
Context-Driven and Service Oriented Semantic
Mediation in DaaS Composition

Idir Amine Amarouche1, Karim Benouaret2,
Djamal Benslimane2, Zaia Alimazighi1 and Michael Mrissa2

1 Université des Sciences et de la Technologie Houari Boumediene
BP 32 El Alia 16111 Bab Ezzouar, Algeirs, Algeria

2 Université Lyon 1, LIRIS UMR5205
43, bd du 11 novembre 1918, Villeurbanne, F-69622, France
i.a.amarouche@gmail.com, karim.benouaret@liris.cnrs.fr
djamal.benslimane@liris.cnrs.fr, Alimazighi@wissal.dz,

michael.mrissa@liris.cnrs.fr

Abstract. In this paper we present a context driven approach for auto-
matically inserting appropriate mediation services in Data-as-a-Service
(DaaS) compositions to carry out data conversion between intercon-
nected services. We propose a context model expressed over Conflicting
Aspect Ontology to describe more accurately the semantics of DaaSs.
Based on the context model, we specify the mediation services that per-
form the transformation of DaaS parameter values between contexts.
Then, we develop an efficient algorithm to detect and resolve the seman-
tic conflicts between services in DaaS composition. An implementation
demonstrates the applicability of our proposal.

Keywords: DaaS composition, semantic mediation, context, semantic
conflict.

1 Introduction

A trend emerges towards the use of the Service Oriented Computing paradigm to
extract and process data in distributed environments. Data-as-a-Service (DaaS)
is a recent specialization of Web services whose main objective is the retrieval
of data from existing data sources according to given input parameters. In most
cases, querying data sources requires the composition of multiple DaaSs. The
automation of DaaS composition requires specifying the semantic relationships
between inputs and outputs parameters in a declarative way. This requirement
can be achieved by describing DaaSs as views over a Domain Ontology (DO) fol-
lowing the mediator-based approach [13]. Thereby, the DaaS composition prob-
lem is reduced to a query rewriting problem, which is a well-known problem
in the data integration field. In this context, several works [1, 14, 12] consider
DaaS as Parametrized RDF3 Views (PRVs) with binding patterns over a DO,

3 RDF: Resource Description Framework

to describe how the input and output DaaS parameters are semantically related.
Defined views are then used to annotate DaaSs description files (e.g., WSDL
files) and are exploited to automatically compose DaaSs. [1, 14, 12] argue that
ontology languages for Semantic Web services (e.g., OWL-S, WSMO) and exten-
sion mechanisms (e.g., SAWSDL) do not provide a way to semantically link Web
service inputs and outputs which hampers their applicability to DaaS composi-
tion. Obviously, [1, 14, 12] focus mainly on the composability of DaaS at the DO
level. However, the construction of a DO unifying all existing representations of
real-world entities in the domain is a strong limitation to interoperability be-
tween DaaS. This limitation essentially raises semantic conflicts between pieces
of data exchanged during the composition process. To this end, the applicability
of existing DaaS composition approaches is compromised. Consequently, it is
crucial to consider the detection and the resolution of semantic conflicts during
the composition process since the contexts of the consumers and the suppliers
of DaaSs are different. In this regard, the definition of context as the knowl-
edge allowing to detect semantic conflicts between DaaS parameters values is
required. [4, 10] defined context as a set of meta-attributes with values to solve
different kinds of semantic heterogeneities. In this paper, we argue that: i) the
contextualization of PRV is required to handle semantic conflicts in DaaS com-
position; ii) the resolution of semantic conflicts is assured by mediation services
which are used as per the Service Oriented Architecture (SOA) principles.

Motivating example: Let us consider an e-health system where the in-
formation needs of health actors are satisfied with DaaS Composition System
(DCS) as proposed by [1, 14], which exports a set of DaaSs to query patient
data. We assume that a physician submits the following query Q1: “What are
the states indicated by the recent Blood Pressure Readings (BPR) measures
for a given patient”. The DCS will automatically generate a DaaS composition,
as a response to the physician’s query, including respectively s1, s2 and s3 as
depicted in figure 1.(a). We assume for simplicity, that the DCS generates only
one composition. The DCS invokes automatically: 1) “s1” that provides the re-
cent Vital Sign Exam (Exam-id) performed on his patient; 2)“s2” to retrieve the
BPR measure4 of the patient; 3)“s3” that provides the “BPR” state5 according
to the MAP6 value. However, the DCS exports DaaSs expressed over DO which
does not take context into account. With the term context, we mean knowl-
edge allowing to detect semantic conflicts between component services in the
composition. Then, the physician has to manually : i) detect the existing con-
flicts in the generated DaaS composition as depicted in 1.(a)7 ; ii) select, invoke

4 BPR measure is represented by two concatenated values, e.g., “120/80 mm/HG”
where “120” is BPR Diastolic (BPR.D) value and “80” BPR Systolic (BPR.S) value
and “mm/Hg” is a measurement unit.

