifically the ability to deploy user modules, to
implement our privacy-preserving service invocation model. As shown in Fig-
ure 8, we extended the AXIS 2.0 architecture with a privacy module consisting
of two handlers: the Input and Output handlers, detailed as follows.
Input Handler : This handler intercepts incoming SOAP messages and uses the
AXIOM API (http://ws.apache.org/axiom/) to extract context information
and the request contents, which are then stored into an XML file. The context
information of the request is extracted from the SOAP header and contains the
recipient identity and the purpose of the invocation. The business service in then
invoked by our Axis2 engine.
Output Handler : The output handler intercepts the output SOAP response
message before it is sent out of the service engine and makes sure that it com-
plies with the applicable privacy and security policies. To do so, the RDF View
Modification component parses the security and privacy policies associated with
the invoked service using the DOM API and extracts the rules that apply to the
accessed data items for the recipient and the purpose at hand. It rewrites the
RDF view to take into account these extracted rules as explained in the previous
sections. Then, the RDF View Rewriting component decomposes the obtained
extended view into a set of calls to data services that retrieve the different data
items requested by the extended view. The obtained composition is then exe-
cuted. As a final step, the Result Filtering component enforces the privacy and
the security constraints on the obtained results. The output SOAP message is
built and the filtered results are sent to the service consumer.

3.2 Evaluation

To evaluate the efficiency of our model, we applied it to the healthcare do-
main. In the context of the PAIRSE Project (http://picoforge.int-evry.fr/cgi-
bin/twiki/view/Pairse/), we were provided with a set of /411/ medical data

Secure and Privacy-preserving Execution Model for Data Services 13

AXIS 2.0

OUT

Handler
IN

Handler

Transport

Sender

AXIS

Internal

Processing

OutFlow

Transport

Listner

InFlow

AXIS

Internal

Processing

Service Consumer

SOAP Message SOAP Message

OUT Handler

OUT Message

Interception

RDF View

Extraction

RDF View

Modification

RDF View

Rewriting

Composition

Execution

Results

Filtering
OUT Message

Construction

WSDL-S

Files Privacy & Security

Policies
Privacy & Security

Policies
Privacy & Security

Policies

Privacy sanitized

output message

Composition

Fig. 8. The extended architecture of AXIS 2.0

services accessing synthetic medical information (e.g., diseases, medical tests,
allergies, etc) of more than /30,000/ patients. The access to these medical data
was conditioned by a set of /47/ privacy and security rules. For each patient, we
have randomly generated data disclosure preferences with regard to /10/ med-
ical actors (e.g., researcher, physician, nurse, etc.) and different purposes (e.g.,
scientific research). These preferences are stored in an independent database and
accessed via /10/ data services, each giving the preferences relative to a partic-
ular type of medical data (e.g., ongoing treatments, allergies, etc.). We deployed
all of these services on our extended AXIS server running on a machine with
2.2GHz of CPU and 8GB of memory.

We conducted a set of experiments to measure the cost incurred in the en-
forcement of security and privacy policies during the service invocation. Specif-
ically, we evaluated: (i) the cost c1 incurred in computing the extended view
and writing it in terms of services, and the (ii) the cost c2 incurred in enforcing
the security and privacy constraints on retrieved data (i.e., the cost incurred in
the filters). For that purpose, in the first set of experiments we executed the ser-
vices to return the medical information about one given patient (e.g., the patient
Bob). In the second set, we executed the same services to return the medical
information for all patients. In the first set of experiments, as the services return
the information of one patient only, c2 can be neglected and remains only c1. In
the second set, c2 is amplified by the number of processed patients. The executed
services in our experiments were selected such that they have different sizes of
RDF views (namely, /1/ class-node, /3/ class-nodes, and /5/class-nodes). The
invocations were made by the same actor (a researcher) and for the same purpose
(medical research). Figure 9 depicts the results obtained for the invocations in
Sets 1 and 2. The results for Set 1 show that security and privacy handling adds
only a slight increase in the service invocation time. This could be attributed
to the following reasons: (i) the time needed to inject the security and privacy
constraints in the service’s RDF view is almost negligible, (ii) rewriting the
vextended in terms of services is not expensive, as most of vextended’s graph is

