2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems

Handling semantic conflicts in DaaS composition:
A service mediation approach

Idir Amine Amarouche*, Michael Mrissa' and Zaia Alimazighi*
*Université des Sciences et de la Technologie H.Boumediene BP 32 El Alia 16111
Bab-Ezzouar, Alger, Algeria
Email: I.A.Amarouche @gmail.com , alimazighi @wissal.dz
TUniversité de Lyon 1, CNRS LIRIS-UMRS5205 43, bd du 11 novembre 1918, Villeurbanne, F-69622, France
Email: Mrissa.Michael @liris.cnrs.fr

Abstract—In the domain of DaaS', completing a query means
calling many services which are heterogeneous and built inde-
pendently from the context in which they will be used. This
heterogeneity leads to several compatibility problems during
DaaS composition. In order to solve them, we propose a semantic
description model which allows context characterization. The
proposed model enables data mediation in the composition
for resolving the conflicts caused by heterogeneities between
DaaSs. We rely on two-layered mediated ontology for deriving
automatically DaaSs compositions that incorporate necessary
mediation services. A preliminary evaluation has been performed
based on our initial investigation leading to better improvement.

I. INTRODUCTION

As commonly agreed, Web services fall into two categories
depending on their functionality world-altering services and
information-providing ones [1]. The latter ones are regarded as
specific database views with binding patterns. Thus, the DaaS
composition problem is reduced to a query rewriting problem
in the data integration field. Doing so, in the context of
semantic Web, several works [2], [3], [4], [S] proposed DaaS
compositions approaches with the help of query rewriting tech-
niques. The key idea behind these approaches is to describe
DaaSs as Parametrized RDF Views (PRVs) over mediated
ontology to capture their semantics in a declarative way.
Defined views are then used to annotate DaaSs description files
(e.g. WSDL files) and are exploited to automatically compose
DaaSs.

However, in the Internet environment there are several ref-
erence ontologies that formalize the same domain knowledge.
The domain ontology cannot provide contextual definitions
and contextual data structures to represent the diversity of
perceptions and focuses. Thus, the construction of a mediated
ontology unifying all existing representations of real-world
entities in the domain is a strong limitation to interoperability
between DaaS. As a result, even though we can automatize
DaaS composition by semantically annotating their descrip-
tions, the limitation cited previously raises semantic conflicts
between pieces of data exchanged during DaaS composition.
In order to overcome this problem, mediation mechanisms
based on service-oriented approach to implement mediators
must be inserted into DaaS compositions.

'Daa$S: Data-as-a-Service or information-providing service

978-0-7695-4635-3/11 $26.00 © 2011 IEEE
DOI 10.1109/SITIS.2011.14

97

Despite the fact that previously cited works adopt a DaaS
model similar to PRVs > over a mediated ontology, they
differently cover the life cycle of a DaaS composition ([4],
[5] cover only DaaS discovery and selection but [2], [3] cover
the whole DaaS composition life cycle) and none of them had
considered the data mediation aspect in DaaS composition.

In general, existing composition frameworks do not include
the possibility to detect and resolve semantic conflict between
data exchanged during DaaS composition. Indeed, solving
semantic conflicts (ontological reference, unit,....etc) and per-
forming a meaningful composition have to be achieved by
describing the conversion of data between different semantic
representations.

In a nutshell, we propose an approach to integrate data
provided by several DaaSs using two-layered knowledge rep-
resentation, based on Domain Ontology (DO) and Contextual
Ontology (CO) for automatically deriving DaaSs composi-
tions with appropriate mediation services to carry out data
conversion between interconnected DaaS. Doing so, on the
basis of the DaaS model and the query rewriting approach for
DaaS composition proposed in [2], our main contributions in
the paper are summarized in two points. Firstly, we propose
an extension to the RDF-based DaaS model. Specifically,
we represent DaaSs and mediation service as an Extended
PRVs over ontologies (DO and CO). We adopt SPARQL, the
de facto query language for the Semantic Web, for posing
queries over DaaS services. Secondly, we propose an enhanced
query processing approach to automatically detect and resolve
semantic conflict in DaaS composition.

In our approach, SPARQL queries specified over a mediated
ontology, are reformulated in terms of available DaaSs based
on the defined PRVs. Thus, since the data provided and
required by individual DaaSs may be bound to different
semantics, we propose a mechanism that automatically inserts
mediation services in order to resolve the semantic incompat-
ibilities detected in the generated DaaS compositions.

The paper is organized as follows: In section II we present
a motivation example within service oriented system to in-
troduce the need for mediation service in DaaS composition

2Unlike [2] the previously cited works do not consider input-output seman-
tic relationship parameter in their DaaS models.