5 The state represents the classification of BPR measure according to classification
BPR value table (e.g., New classification: stage 1,2,3,4; Old classification: severe,
moderate, mild)

6 Mean Arterial Pressure is BPR measure, MAP = 2
3
(BPR.D) + 1

3
(BPR.S)

7 cos1: conflict of codification system; cos2: conflict of BPR value structure, measure-
ment unit; cos3 : conflict of classification system scale.

S3S2S1

MS1

MS2 MS3

MS4

(Cls.New→Cls.Old)

S3S2S1

(BPR.Value:BPR.D/BPR.S,mm/HG)
(MAP-state: Cls.New)

(Patient_id) (Examen_id)
(BPR.Code: SNOMED) (MAP.Code: LOINC)

a)

b)

cos1

cos2

(BPR.D/BPR.S→MAP) (mm/HG→cm/HG)

(MAP.Value : MAP,cm/HG)

(LOINC→SNOMED)

cos3

(MAP value)

Fig. 1. Physician query scenario: a) DaaS composition generated by the DCS with
conflicts ; b) The DaaS composition conflict free.

and compose the appropriate mediation services, assuring the transformation
functions, to make the generated composition executable as depicted in figure
1.(b). We assume that a set of atomic mediation services will be provided to the
DCS (MS1,..MS4). Thereby, the physician has to perform the following tasks:
1) select “MS1” to map the BPR code returned by s2(LOINC8) to the code
acceptable by s3 (SNOMED9); 2) Compose “MS2” and “MS3” where : “MS2”
aggregates the two values expressing BPR measure returned by “s2” to MAP
value acceptable by s3; “MS3” converts the MAP value expressed with the mea-
surement unit (“mm/Hg”) returned by MS2 to the MAP value expressed with
the measurement unit acceptable by s3 (“cm/Hg”); 3)“MS4”: to map the BPR
state returned by “s3” represented according to the new classification BPR value
table to the state acceptable by the physician represented according to the old
classification. This is a rather demanding task for non expert users (e.g., physi-
cians). Thus, automating conflict detection and resolution in DaaS composition
is challenging.

Contributions: In this paper we propose a context driven approach for
automatically inserting appropriate mediation services in DaaS compositions to
carry out data conversion between interconnected DaaS. Specifically, we propose
1) a context model expressed over Conflicting Aspect Ontology(CAO) as an
extension of “DO”. Our model allows to extend the PRV-based DaaS model to
more accurately express the semantics of DaaS parameters and to specify the
mediation service model ensuring the transformation of DaaS parameters values
from one context to another; 2) an approach to detect and resolve semantic
conflicts occurring in DaaS composition.

Outline: The rest of this paper is organized as follows. Section 2 presents
the overview of our approach. In Section 3, we leverage the background models
used throughout the paper. In Section 4, we present our models for context-
driven semantic mediation in DaaS composition. In Section 5, we detail our
conflict detection and resolution algorithm. Section 6 gives a global view of our
implementation and demonstrates the applicability of our proposal. Section 7
reviews related work. Section 8 provides a conclusion and future work.

8 LOINC : Logical Observation Identifiers Names and Codes
9 SNOMED: Systematized Nomenclature of Medicine, Clinical Terms

2 Approach overview

Our proposal aims to provide a framework for automatic conflict detection and
resolution in the process of DaaS composition. Our approach takes into account
the context of component services in DaaS composition and the context of the
query. DaaSs are modeled as PRV over a DO and contextualized over a Con-
flicting Aspect Ontology (CAO) and mediation services are modeled as mapping
rule over CAO. Then, at design time, the contextualized PRV and the mapping
rule are incorporated into corresponding WSDL description files as annotations.
DaaSs and mediation services are stored in two different registries. Figure 2 gives
an overview of our approach.

Domain

Ontology (DO)

Conflicting Aspect

Ontology (CAO)

SPARQL query

Results

1

DaaS

services

registry

Mediation

services

registry

Describe

DaaS Composition System (DCS)

QR (2) CDR(3)

Based on

5 QEP(4)

Fig. 2. Approach overview

At query evaluation time, the DaaS composition process starts when the user
specifies a query over DO and CAO using SPARQL10 (Fig. 2 arrow 1). The DCS
uses the Query Rewriting (QR) algorithm proposed by [1] and existing PRV to
select the DaaS that can be combined, to answer the query (Fig. 2 rectangle 2).
Once the DaaS compositions are generated, our Conflict Detection and Resolu-
tion Algorithm (CDR) takes into account the context of both the selected PRV s
and the query for conflict verification in each generated DaaS composition (Fig. 2
rectangle 3). Then, in case a conflict is detected between: 1) subsequent services
in DaaS composition; 2) DaaS composition outputs and the required results by
the query, 3) DaaS composition inputs and the constraints specified by the query,
our algorithm inserts automatically an appropriate mediation services to resolve
semantic conflict. Then, the DCS translates a composite DaaSs conflict free into
Query Execution Plan (QEP) describing data and control flow (Fig. 2 rectangle
4). The plan will be executed and returns data to the user (Fig. 2 arrow 5). In
this paper, we only focus on conflict detection and resolution.