14 Barhamgi et al.

0

1000

2000

3000

4000

5000

6000

7000

Q1 Q2 Q3

Without Privacy

Preservation

With Privacy

Preservation

ms

0

1000

2000

3000

4000

5000

6000

7000

8000

Q1 Q2 Q3

Without Privacy

Preservation

With Privacy

Preservation

ms

1-class-node

services

3-class-node

services

5-class-node

services

Without security &

privacy enforcement

With security &

privacy enforcement

Without security &

privacy enforcement

With security &

privacy enforcement

1-class-node

services

3-class-node

services

5-class-node

services

0

1000

2000

3000

4000

5000

6000

7000

0

1000

2000

3000

4000

5000

6000

7000

8000

Set 1 Set 2

Fig. 9. The experimental results

already covered by voriginal and the size of (∆v) does not exceed generally 20%
of the size of voriginal, and finally (iii) there is no network overhead incurred
in invoking the additional services as they are already deployed on the server.
The results for Set 2 show that c2 is still relatively low if compared to the time
required for executing the services without addressing the security and privacy
concerns.

4 Related Work

Most approaches in the area of Web service security have focused on providing
mechanisms for ensuring that services act only on authorized requests as well as
ensuring the confidentiality and the integrity of exchanged messages [10]. These
works range from proposing new public- and private-key encryption mechanisms
to protect exchanged SOAP messages [20], to proposing secure communication
protocols and architectures [12]. We consider these works as complementary
to our proposal as we focus on a different security aspect which is limiting the
service’s disclosed information based on the identities of services’ consumers (i.e.,
the recipients), their purposes and the data queried at the service endpoint.

Some works have addressed the privacy of service consumers as they may
release sensitive information (e.g., credit card numbers, etc.) when they inter-
act with Web services. Hamadi et al. [15] proposed a formal technique to allow
Web service providers describe “faithfully” the way they use and store the data
collected from service consumers. The description is integrated into Web service
standards using an extended state machine model, and could be used in the
service selection process. Meziane et al. [18] proposed a system to monitor the
compliance of service providers with the privacy agreements that define the con-
sumers’ privacy rights. Malik et al. [17] proposed a reputation-based approach
to enable interacting Web services to have a better understanding of their pri-
vacy practices, to help them preserve users’ privacy when interacting with other
services. In our work, the focus is on data subjects whose data are accessed by
the data services rather than on service consumers. Therefore, our work comple-
ments these works by addressing a new dimension of the privacy problem.

Secure and Privacy-preserving Execution Model for Data Services 15

In addition, the main aspect that differentiates our contribution from existing
work is the transparent integration and management of privacy and security
concerns into existing architectures, without modifying either business services,
protocols or query languages that give access to the services. Therefore, the
integration of our contribution into existing business applications should require
minimal changes, leaving the original business infrastructure unchanged.

5 Conclusion and Perspectives

In this paper, we proposed a secure and privacy-preserving execution model
for data services. Our model exploits the services’ semantics to allow service
providers enforce locally their privacy and security policies without changing the
implementation of their data services (i.e., data services are considered as black
boxes). We integrated our model to the architecture of Axis 2.0 and evaluated
its efficiency in the healthcare application domain. The obtained results are
promising. As a future work, we plan to address data privacy concerns when
composing autonomous data services with conflicting privacy policies.

Acknowledgments: This research work is funded by the French National Re-
search Agency under the grant number ANR-09-SEGI-008.

References

1. Rindfleisch, T.C.: Privacy, Information Technology, and Health Care. Communica-
tions of the ACM, 40(8), pp. 92–100, (1997).

2. US Department of Health and Human Services: Standards for privacy of individu-
ally identifiable health information; Final rule. http://www.hhs.gov/ocr/privacy/
hipaa/administrative/privacyrule/privrulepd.pdf, August (2002).