IEEE
computer
® psouety

context. Section III gives an introduction to query and me-
diated ontology (DO and COs) models serving as a basis
for DaaS and mediation service models. Also, in this section
we propose an extension to the DaaS model that allows
automatic detection and resolution of data level conflict with
the help of mediation services. Section IV gives details on
the functioning of each component deployed in our proposal
and the role of each one of them in query processing for
DaaS composition. Section V describes details on the proposed
conflict detection and resolution algorithm. Section VI gives a
global view of our use case as an experimentation. Section VII
explores related work on semantic heterogeneity detection and
resolution during service composition based on query rewriting
approach. Finally we summarize and discuss our results in
Section VIII.

II. MOTIVATION EXAMPLE

In this section, we provide an illustrating example from
where the information needs of health actors are satisfied with
a service oriented approach based on solution proposed by
[2]. This approach raises up many problems, which motivate
our proposal to apply semantic Web technologies to support
mediation during DaaSs composition. Let us consider an e-
health system exporting the set of DaaSs presented in Table [
to query patient data. The description of DaaS can be seen
in Table I, where the symbols “$” and “?” denote inputs and
outputs of DaaSs, respectively. We assume that a physician
submits the following real life query : “()1: check whether
the medication identified by the code “801” to be prescribed
to Joe with the PIN=80 ? interacts with the ones currently
taken by that patient”.

TABLE I
EXAMPLE OF DAASS AND MEDIATION SERVICES

Service Functionality Constraints and DaaS
provider
S11(8z, 7y) Returns drugs y taken | DaaS provider is hos-
by a given patient x pitall and y.code €
{RzNorm}
S12(8z, 7y) DaaS provider is hospital2
and y.code € {NDC}
Sa1($z, 7y) Returns drugs y that in- | x.code € {RzxNorm}
teract with a given one | and y.code S
x {RzNorm}
Sa2($z, 7y) z.code € {NDC} and
y.code € {NDC}
S3($z, $y) Returns reference infor- | z.code € {ICD}

mation y for drug x

S ($z, 7y) Returns drug code ex- | z.code € {RxNorm}

pressed in y code for | and y.code € {ICD}
given drug code ex-
pressed in x code

Sz ($z, 7y) Returns drug code ex- | x.code € {NDC} and
pressed in y code for | y.code € {ICD}

given drug code
pressed in = code

ex-

We assume for the moment that the physician will invoke

3Patient Identification Number

98

automatically* the Daa$ that provides the list of recent medica-
tion taken by Joe namely Sy or Si2. Then, he will invoke So;
and Sos to retrieve the list of drugs that interact with the drugs
returned by Sp; or S5 respectively. After that, he will invoke
S3 to retrieve more information about the drugs indicated by
each interaction returned by So; and Si». However, as the
system does not take into consideration the semantic conflict
at data level, the physician need to invoke manually Sy;1 and
Sare to change the drug codes returned respectively by Saq
(Rxnorm’standard) and Sa2(NDC® standard) to codes accept-
able by S3 (ICD 7 standard). Thus, as the DaaS parameters
use concepts with different semantics, the physician needs to
manually select mediation service to solve semantic conflicts
(Drug classifications, ontological reference, unit,....etc) and
perform a meaningful composition as depicted in figure 1.
The mediation steps remains new steps not considered in the
previous solution when the client’s context differs from the
service providers.

Query : « check whether the medication
identified by the code ""801" to be prescribed to Joe
with the PIN=80 interacts with the ones currently
taken by that patient »

Fig. 1. The automatic generated DaaS compositions and the manually
invocation of mediation services

III. MODELS FOR ONTOLOGY, SERVICES AND QUERY

This section gives details on the models adopted in our
proposal.

A. Mediated ontology

Mediation Ontology expresses common entities and
the relations among those entities. It can be visualized
as a graph that contains nodes representing entities and
edges representing relations among the entities. A mediated
ontology, inspired from [2], [6], [7], includes two levels,
namely, the Domain and the Contextual levels. The two
levels have different namespaces for describing the domain
concepts at the generic and contextual levels respectively as
depicted in Figure 2. Such ontology should be defined by
domain experts and specified using RDF/RDFS.

Definition 1 (Domain Ontology): An RDFS Domain
Ontology is 6-tuple < C, D, OP, DP, SC, SP> where

4Querying mediated ontology allows Daa$S discovering, after that they will
be composed and executed according to the generated composition model.