10 We adopt SPARQL: http://www.w3.org/TR/rdf-sparql-query/, the de facto query
language for the Semantic Web, for writing queries.

3 Background

We present in this section the background models used through the paper,
namely, the Domain Ontology (DO), the Parametrized Rdf View (PRV) and
the Query (Q).

3.1 Domain Ontology (DO)

The DO is 6-tuple < C, D, OP, DP, SC, SP> where C is a set of classes; D is
a set of data types; OP is a set of object properties; each object property has
its own domain and range in C; DP is a set of data type properties; each data
type property has a domain in C and range in D; SC is a relation over C × C,
representing the sub-class relationship between classes; SP is a relation over
(OP × OP) ∪ (DP ×DP), representing the sub-property relationship between
homogeneous properties. In the present work, DO is specified with RDFS. Fig-
ure 3 illustrates an excerpt of our Domain Ontology of Vital Sign Exam where
Class nodes are represented with ovals and data type nodes are represented with
rectangles. DO contains basic shared concepts and their properties with exten-
sions specifying the conflicting aspects. For instance, the BPReading concept
has a code expressed in a given health ontology which will be specified using
a concept “CAO : SystemCode” over the Conflicting Aspect Ontology (CAO).
The CAO will be detailed in section 4.

DO: Has-Statecodi

CAO:

StateCode

DO: Has-code-val

DO: Has-BprStr

CAO:

BprStr

DO : HasMinVal

?min

DO : HasMaxVal

?max

DO: Has-codification

DO: Has-code-val

DO: has-SystemCode

BprCode

Value

SystemCod

CAO:

SystemCod

DO: Has-unit

DO: Has-value

DO: Has_temp

DO: Has_pulse

DO: Has-gender

gender

DO:Made_By

Heath

center

DO: OrderdBy

DO: Has-StateCode

StateCode

Value

DO: Has-measure

BPRval

DO: indicate

DO:HasDate

DO: HasCode
DO: Has-SSN

DO:Has-name

DO: Has-age

DO: Has_BPR

DO:Has-perform

SSN
name

code

age

date

Patient Vital Sign

exam

BPRea

dingState

Classe DatatypeProperty
SubClass/Sub

Property

BPRmeasure

CAO: unit

Physcian

StateCod

Fig. 3. Domain ontology

3.2 Parametrized RDF View (PRV)

A DaaS Sj is described as Parametrized RDF View (PRV) in a Datalog-like nota-
tion over aDO [1]. A DaaS Sj has the form Sj($Xj , ?Yj) : − < Gj(Xj , Yj , Zj),Coj >
where: Xj and Yj are the sets of input and output variables of Sj respectively;

DO: HasMesurevalue

DO:HasBprSTR

CAO: BP/SD

DO:HasBprValue

?z

DO:HasBPRcodevalue

DO:HasUnit

CAO: mm/HG

DO:HasSystemCode DO:Hascodevalue

CAO: LOINC ?y

S2 ($x,?y,?z) :-

(?VSE Rdf:type DO:VitalS-Exam)

(?VSE DO:hascode $x)

(?VSE DO:has-BPr ?BPR)

(?BPR rdf:type DO:Bpreading

(?BPR DO:HasBPRcodevalue ?y)

(?BPR DO:HasMesurevalue ?z)

?z

DO: HasMesurevalue
DO:HasBPRcodevalue

DO:Has-BPR

Rdf:type

DO:Hascode

$x

BPR

DO:BPreading

Rdf:type

?y

VSE

DO:VitalSExam

(?BPR DO:HasBPRcodevalue ?C)

(?C DO:HasSystemCode CAO:Loinc)

 (?C CAO:codeValue ?y)

 (?BPR DO: HasMesurevalue ?A)

 (?A DO:Hasunit CAO:mm/HG)

 (?A DO:HasBprSTR CAO: BP/SD)

 (?A CAO:Value ?z)

(a)

(b)

(a) PRV of DaaS S2 , (b) Extension of PRV depicted in dotted rectangle

C
A

Fig. 4. RDF graph and RDF snippet of DaaS model

Gj represents the functionality of the DaaS which is described as a semantic
relationship between input and output variables; Zj is the set of existential vari-
ables linking Xj to Yj ; Coj = {Coj1 , ..., Cojn} is a set of constraints expressed
on Xj , Yj or Zj variables. Figure 4.(a) gives the PRV of DaaS S2 depicted in
motivating example.