3. Abou El Kalam, A., Benferhat, S., Miege, A., El Baida, R., Cuppens, F., Saurel,
C., Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
4th IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY 2003), IEEE Computer Society 2003, ISBN 0-7695-1933-4 (2003).

4. Agrawal, D., El Abbadi, A., Wang, S.: Secure and privacy-preserving data services
in the cloud: A data centric view. In: PVLDB 2012, 5(12), pp. 2028-2029, (2012).

5. Agrawal, D., El Abbadi, A., Antony, S., Das. S.: Data management challenges in
cloud computing infrastructures. In: Databases in Networked Information Systems,
6th International Workshop, DNIS Proceedings 2010, LNCS vol. 5999, pp. 1–10,
Springer (2010).

6. Ajam, N., Cuppens-Boulahia, N., Cuppens, F.: Contextual privacy management
in extended role based access control model. In: Data Privacy Management and
Autonomous Spontaneous Security, 4th International Workshop, DPM 2009 and
Second International Workshop, SETOP 2009, LNCS vol. 5939, pp. 21–35, Springer,
(2009).

7. Ashley, P., Moore, D.: Enforcing privacy within an enterprise using IBM Tivoli
privacy manager for e-business. In IBM Developer Domain, May, (2003).

16 Barhamgi et al.

8. Carey, M. J.: Declarative data services: This is your data on SOA. In: IEEE Inter-
national Conference on Service-Oriented Computing and Applications, SOCA 2007,
California, USA, pp.4, IEEE Computer Society, (2007).

9. Carey, M J., Onose, N., Petropoulos, M.: Data services. Communications of the
ACM, 55(6), pp. 86–97 (2012).

10. Damiani, E.: Web service security. In: Encyclopedia of Cryptography and Security
(2nd Ed.), pp. 1375–1377, Springer, (2011).

11. Dogac, A.: Interoperability in ehealth systems (tutorial). In: PVLDB, 5(12), pp.
2026–2027, (2012).

12. Durbeck, S., Fritsch, C., Pernul, G., Schillinger, R.: A semantic security architec-
ture for Web services. In: Fifth International Conference on Availability, Reliability
and Security (ARES 2010), Poland, pp. 222–227, IEEE Computer Society, (2010).

13. Dustdar, S., Pichler, R., Savenkov, V., Truong, H L.: Quality-aware service-oriented
data integration: requirements, state of the art and open challenges. SIGMOD
Record, 41(1), pp. 11–19, (2012).

14. Gilpin, M., Yuhanna, N., Smillie, K., Leganza, G., Heffner, R., Hoppermann, J.:
Information-as-a-service: What’s behind this hot new trend?. Forrester Research,
Research Report, March 22, (2007).

15. Hamadi, R., Paik, H., Benatallah, B.: Conceptual modeling of privacy-aware web
service protocols. In: 19th International Conference on Advanced Information Sys-
tems Engineering (CAiSE 2007), LNCS vol. 4495, pp. 233–248, Springer, (2007).

16. LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D.J.:
Limiting disclosure in hippocratic databases. In: the Thirtieth International Con-
ference on Very Large Data Bases VLDB 2004, pp. 08–19, (2004).

17. Malik, Z., Bouguettaya, A.: RATEWeb: Reputation assessment for trust establish-
ment among Web services. VLDB Journal, 18(4), pp. 885–911, (2009).

18. Meziane, H., Benbernou, S., Zerdali, A.K., Hacid, M.S., Papazoglou, M.P.: A view-
based monitoring for privacy-aware web services. In: the 26th International Confer-
ence on Data Engineering (ICDE 2010), pp. 1129–1132, IEEE, (2010).

19. Vu, Q. H., Pham, T. V., Truong, H. L., Dustdar, S., Asal, R.: DEMODS: A de-
scription model for data-as-a-service. In: IEEE 26th International Conference on
Advanced Information Networking and Applications (AINA 2012), pp. 05–12, IEEE,
(2012).

20. Yau, S. S., Yin, Y.: A privacy preserving repository for data integration across
data sharing services. IEEE Transactions on Services Computing, 1(3), pp. 130–140
(2008).