Shttp://www.nlm.nih.gov/research/umls/RxNorm/

%The National Drug Code (NDC) is a unique product identifier used in the
United States for drugs

7ICD: International Common Denomination

(a) DO: HasName @

DO treats

DO:Has-SSN

@ DO: Takes

Do:Has-name

DO: Prescribed

DO:Interacts

DO:HasBrandname

DO:HasReference

o

N . Reference Subclasse
CO:HasDrugcode COHasDosage b———1 [| » property
- J ——» Property
/—coDrug-code CO <« Sibling
(b) A Dosage 2\ Relationship
CO:Drug-code —IDisjoint CO:Dosage l:l Datatype
rdfs: subClagsofrde :subClassof rdfs:subClassof rdfs: wbcmmf/ - Q Classe
@ e @ 77 rdfs: subClaisof
CO:
Has_funct co:
Has funct Has funcl Has_funct Haﬂ tuncl
NDC to ICD to Rxnorm
IcD RXNORM to ICD Uto 'V'g MgtoIU
ICD to - %
NDC
o J
Fig. 2. (a) Domain ontology and (b) Contextual Ontologies

C is a set of classes; D is a set of data types; OP
is a set of object properties; DP is a set of data type
properties; SC' is a relation over C x C, representing the
sub-class relationship between classes; SP is a relation over
(OP x OP) U (DP x DP), representing the sub-property
relationship between homogeneous properties. Figure 2.(a)
depicts the Domain Ontology, in which class nodes are
represented by ovals and data type nodes are represented by
rectangles®.

Definition 2 (Contextual Ontology): An RDFS Contextual
Ontology is 3 tuple < Cy, C;, 7 >, where:

e U, is a set of concepts that represent the different
conflictual aspects of a generic concept in DO. Each C
has a name and a set of sub concepts; the name represents
a conflictual aspect of the associated generic concept. In
the example depicted in Figure 2.(b), CO:Drug-code
and CO:Dosage are C concepts.

o C; is a distinct set of concepts having the same super-
concept Cy. By definition, C; are not allowed to have
sub-concepts. The properties of C; are defined as follows
: Name of concept; Id is the property that represents
the sequence number of a C; concept among its sib-
lings; A couple of properties reference the conversion
functions between objects of C; using their identifiers
as references. The function name denotes the conversion
from C; to subsequent or precedent sibling, for instance
NDC-to-ICD or Rxnorm-to-ICD as it follows the
mapping direction. Supported conversions between sib-
ling subclasses are n — 1 and 1 — 1.

8More explication about the Domain ontology can be found in [2]

o 7 refers to the sibling relationships on C; and Cy. The
relationships among elements of Cj is disjoint. However
elements of C; of a given C,; have peer relationship.
They have similar data semantics, so that conversion or
mapping can be performed among them.

Let us illustrate this definition with an example in Fig-
ure 2(b). The concept DO : Drug has a conflictual aspect called
“code” that is described as a member of C, in CO (i.e.
CO : Drug — Code). The defined concept CO:Drug—Code
can be represented differently in drug classifications, such as,
C; ={NDC,ICD, RxNorm,etc.}.

B. Conjunctive queries

In this paper we address conjunctive queries expressed using
SPARQL, the do facto query language for the Semantic Web®.

Definition 3: A conjunctive queries Q has the form: Q(X):-
< G(X,Y),Cy > where : Q(X) is the head of @, it has the
form of relational predicate and represents the result of query;
G(X,Y) is the body of @, it contains a set of RDF triples
where each triple is of the form (subject. property.object); X
and Y are called the distinguished and existential variables
respectively, X and Y are subjects and objects in the RDF
triples; C, = {C1,,C2,....,Cny} is a set of constraints
expressed on X and Y variables in terms of traditional intervals
or arithmetic expression like xfconstant , yfconstant and
where 0§ € {<,><,>} . Formulated queries use concepts
from DO ontology and properties from CO ontologies. Thus,
a query can be seen as a graph with two types of nodes;
class and literal nodes. Class nodes refer to classes in the

9SPARQL : http://www.w3.org/TR/rdf-sparql-query/

99

ontology. They are linked via object properties. Literal nodes
represent data types and are linked with class nodes via data
type properties. Figure 3 depicts the RDF graph of the query

(1 described in our scenario.

rdf:type Rdf:type
DO:hasreference

DO: |nlemas—> 2
%

Q ($w4,?7Y4,$21,7Y2):

?P . Rdf:itype . O:Patient

?P . DO:hasSSN . “80”

?P . DO:takes .?D1

?D1 . Rdf:type .DO:Drug

?D1 . CO:hasCode ?A

?A . Rdfitype CO:Drug-code €O: HasCode co: Hascme
?A . CO:codeValue ?y1

2D1 DOvintercats . 2D2 d!!y/é
?D2 . Rdf:type .DO:Drug CO:CodeValue
?D2 .CO:hasCode ?C mnype CO:Codavalue

?D2 .DO:hasreference ?y2

rdf:type

Do: HasSSN po: ‘akes

?C .Rdf:itype CO:Drug-code
?C .DO:codeValue “801”

l

Fig. 3. Query in the running example

C. Extended DaaS model

We deem appropriate to follow the work of [2] to formalize
the modeling of DaaS as PRV over a mediated ontology. As
a DaaS is modeled uniquely over the entities of DO, it does
not provides explicit semantics about its input and output
parameters, so we extend its description with additional
information describing more precisely how the semantics of
the DO concepts are described according to the CO. Then,
each DaaS model will be expressed as an adorned query [8].
The adornment is an annotation on variables, appearing in
input and output parameters of a given DaaS and expressed
in term of CO.