3.3 Query (Q)

We consider conjunctive queries over DO. The Query “Q” has the form: Q(X):-
< G(X,Y), Coq > where Q(X) is the head of Q, it represents the result of query;
G(X,Y) is the body of Q, it contains a set of RDF triples where each triple is
of the form (subject.property.object); X and Y are called the distinguished and
existential variables respectively, X and Y are subjects and objects in the RDF
triples; Coq = {Coq1 ,, Coqn} is a set of constraints expressed on X and Y
variables [1]. Figure 5.(a) depicts the RDF graph of the query Q1 described in
our scenario.

DO : HasMinVal

?min

DO : HasMaxVal

?max

Has-BPr

rdf:type

DO:hasmeasure

DO:BPReading

rdf:type

DO: hascode
DO: Has-order

?y

VSE

DO:VitalSignE

rdf:type

rdf:type
DO: hasSSN

$w1

DO : HasStateCode

?w2

DO:indicate

P

D

Q ($w1,?z1 ,?w2):-

(?P Rdf:type DO:Patient)

(?P DO:hasSSn $w1)

(?P DO:Order ?VSE)

(?VSE Rdf:type DO:VitalSignE)

(?VSE DO:hascode $y)

(?VSE DO:has-BPr ?BPR)

(?BPR Rdf :type DO:BPReading)

(?BPR DO: hasmeasure ?z1)

(?BPR DO:indicate ?D)

(?D DO:HasStateCodevalue ?w2)

(?D Rdf:type DO:State)

Filter (?z1 < ?max)

Filter (?z1 > ?min)

(?D DO : HasStateCode ?C)

(?C DO:HasStateCodevalue ?w2)

(?C DO:HasStateClas CAO:OldClass)

DO:Patient

DO:State

BPR

?z1

(a)

(b)

(a) SPARQL query expressed over DO, (b) Query with context extention expressed over

CAO depicted in dotted rectangle.

DO : HasStateCode

DO:HasStateClas
DO:HasStateCodevalue

CAO: oldClas ?w2

C

Fig. 5. SPARQL Query graph and snippet

4 Our Models

We present in this section our models used for context-driven semantic mediation
in DaaS composition. In the present work, the DaaS Composition cs = {s1..sn}
represents the set of ordered services into DaaS composition ; First(cs) (e.g., s1)
and Last(cs) (e.g.,sn) denote the first and the last DaaS in “cs”. “CSs” denotes
the set of compositions generated by the Query Rewriting (QR) algorithm of
“DCS” and requiring testing and conflict resolution. We note that each “cs”
requires a set of input parameters to be executed and returns a set of output
parameters after execution.

4.1 Conflicting Aspect Ontology

Conflicting Aspect Ontology (CAO) is a family of a lightweight ontology, speci-
fied in RDFS. A CAO extends DO entities with a taxonomic structure express-
ing different semantic conflicts between DaaS parameters11. The CAO varies
in scope, from very broad conflicts to very specific ones. A CAO is a 3 tuple
< ACg, ACi, τ >, where: “ACg” is a set of classes which represents the different
conflicting aspects of a DO entities. Each“acg”class in“ACg”has one super-class
and a set of sub-classes. Each “acg” class has a name representing a conflicting
aspect, such as, “CAO:Measurement-Unit”as depicted in Figure 6;“ACi” is a dis-
tinct set of instantiable classes having one super-class in “ACg”. By definition,
“aci” is not allowed to have sub-classes. For instance “mm/HG” and “cm/HG”
are two insteancable classes from the “CAO:BPR-Unit” class; “τ” refers to the
sibling relationships on “ACi” and “ACg”. The relationships among elements of
“ACg” is disjoint. However, elements of “ACi” of a given “acg” are related by the
Peer relationship which indicates semantic conflicts for similar data semantics.

CAO(classification)
CAO(Mesearment-Unit) CAO(system Code)CAO(BP_structure)

Classe Rdfs:SubClassof

CAO:

BPR.Value

MAP

CAO:

System-Code

Snomed.

.code

Loinc.

code

CAO:Mesearment-Unit

CAO:BPR-

Unit

mmGH

CAO:Gaz.

Unit

Sibling relationship

Same as

Same as

cmHG

ICD.

code

DisjointBPR.D/

BPR.S

Same as

Disjoint Disjoint CAO:

State-Classification

Old-

Class

rdfs:subClassof rdfs:subClassof

Same as

New-

Class

Disjoint

Fig. 6. Conflicting Aspect Ontology

4.2 Context model

A context “Ct” is a set of uniquely identified dimension-value pairsthat are rep-
resented under the form {(Di, Vi)|i ∈ [1,m]} where Di ∈ ACg and Vi ∈ ACi.

11 For a classification of the various incompatibility problems in Web service composi-
tion see [7]

For instance, the context CtMU = {(CAO : Unit,mm/HG)} indicates that
the measurement unit is “mm/HG”. Given two contexts “Ct” and “Ct′” where
Ct = {(Di, Vi)} and Ct′ = {(Di, V

′
i)}. We say that the context “Ct” is in rela-

tionship with the context “Ct′” if and only if for each i ∈ {1..n} we have viRDiv
′
i

where RDi ∈ τACi
.