Definition 4 : The DaaS S; is described as view in a
Datalog-like notation over a DO and CO thus S; model is
Si(8X;,7Y;5) : — < Gj(X;,Y;,Z;),Coj > |ax,, ay, where:
X, and Y; are the sets of input and output variables of S
respectively; G; represents the functionality of the DaaS which
is described as a semantic relationship between input and
output variables; Z; is the set of existential variables relating
X; and Y;; Co; = {Coj,,...,Coj, } is a set of constraints
expressed on X;, Y; or Z; variables like xfconstant and
yfconstant where 0 € {<,><,>}; ax, and ay,, named
adornment, are a set of RDF triplets descfibing the semantic
(ontological reference, unit...etc) or domain expression of
X; and Y; respectively. Each adornment « is indicated by
the 2-tuple; < C,,C; > where Cy: is a CO concept that
represent the different conflictual aspects of X; or Yj; Cj is
a subconcept’s C|;.

Figure 4 gives an RDF view of the DaaS Sy; depicted in
Table 1 with an adornment depicted in red color.

D. Mediation service model

Mediation Services are also represented as a DaaS model
(expressed in term of CO only) whereas their adornments are
described as a set of RDF triples that define the conversion
function between peers of CO : C; sub-concepts from the
same CO : C, concept in a declarative way. We remind the

DO:Patient
Si1($2,?y) -
(?P.rdf:type.O:Patient) rdf: 'ype rdf: (ype

(?P.O:hasSSN.$z)
(?D. rdf:type.O:Drug)
(?P.O:takes ?D)
(?M.CO:HasCode.?C)
(?C rdfitype CO:Drug-code)

(?C rdf:itype CO:RxNorm) -
(?C CO:codeValue ?y)

o DO:takes

DO:hasSSN

CO: Hascode

@

_rdf:type~

Fig. 4. DaaS model

CO Codevalue

CO:Drug-Code

)

reader that the different C'O : C; are organized as an ordered
list, hence a conversion from one to another is always a
concatenation of conversion functions.

Definition 5 : Mediation service .S; is modeled as below:
Sj($]j,?0j) =< Gj(]j,Oj) > ‘OfFunc<Ij,Oj>; Where $Ij
and ?70; defines the input and output parameter respectively
required for using mediation service; & Fync<r;,0,> represents
the conversion function from CO : I; to CO : O;.

DO:Drug

Suz ($%,72) - -

(?D rdf:type DO:Drug) rdf:type

(?D CO:hasCode ?C) CO:HasDrugcode ’

(?C rdf:itype CO:NDC) _CO:HasDrugcode
(?C rdf:type CO:DrugCode) <1 B vy
(?C CO:Codevalue ?z) T Raftype Rdf:type

(?D CO:hasCode ?A) Rdftype Rdftype
(?A rdfitype CO:ICD) /
(?A rdf:type

CO:CodeDrugvalue .
? : CO:DrugCode) / @ CO:CodeDrugvalue
(?A CO:Codevalue $x) @ <
(CO:NDC CO:hasfunct CO:NDC-to-ICD) Cofunet

Fig. 5. Mediation service model
Figure 5 illustrates the RDF view of a mediation service
Shro utilized for converting a Drug-code from Sss to Ss.

IV. ARCHITECTURE AND QUERY PROCESSING

In this section, our reference architecture is presented and
supported by the role of each of its modules in the query
processing for the composition and the mediation of DaaS, as
shown in Figure 6.

A. Reference architecture

Data level: The lowest level of the architecture contains
information stored in different components. Service level:
The service level publishes the different services provided by
several systems to different actors. This level provides two
services categories. DaaS services category: provides specific
data from databases or retrieve a document complaint model.
Mediation services category: used mainly for mapping and
converting the output parameter of a specific DaaS to the input
parameter of a subsequent DaaS during service composition.
These services advertise their WSDL !° definitions into a ser-
vice registry. For automatic discovery, selection, composition

1OWSDL provides an XML-based grammar for describing a service inter-
face

and mediation of service, the service registry includes a set
of services descriptions (WSDL files) semantically annotated
with PRVs expressed in term of mediated ontology. Medi-
ated level: The mediated level is composed of two modules:
Mediated ontology: The mediated ontology contains all the
concepts and relations defined in domain. It will be used
to annotate and query services (DaaSs, mediation services).
We divide the ontology into two ontological levels which
cuts the concept space into a Domain Ontology (DO) and a
set of extensions named Contextual Ontologies (CO). DaaS
composition system : Contains four sub-modules: the Service
Locator Module (SLM), the Query Rewriting Module (QRM),
the Conflict Detection and Resolution Module (CDRM) and
the Query Plan Execution Module (QPEM). Interface level:
The aim of this layer is to provide the interface for user
whereby he can perform a query and receive results sets.

: . | Service
| Query ! Mediated |! Ea 1 |registry®
1_> 2P| ontolog® |, 7 :

1]
|

Services
instances

![Resuitat
7| resititution

Mediated DaaS

> <
Interface ontolog composition
level
Mediated Level

(a) : Mediated Ontology; Domain and Contextaul ontologies

(b) : Registry includes annotated DaaS and mediation services with PRVs,

Fig. 6.
mediation.

Architecture and query processing for DaaS composition and

B. Query processing for Data-as-a-Services composition

The complete query processing steps are depicted in Fig-
ure 6. They include four processes. First, query formulation
and service discovery, second, query rewriting, third, conflict
detection and resolution, and finally query execution and result
restitution. Firstly, query formulation and service discovery
: In (1) and (2) the user issues SPARQL queries in terms of
mediated ontology. Doing so, in (3) and (4) the SLM discovers
DaaSs from the service registry that partially or completely
matches the query entities (class nodes, object property nodes).
Secondly, query rewriting : In (5), given a query Q and a
set of DaaSs, the QRM rewrites Q as composition of DaaSs
whose union of RDF graphs covers the RDF graph of Q.
The composition query rewriting algorithm adopted in our
work has two main phases: Finding the covered query’s sub-
graphs and Composition generation as detailed in [2]. Thirdly,
conflict detection and resolution : In (6), considering each
combination generated by the QRM, which may encompasses
semantic conflicts, CDRM tests any conflict by comparing
output and input of subsequent DaaS in each query rewritings.

101

The conflict is resolved with the insertion of a call to mediation
services (7,8). Thus, in each DaaS combination, mediation
services are added to resolve conflicts (9). Fourthly, query
execution and result restitution: In (10, 11, 12), orchestrating
the conflict-free composite service that has been generated
requires a translation into an execution plan describing the
data and control flows. Finally, (in 13 and 14) the QPEM
synthesizes results and returns them to users through user
interface.

Assuming for the moment that the DaaSs to be used has
been found by a discovery process (3 and 4), such as by
querying a mediated ontology the client must perform all of
the actions cited above. Steps 1,2,3,4 and 5 have been imple-
mented in systems that is based on query rewriting approach
[2] to compose and execute DaaS composition model. Steps
6, 7, 8 and 9 achieved by CDRM are new steps required to do
this when the clients context differs from the service providers.

V. CONFLICTS DETECTION AND RESOLUTION

In this phase we provide details about semantics conflicts
detection and resolution in the DaaS combinations or rewrit-
ings generated by the QRM. Each rewriting will be passed
in the CDRM. The CDRM is based on two-stage algorithm.
The first stage (line 2 in algorithm 1) identifies the conflicts
between the CO classes from subsequent DaaS in each rewrit-
ing. The conflicts are stored in a temporary Conflict Object
set (COB) that stores mediation service parameters (input and
output) and the position of the conflict. In case where conflicts
are detected in any rewritings, the second component does
the Conflict Resolution Module invokes the mediation service
using the correspondences stored in COB (line 4 in algorithm

1.

Algorithm 1 Conflict Detection and Resolution algorithm

Require: R rewritings set, Meds mediation Service set.
Ensure: R’ rewritings without conflict set.
1: for each r € {R} do

2: COB= Detection(r)

3. if COB # () then

4 R’= Resolution(r,CO B,Meds)

5 else

6: R’ = r, No conflicts are detected in Rewriting r
7 end if

8: end for

9: return R’

A. Conflict Detection

Conflicts arise when data elements that have to be ex-
changed between two interconnected DaaSs are interpreted
differently. For this, as each DaaS service is adorned by
CO concepts, we will compare each adornment for each
interconnected DaaSs in each combination. For instance, let
CO : R; and CO : E; be subclasses of the same conflictual
class CO : Cy. Thus, if two interconnected DaaS Si and Sj
having respectively in their RDF descriptions, the concepts

CO : R; and CO : E; as adornment of their input and output
parameters, then, we have a semantic conflict of concept Cg;.
The semantic conflict type is a member of the set of conflictual
concepts Cy = {Dosage, DrugCode,,etc}. Indeed, the
algorithm 2 is divided into two steps. The first step (line 1-3
in algorithm 2) takes each rewriting and iteratively verify the
rule expressed previously for each parameter (adornment only)
exchanged between interconnected services to find out all pos-
sible conflicts. The second step (line 4 in algorithm 2) stores
conflict detected previously in the Conflicts-Objects set COB
identified as 3 tuple < O(S;),1(S;),index — position >
where O(S;) is an adorned output parameter of a given DaaS
source S; , I(S;) is an adorned input parameter of a given
DaaS target S;, Index — position indicates the position to
which the service of mediation will be introduced into each
combination.