As the PRV based DaaS model expressed over DO does not provide explicit
semantics about its input and output parameters, we extend its description with
the context describing more precisely how the semantics of the DO entities
are described according to the CAO. Then, each DaaS model is extended by
annotations on variables appearing in input and output DaaS parameters and
expressed in terms of CAO. In this way, it is possible to have variants of the
same DaaS, each holding under a different context. In the same vein, the context
is used to express more precisely the distinguished variables and the constraints
of the query.

1) Contextualized DaaS model : A C-DaaS is defined as Sj($Xj , ?Yj) :
− < VDO > | < X :: CtXj , Y :: CtYj > where: VDO is the PRV of Sj ; CtXj and
CtYj are respectively the contexts of the input and the output DaaS parameters
expressed over CAO. CtXj

and CtYj
are described by a set of RDF triples over

CAO in form of 2-tuple < ACg, ACi >. Figure 4.(b) gives the graph view of the
contextualized DaaS S2 of our motivating example.

2) Contextualized query model: has the form CQ(X) : − < Q(X)|X ::
Ctqx, Coq :: Ctqc > where Q(X) is the query expressed over DO, and Ctqx is the
context of the distinguished variable X and Ctqc the context of query constraint
Coq expressed respectively over CAO. As depicted in figure 5.(b), the query
mentioned in our motivation example has for context Ctq = ((X :: (CAO :
OldClassification)),(Coq :: ∅)) .

4.3 Semantic conflicts : model and classification

In our present work, a semantic conflict occurs in “O/I” operation. The “O/I”
operation indicates each data flow occurring between output and input parame-
ters belonging respectively: to subsequent DaaSs “si” and “sj” in “cs”; “First(cs)”
and “CQCoq”; “Last(cs)” and “CQX”. Thus, for a given “Ok/Ik” where “Ok” and
“Ik” denotes respectively an output and an input parameters which refer to the
same DO entity; if their respective contexts “CtOk

” and “CtIk” refer to different
“aci” entities and having the same “acg”; then we say that a parameter semantic
conflict “acg” exists in “Ok/Ik” operation. When the conflict is related to one
aspect “acg” we call it simple conflict otherwise we call it complex conflict. For
instance, in our motivating example the conflicts are respectively denoted as:
1) System Code Conflict : BPR code is expressed according to “SNOMED” or
“LOINC”; 2) Measurement Unit Conflict : BPR value has a measurement unit
“mm/HG” or “cm/HG” 3) Parameter Structure Conflict: BPR value is repre-
sented by one value “MPA” or by two values “BPR.D” and “BPR.S”; 4) Data
Precision Conflict: state value expressed according to the new or the old classi-
fication. In our motivating example, we have one simple conflict (System Code

Conflict) and one complex conflict (Parameter Structure Conflict, Measurement
Unit Conflict) occurring in two O/I operations between “s2” and “s3” in “cs”.

4.4 Mediation service

Mediation Services (MSs) consist of a rule assuring the transformation or the
mapping in the case where some “O/I” operation causes a conflict. We deem ap-
propriate to follow the model proposed in [2, 8] to represent the rule as a SPARQL
“construct” statement. In this context, the rule having the form {ant =⇒ cons}
in logic programming approach, where the symbol “=⇒” means the implication
relation, becomes {CONSTRUCT cons WHERE ant}. Both the antecedent
(ant) and the consequence (cons) are conjunctions of predicates represented by
a set of RDF triples. An RDF triple may be represented, in standards first order
logic notation, as a predicate Predicate(Subject, Objet). The “ant” can either be
existential predicate or built-in predicate representing arithmetic or aggregate
function.

Mediation service model is a SPARQL parametrized query having the
form MSj($IJ , ?OJ) : GI → GO, where : “$IJ” and “?OJ” are respectively the
sets of input and output variables of MSJ ; GI and GO are the set of RDF triples
representing Input and output contextualized parameters. For instance, the me-
diation service MS1 assuring the mapping of BPR code value from “LOINC”
code to “SNOMED” code is presented in figure 7.(a). For each conflicting aspect,

MS5

MS1

X::(CAO:LOINC) Y::(CAO:SNOMED)

MS2 ($x,?y) :

CONSTRUCT

{(BPR DO:HasBprCode ?A).

(?A rdf:type CAO:BPC).

(?A CAO:HasSystemCode CAO:SNOMED).

(?A CAO:Codevalue ?y)}

WHERE

{(BPR DO:HasBprCode ?C).

(?C rdf:type CAO:BPC).

(?C CAO:HasSystemCode CAO:LOINC).