Algorithm 2 Conflict Detection Algorithm
Require: r rewriting , ¢,z € N,
Ensure: C'OB Conflict Object Set ,
I: fori=1ton—1do
2: if Qutput.S; AND Input.S;i1 have the same conflict-
ual concept and different CO subclasses then
3: COB, = New conflict object(output.S;, input.S;41,
index-position(i+1)
4: Add (COB , COB,)
5. end if
6: end for
7: return COB

B. Conflict Resolution

In this stage, the algorithm 3 will cross the list of the
conflicting objects stored in COB for every rewriting and
determines for every conflicting object, the appropriate me-
diation services allowing its resolution. A mediation service
Sy allowing the resolution of a conflicting object COB3
between interconnected DaaS S; and S; is identified through:

o The input parameterCO : O(S;), which is the output of
Sis

 The output parameterC'O : I(S;) which is the input of
Sj;

o The conversion function as an adornment, defined as
property of CO : O(S;) and targets CO : I(S;).

Once the mediation service is specified the algorithm 3 will
invoke it automatically from the Mediation service register in
the rewriting according to index position stored previously.
We deem appropriate to put a simplification hypothesis that
each mediation service, in the register, resolves elementary
conflict between subsequent C'O; concepts from the same Cy
concept. Then, for each conflictual object COBi of COB,
the algorithm 3 insert in each rewriting the mediation service
allowing their resolution.

As a consequence, in the motivation example presented
in section II, the mediation services Sj;1(RxNorm-ICD) and

102

Algorithm 3 Conflict Resolution Algorithm

Require: r rewriting with conflict, COB a set of Conflict
Object, Sy, mediation service set, i, j, k, z € N.
Ensure: 7 rewriting without conflict.
1: for each COBz in COB do
2: {according to conflict object identify mapping function
(Output.S;,Input.S;) from CO ontology}
3 ADD (Syp, COi.indere) {ADD mediation service
Swi}
4: COB;.index = COB;.index+1 {increment the index
for the next mediation invocation}
end for
return r’ {Rewriting without conflict}

v

Sy2(NDC-ICD) are added to the first and second DaaS
compositions to resolve conflict as depicted in figure 1.
Afterwards, the obtained conflict-free compositions will be
translated into execution plans (i.e. orchestrations , represented
as Directed Acyclic Graph)describing the data and control
flows as explained in [2].

VI. IMPLEMENTATION

A prototype implementing the motivation example de-
scribed in Section II '! has been developed in Java 1.7
which can generate DaaS compositions that are executed in
the open source GlassFish tools bundle for eclipse 2. Our
prototype illustrate how users can formulate different queries
and how our system handles these queries to generate DaaS
compositions without conflict.

Figure 7 presents the user interface of composition and
mediation system. Users edit their queries in the Query Editor.
The panel on the left-hand side, in one hand, gives a view of
the DaaS and mediation services and in other hand, the DO
and CO ontologies. Executing the query specified in the query
editor results in the compositions shown in the “Compositions
and mediation” tab. Jena-2.6.4 is used as the reasoning engine
for RDFS 3.

Also, we created the Domain and the Contextual ontologies
with Protege tool 4.1'4. We have used DO and CO ontologies
to annotate the DaaS and mediation service description files
(i.e. WSDLs) with an extended PRVs views as depicted in
Figure 8 and Figure 9 respectively. The annotated files are
then published to a Web service registry. Thus, by extending
the parametrized RDF view by the CO concepts, the CDRM
performs reasoning on the CO ontology to detect Conflicts
within the generated rewriting. The CDRM invokes the me-
diated service which execute the predefined conversion or
mapping function defined in CO. In sum, the set of conflict
types identified in our solution is the set of conflictual concepts
CO : Cy (Drug-Code, dosage). However, other conflict types
in

The implementation test is available

https://sites.google.com/site/drugimplementationtest/.
2http://dlc.sun.com.edgesuite.net/glassfish/eclipse/
13Jena Homepage http://jena.sourceforge.net
http://protege.stanford.edu/

DaaS composition and mediation system

Ontologies ~ Services

EEX

Ortologies | Services

5% Daas serices

‘ & 511Service

Query Editor

|select 2z whers ¢
7P rdfitype O:Patient

7P DO:hasSSN !wl

2P DO:takes 2D1

7D1 rdf:type DO:Drug

?D1 CO:hasCods 24

74 RAf:type CO:Drug-cods
74 CO:codeValue 7yl

2D1 DO:intercats 202

7Dz rdf:type DO:Drug

2Dz
2Dz

5125ervice

~ @ S35ervice
& 521Service

| ® 5225ervice

DO:hasreference 2%
COihasCode 7C
rdf:typs CO:Drug-cods

2C DO:codeValue 2y2}

[Médiation services

-~ & SMiService

Query Results | Query rewritings | Compostions and medistions |

sM2Service
Rewriting(s)

Biefore introducing medistion services
Gilx) - S11Service(wl,7y1),521 Service(y) S3Service()

(After introducing meciation services:

Q) - S11Servicetwl Py1),521 Servicellyl Py2),SM1(ly2,7y2) S35ervicelly2, 72)

Biefore introdusing medistion services:
@l - S1Service(ul Fy1),5228ervicely) S3Service()

| Adtter introducing médistion services:

Gilx) - 511 Service(vl ,?y1),5228ervica(y!, 7y2) SM2(y2 7v2) S38ervice(y2,7z)

Biefore introducing medistion services
Gl - $12Service(lvl 7y1),521 Service(y1) S3Servics()

&

Fig. 7.

can be added as CO : Cy in order to resolve more semantic
conflicts. The CDRM translated the DaaS compositions gen-
erated by OQRM to produce DaaS compositions without any
semantic conflict. Based on the prototype system, the results of
experiment prove that the Service Composition and Mediation
engine is feasible and effective [9].

<? xml versicn="1.0" encoding="UTF-8" standalone="yes" ?>
<service>
<name>S21Service</name>
<view>select ?y where {?D1 rdf:type Drug ?D1 CO:HasCode ?C ?C rdf:type CO:Drug-code
?C rdf:type CO:NDC ?C CO:codeValue !x ?D1 interacts ?D2
?D2 rdf:type Drug ?D1 CO:HasCode ?A ?A rdf:type CO:Drug-code
?A rdf:type CO:RxNorm ?C CO:codeValue ?y}</view>
<namespace>http:/ /org.DaaS/ </namespace>
<Portname>S21Port</portname>
<endpointadd>http: / /localhost: 8080/ Daas/S21Service</endpointadd >
<Inmsgtag>ResultsByOrderl</inmsgtag>
<outmsgtag >ResultsByOrder1Response</outmsgtag>
</Service>

Fig. 8. Daa$ annotation

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<service>
<name>SM2Service</name>
<view>select ?x where { ?D rdf:type DO:Drug ?D CO:hasCode ?C ?C rdf:type CO:NDC
?C rdf:type CO:Drug-Code ?C CO:Codevalue ?z ?D CO:hasCode ?A
?A rdf:type CO:RxNorm ?A rdf:type CO:Drug-Code ?A CO:Codevalue
$x 7CO:NDC CO:hasfunct ?CO:RxNorm }</view>
<namespace>http: / /Services/ </namespace >
<portname>S§M2Port</portnames
<endpointadd >http:/ /localhost: 8080/ MediationServices/SM2Service</endpcintadd >
<inmsgtag>LoincToSnomed </inmsgtag>
<outmsgtag >LoincToSnomedResponse</cutmsgtag >
</service>

Fig. 9. Mediation service annotation

VII. RELATED WORK

This section explores related work on both query rewriting
techniques and semantic heterogeneity detection and resolu-
tion for service composition.

103

System Interface

Many works have proposed solution for automatic Web
service composition approaches based on query rewriting
approaches [2], [3], [4], [5]. Also these works are closest
to ours since all of these are targeted at DaaS services and
explicitly regard DaaS as Parametrized RDF views (SPARQL
queries) and transform the service composition problem into
a query rewriting problem. However, we can say that DaaS
composition systems proposed by these works don’t have
faced the data level heterogeneities at semantic level; unlike to
our work who proposes a service oriented approach to resolve
data level conflict by extending the PRVs service model for
DaaS and mediation service.

Besides, most of the efforts in Web services composition fo-
cus on automatically constructing the workflow logic by means
of ontologies, but only a few approaches have been developed
to handle semantic heterogeneity in Web services composition.
In this sense, [10], [11], [12], [13] has investigated the data-
level heterogeneity between Web services through mapping
relations to establish the direct correspondence between the
messages of two services. Also these works require Input-
Output service parameters to be annotated with classes from
the Domain ontology as semantics, which is too rigid. How-
ever, unlike to our approach these approaches are restricted to
simple composition scenarios in which only two services are
integrated.