(?C CAO:Codevalue $x) }
Z::(CAO:ICD)

a) b)

Fig. 7. a) SPARQL query representing MS1. b) Graph of MSs for Conflicting Aspect
“Codification system”

we define the set of atomic mapping rules allowing to describe the transfor-
mation between two contextualized parameters as following : 1) System Code
Conflict and Data Precision Conflict: are associated to mapping rule one-to-
one; 2) Measurement Unit Conflict is associated to mapping rule one-to-one
with a conversion function in the antecedent of the mapping rule; 3) Parameter
Structure Conflict: is associated to mapping rule many-to-one or one-to-many.

The Repository model of MSs (RMS) represents the set of media-
tion services available in mediation service repository for each conflicting aspect
“ACg”. This set is modeled as graph GACg

= (V,E) where “V ” is the set of ver-
tices, representing the set of “aci”, and “E” is the set of edges, representing the

mediation services. For instance, the graph depicted in figure 7.(b) represents
the RMS for the conflicting aspect “Codification System” assuring the trans-
formation from DaaS parameters expressed in LOINC to SNOMED or from
DaaS parameters expressed in SNOMED to ICD. The benefit of RMS lies
in its capability allowing the derivation of composition or alternative mediation
service from atomic mediation service.

5 Conflict detection and resolution processing

In the following, we present the details of our Conflict Detection and Resolution
Algorithm (CDR) which proceeds in two stages: Detection and Resolution. The
first stage described in Algorithm 1 depicts how to detect conflicts in a given
composition “cs”. The second stage, described in Algorithm 2 depicts how to
insert automatically the mediation services in “cs” ensuring conflict resolution.

5.1 Conflict Detection

The conflict detection algorithm is presented in Algorithm 1. The inputs of
the Algorithm 1 are “cs” and “O/I” operations while its output is the Conflict
Object Set COS where the information related to detected conflicts are stored.
The COS is 5 tuple < id−conflict, acg, CtO.aci, CtI .aci′ , Position,MService >
where: “id − conflict” is the identifier of the detected conflict; “acg” represents
the conflicting aspect related to the two parameters Oi and Ii′ ; “aci” is the
instantiable class belonging to CtO, “aci′” is the instantiable class belonging to
CtI ;“position”indicates the position of the“O/I”operation in the“cs”where the
conflict is detected; “MService” is the mediation service returned by Algorithm
2 to resolve the conflict “id− conflict”.

Algorithm 1 proceeds as follow, for each “Ok/Ik”12 operation in “cs”, if there
is a conflict in“Ok/Ik”and the conflict of “Ok/Ik” is not in the conflict set “COS”
then add the conflict to the conflict set “COS”, as well as its position in “cs” (line
4); otherwise, i.e., the conflict is in the conflict set “COS”, add only the position
of conflict in “cos.position” (line 6). However, if there is not a conflict in “Ok/Ik”
then “Ok/Ik” does not cause conflict in “cs‘” (line 9). The detected conflicts in
“cs” will be resolved by using the process described in algorithm 2.

For instance, the “COS” set generated in basis of our motivating example is
represented in table 1 where cos1 and cos3 are simple conflicts and cos2 is a
complex conflict.

5.2 Conflict Resolution

The details of Algorithm 2 are as follows. The inputs of the algorithm 2 are:
“cs” with conflicts, the Conflict Object Set COS, the Mediation Service setMS
and the graph of the Repository of mediation services RMS. The output of the

12 K represents the Kieth Output/Input operation in given “cs”.

Algorithm 1 Conflict Detection Algorithm

Require: cs a DaaS composition; O/I operation set in cs.
Ensure: COS Conflict Object Set,
1: for each Ok/Ik in O/I do
2: if the context of Ok and Ik have the same acg and different aci then
3: if (Ok/Ik) /∈ {(cos.CtO.aci, cos.CtI .aci′)} then
4: cost.add (acg, CtO.aci, CtI .aci′ , Position)
5: else
6: add new position in cost.position;
7: end if
8: else
9: no conflict is detected in Ok/Ik from cs;

10: end if
11: end for
12: return COS

Table 1. Conflict Object Set (COS), (a) The non-colored part of table is filled during
the detection stage; (b) The gray part is filled during the stage phase.