Another set of work which is very related to our efforts
in the area of context representation for web service com-
position. The approaches discussed in [14] and [15] propose
a lightweight ontology which needs a small set of generic
concepts to capture contextual semantics. Unlike to [14], [15]
proposes solution where the data mediation is achieved by

only a mediator (external) Web service inserted between the
service during the composition execution. These services are
semantically described using the WSDL extensibility elements
and a domain ontology to which are associated the contextual
ontologies. Unlike to [15] proposition where the notion of
context is defined as a semantic object, we define declaratively
the context as the extension of an PRV (adornment).

VIII. CONCLUSION

In this paper, the DaaS service composition proposed in [2]
has been extended to handle the semantic conflict based on
a mediation service approach. Indeed, a two layers mediated
ontology has been proposed to extend the DaaS model and to
define a mediation services. The loosely coupled aspect of our
approach, allows keeping mediation concerns orthogonal from
functionalities of DaaS.

We have also performed preliminary evaluation that showed
satisfactory results. In the future, we plan to define an inter-
context semantic model to consider the detection and the
resolution of complex semantic conflict.

REFERENCES
[1] W. Zhao, C. Liu, and J. Chen, “Automatic composition of information-
providing web services based on query rewriting,” SCIENCE CHINA
Information Sciences, pp. 1-17, 2010, 10.1007/s11432-011-4341-5.
M. Barhamgi, D. Benslimane, and B. Medjahed, “A query rewriting
approach for web service composition,” IEEE Transactions on Services
Computing, vol. 3, pp. 206-222, 2010.
L. Zhou, H. Chen, J. Wang, and Y. Zhang, “Semantic web-based data
service discovery and composition,” Semantics, Knowledge and Grid,
International Conference on, vol. 0, pp. 213-219, 2008.
J. Lu, Y. Yu, and J. Mylopoulos, “A lightweight approach to semantic
web service synthesis,” in Web Information Retrieval and Integration,
2005. WIRI °05. Proceedings. International Workshop on Challenges in,
2005, pp. 240 — 247.
R. Vaculin, H. Chen, R. Neruda, and K. Sycara, “Modeling and
discovery of data providing services,” in Proceedings of the 2008
IEEE International Conference on Web Services. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 54-61. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1474549.1474834
S. Ram and J. Park, “Semantic conflict resolution ontology (scrol): an
ontology for detecting and resolving data and schema-level semantic
conflicts,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 16, no. 2, pp. 189 — 202, feb. 2004.
Q. Liu, T. Huang, S.-H. Liu, and H. Zhong, “An ontology-based
approach for semantic conflict resolution in database integration,”
Journal of Computer Science and Technology, vol. 22, pp.
218-227, 2007, 10.1007/s11390-007-9028-4. [Online]. Available:
http://dx.doi.org/10.1007/s11390-007-9028-4
D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati,
“A principled approach to data integration and reconciliation in data
warehousing,” in In Proceedings of the International Workshop on
Design and Management of Data Warehouses (DMDW99, 1999.
A. I. Amine, B. Djamal, B. Mahmoud, M. Mrissa, and A. Zaia,
“Electronic health record daas services composition based on query
rewriting,” Transactions on Large-Scale Data and Knowledge-Centered
Systems, vol. 4, pp. 95-123, 2011.
B. Spencer and Y. Liu, “Inferring data transformation rules to integrate
semantic web services,” in In International Semantic Web Conference.
Springer, 2004, pp. 456-470.
D. Gagne, M. Sabbouh, S. Bennett, and S. Powers, “Using data
semantics to enable automatic composition of web services,” in Services
Computing, 2006. SCC ’06. IEEE International Conference on, sept.
2006, pp. 438 —444.

[2

—

[3]

[4]

[5]

[6]

[71

[8

—

[91

[10]

[11]

104

[12] M. Sabbouh, J. L. Higginson, C. Wan, and S. R. Bennett, “Using
mapping relations to semi automatically compose web services,” in
Proceedings of the 2008 IEEE Congress on Services - Part I, ser.
SERVICES ’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 211-218. [Online]. Available: http://dx.doi.org/10.1109/SERVICES-
1.2008.12

M. Nagarajan, K. Verma, A. Sheth, and J. Miller, “Ontology driven
data mediation in web services,” International Journal of Web Services
Research, vol. 4, no. 4, pp. 104-126, 2007.

X. Li, S. Madnick, H. Zhu, and Y. Fan, “Reconciling Semantic Hetero-
geneity in Web Services Composition,” ICIS 2009 Proceedings, p. 20,
2009.

M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar, “A context
model for semantic mediation in web services composition,” in Con-
ceptual Modeling - ER 2006, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2006, vol. 4215, pp. 12-25.

[13]

[14]

[15]