Conflcit-id position acg CtO.aci CtI .aci′ MService

cos1 {(s2, s3)} SystemCode LOINC SNOMED MS1

cos2 {(s2, s3)} Meas− Unit mm/HG cm/HG MS2−MS3
Structure BPD,BPS MPA

cos3 {(s3, CQx)} Classificat NewCla OldClasA MS4

algorithm 2 is a conflict-free composition (cscf), i.e.“cs” augmented with medi-
ation services. The algorithm processes simple conflicts (lines 2-9) and complex
conflicts (lines 10-18) separately. For each simple conflict “cost” in “COS”, the
algorithm searches the required mediation service having “O :: CtO.aci” as in-
put and “I :: CtI .aci′” as output where “aci” and “aci′” belong to the same
aspect “acg”. This action is achieved by searching for the mapping variable [1] of
“O :: CtO.aci” and “I :: CtI .aci′” respectively to the corresponding variables in
“GI” and “GO” of each SPARQL query describing mediation services in “MS”
(line 3). Then, if a mapping is found, the algorithm selects the first returned
mediation service. In case the conflict does not find the required meditation ser-
vice, the algorithm searches in “RMS” for an alternative sequence of atomic
mediation services (line 5). This search computes the Shortest Path from the
node “O :: CtO.aci” to the node “I :: CtI .aci′” in “RMS”. Otherwise, the al-
gorithm returns an information that the composition “cs” is not executable. In
case the conflict is complex the algorithm considers its resolution as a sequence
of simple conflicts. For that purpose, for each conflicting aspect “cost” the algo-
rithm applies the same steps from line 2 to 9 of the Algorithm 2. When all the
conflicting aspects find an appropriate mediation service for their resolution the
final solution is the composition of the mediation services that have been found
(lines 11-14).

Algorithm 2 Resolution (COS, cs, MS, RMS)

Require: cs composition with conflict, COS a set of Conflict Object, MS mediation
service set, RMS a graph of mediation services,

Ensure: cscf composition conflict free.
1: for each cost ∈ COS do
2: if cost is a simple conflict then
3: if ∃MSi ∈ MS,map(O :: CtO.aci) = input(MSi) ∧ map(I :: CtI .aci′) =

output(MSi) then
4: COS.add (cost.MService, MSi)
5: else if ∃MSi ∈MS, ShortPath(RMS,O :: CtO.aci, I :: Ct.I.aci′) then
6: COS.add (cost.MService, MSi)
7: else
8: return null
9: end if

10: else
11: for each acg ∈ cost.acg do
12: Simple conflict resolution processing
13: end for
14: Composition of the returned mediation services
15: end if
16: end for
17: for each cost in COS do
18: cs.add(cost.position,MSi)
19: end for
20: cscf ←− cs
21: return cscf

In both cases, simple or complex conflict, the “cost.MService” of “COS” is
updated with the simple or composed mediation services MSi returned by the
algorithm (lines 4,6,12). For each position “cost.position”, the insertion of the
correspondingMSi in “cs” is performed (line 18). Note that, when several medi-
ation services allow to resolve the same conflict, our algorithm randomly returns
one of them as they achieve the same functionality. The algorithm 2 returns
a conflict-free DaaS composition as depicted in Figure 1.(b). This conflict-free
composition will be added to the set of compositions that are returned to the
DCS for query plan execution as explained in section 2. In the case where con-
flicts remain unresolved, the “cs” is added to the set of not executable DaaS
composition which will not be returned to DCS for query plan execution.

6 Implementation

The architecture of a CDR Prototype System is depicted in figure 8. We have
implemented and tested a Java based application with multiple examples, in-
cluding the motivating example13. Each Web service is deployed on top of a

13 Implementation available at http://sites.google.com/site/ehrdaa

GlassFish Web server. The DO and CAO ontologies respectively are created
by Protege 4.114 in RDFS. We exploit the extensibility feature of WSDL to
hook operations elements in a WSDL file to their corresponding contextualized
PRV (DaaS) and SPARQL query (mediation service) to the DO and CAO on-
tology. Atomic mediation services are created and stored in mediation service
repository. The atomic MSs ensure the transformation between contextualized
parameters having the same conflicting aspect “acg” and different instantiable
classes “aci”. Jena-2.6.415 is used as the reasoning engine for RDFS. In the eval-

Conflicting Aspect

Ontology (CAO)

Conflcit

detection algo

Mediation

service

repository

+ RMS

Conflict

resolution Conflict

Object Set

Query rewriting

module

Query execution plan

DCS

Fig. 8. CDRM architecture

uation phase we have considered a set of queries through which we identify the
following: During the detection phase, we can detect the set of conflict aspects
identified in “ACg” based on our Conflict Detection Algorithm as depicted in
figure 9(b)(e.g., 2 simple conflicts and one complex conflict). During the reso-

(a) DaaS composition conflcit free (b) Conflicting Object Set

Fig. 9. Screen captures of our application

lution phase, the Conflict Resolution Algorithm inserts the required mediation
services and incorporates them in the right position to reconcile the conflicts as
depicted in figure 9(a). The execution results indicate that the DaaS composition
process normally completed; all the conflicts were successfully reconciled, that

14 http://protege.stanford.edu/
15 Jena Homepage http://jena.sourceforge.net

is, appropriate mediation services were properly called to convert BPR measures
(value and measure units), BPR code and BPR value state; and the composition
produced the expected output, namely, the state of BPR value.

7 Related work

During the last years, the DaaS composition problem has received a lot of at-
tention through the approaches proposed in [1, 14, 12]. The DaaS composition
systems proposed in these works do not have dealt with data heterogeneities
at the semantic level. In our work, we propose a service-oriented approach to
resolve data level conflicts with the contextualization of the PRV-based DaaS
model. Further, few approaches have been developed to handle semantic hetero-
geneity in Web service composition. [11], [3], [9] and [7] investigate data-level
heterogeneity between Web services through mapping relations to establish di-
rect correspondences between the messages of two services. However, these works
require Input-Output service parameters to be annotated with classes from the
Domain Ontology as semantics, and do not take context into account. Their mod-
els do not allow expressions with variables for describing inputs and output of
DaaSs. Our model is based on contextualized PRV using graph pattern, which
can be considered as logical expressions with variables. Also, the approaches
discussed in [5] and [6], have used the context representation for semantic me-
diation in Web service composition. In fact, they propose an extension of DO
by a lightweight ontology which needs a small set of generic concepts to cap-
ture the context. However, these representations are challenged by their limited
context model assuring only simple mapping between semantically equivalent
context parameter (price, unit, etc.). Further, the low-level transformation code
ensuring the conversion from one context to another makes the maintainability
of semantic mediation between service composition components difficult. On the
contrary, transformations are expressed as parametrized SPARQL queries in our
context model, behaving as mapping rules, allowing to model complex mediation
services. Also, the PRV-based DaaS model enriched with the notion of context
allows to cover the full cycle of automatic DaaS composition unlike existing
works which are restricted to handle the semantic heterogeneity at design time
and to automatize DaaS composition separately.

8 Conclusion and future work

In this paper, we propose an extension to the PRV-based DaaS model based on
the notion of context. The proposed context model expressed over Conflicting
Aspect Ontology, which is an extension of Domain Ontology, aims to handle
semantic conflicts in DaaS composition. Our model allows to specify the media-
tion service as aÂăparametrized SPARQL query, behaving as a mapping rule and
performing simple or complex transformation of DaaS parameters values from
one context to another. Our implementation demonstrates the applicability of
our proposal. Our future perspectives will deal with performance and scalability

issues of our algorithm and the application of aspect-orientation to the PRVs,
thus allowing to provide an organized approach to ensure the trustworthiness
and the provenance of data that are returned by DaaSs.

9 Acknowledgment

The authors thank Sabrina Sahli for his valuable participation in the implemen-
tation.

References

1. Barhamgi, M., Benslimane, D., Medjahed, B. : A Query Rewriting Approach for Web
Service Composition. IEEE Transactions Services Computing. 3, 206–222 (2010)

2. Euzenat, J., Polleres, A., Scharffe, F. : Processing Ontology Alignments with
SPARQL. International Conference on Complex, Intelligent and Software Intensive
Systems. 913–917 (2008)

3. Gagne, D., Sabbouh, M., Bennett, S., Powers, S. : Using Data Semantics to Enable
Automatic Composition of Web Services. IEEE International Conference on Services
Computing SCC ’06. 438–444 (2006)

4. Goh, C.H, Bressan, S., Madnick, S.E, Siegel, M : Context Interchange: New Features
and Formalisms for the Intelligent Integration of Information. ACM Trans. Inf. Syst.
270–293 (1999)

5. Li, X., Madnick, S., Zhu, H., Fan, Y. : Reconciling Semantic Heterogeneity in Web
Services Composition. ICIS 2009 Proceedings. 20 (2009)

6. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z. : A Context Model for Se-
mantic Mediation in Web Services Composition. ER. 12–25 (2006)

7. Nagarajan, M., Verma, K., Sheth, A.P., Miller,J.A. : Ontology Driven Data Media-
tion in Web Services. Int. J. Web Service Res. 104–126 (2007)

8. Polleres, A., Scharffe, F., Schindlauer, R. : SPARQL++ for mapping between RDF
vocabularies. Proceedings of the 2007 OTM Confederated international conference
on On the move to meaningful internet systems: CoopIS, DOA, ODBASE, GADA,
and IS - Volume Part I. 878–896 (2007)

9. Sabbouh, M., Higginson, J.L., Wan, C., Bennett, S.R. : Using Mapping Relations to
Semi Automatically Compose Web Services. IEEE Congress on Services. 211–218
(2008)

10. Sciore, E. : Using semantic values to facilitate interoperability among heterogeneous
information systems. ACM Transactions on Database Systems. 254–290 (1994)

11. Spencer, B., Liu, S. : Inferring Data Transformation Rules to Integrate Semantic
Web Services. International Semantic Web Conference. 456–470 (2004)

12. Vacuĺın, R., Chen, H., Neruda, R., Sycara, K. : Modeling and Discovery of Data
Providing Services. ICWS. 54–61 (2008)

13. Wiederhold, G. : Mediators in the Architecture of Future Information Systems.
Computer. 25, 38–49 (1992)

14. Zhou, L., Chen, H., Wang, H., Zhang,Y. : Semantic Web-Based Data Service Dis-
covery and Composition. SKG. 213–219 (2008)

