
Handling semantic conflicts in DaaS composition:
A service mediation approach

Idir Amine Amarouche∗, Michael Mrissa† and Zaia Alimazighi∗
∗Université des Sciences et de la Technologie H.Boumediene BP 32 El Alia 16111

Bab-Ezzouar, Alger, Algeria

Email: I.A.Amarouche@gmail.com , alimazighi@wissal.dz
†Université de Lyon 1, CNRS LIRIS-UMR5205 43, bd du 11 novembre 1918, Villeurbanne, F-69622, France

Email: Mrissa.Michael@liris.cnrs.fr

Abstract—In the domain of DaaS1, completing a query means
calling many services which are heterogeneous and built inde-
pendently from the context in which they will be used. This
heterogeneity leads to several compatibility problems during
DaaS composition. In order to solve them, we propose a semantic
description model which allows context characterization. The
proposed model enables data mediation in the composition
for resolving the conflicts caused by heterogeneities between
DaaSs. We rely on two-layered mediated ontology for deriving
automatically DaaSs compositions that incorporate necessary
mediation services. A preliminary evaluation has been performed
based on our initial investigation leading to better improvement.

I. INTRODUCTION

As commonly agreed, Web services fall into two categories

depending on their functionality world-altering services and

information-providing ones [1]. The latter ones are regarded as

specific database views with binding patterns. Thus, the DaaS

composition problem is reduced to a query rewriting problem

in the data integration field. Doing so, in the context of

semantic Web, several works [2], [3], [4], [5] proposed DaaS

compositions approaches with the help of query rewriting tech-

niques. The key idea behind these approaches is to describe

DaaSs as Parametrized RDF Views (PRVs) over mediated

ontology to capture their semantics in a declarative way.

Defined views are then used to annotate DaaSs description files

(e.g. WSDL files) and are exploited to automatically compose

DaaSs.

However, in the Internet environment there are several ref-

erence ontologies that formalize the same domain knowledge.

The domain ontology cannot provide contextual definitions

and contextual data structures to represent the diversity of

perceptions and focuses. Thus, the construction of a mediated

ontology unifying all existing representations of real-world

entities in the domain is a strong limitation to interoperability

between DaaS. As a result, even though we can automatize

DaaS composition by semantically annotating their descrip-

tions, the limitation cited previously raises semantic conflicts

between pieces of data exchanged during DaaS composition.

In order to overcome this problem, mediation mechanisms

based on service-oriented approach to implement mediators

must be inserted into DaaS compositions.

1DaaS: Data-as-a-Service or information-providing service

Despite the fact that previously cited works adopt a DaaS

model similar to PRVs 2 over a mediated ontology, they

differently cover the life cycle of a DaaS composition ([4],

[5] cover only DaaS discovery and selection but [2], [3] cover

the whole DaaS composition life cycle) and none of them had

considered the data mediation aspect in DaaS composition.

In general, existing composition frameworks do not include

the possibility to detect and resolve semantic conflict between

data exchanged during DaaS composition. Indeed, solving

semantic conflicts (ontological reference, unit,....etc) and per-

forming a meaningful composition have to be achieved by

describing the conversion of data between different semantic

representations.

In a nutshell, we propose an approach to integrate data

provided by several DaaSs using two-layered knowledge rep-

resentation, based on Domain Ontology (DO) and Contextual
Ontology (CO) for automatically deriving DaaSs composi-

tions with appropriate mediation services to carry out data

conversion between interconnected DaaS. Doing so, on the

basis of the DaaS model and the query rewriting approach for

DaaS composition proposed in [2], our main contributions in

the paper are summarized in two points. Firstly, we propose

an extension to the RDF-based DaaS model. Specifically,

we represent DaaSs and mediation service as an Extended
PRVs over ontologies (DO and CO). We adopt SPARQL, the

de facto query language for the Semantic Web, for posing

queries over DaaS services. Secondly, we propose an enhanced

query processing approach to automatically detect and resolve

semantic conflict in DaaS composition.

In our approach, SPARQL queries specified over a mediated

ontology, are reformulated in terms of available DaaSs based

on the defined PRVs. Thus, since the data provided and

required by individual DaaSs may be bound to different

semantics, we propose a mechanism that automatically inserts

mediation services in order to resolve the semantic incompat-

ibilities detected in the generated DaaS compositions.

The paper is organized as follows: In section II we present

a motivation example within service oriented system to in-

troduce the need for mediation service in DaaS composition

2Unlike [2] the previously cited works do not consider input-output seman-
tic relationship parameter in their DaaS models.

2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems

978-0-7695-4635-3/11 $26.00 © 2011 IEEE

DOI 10.1109/SITIS.2011.14

97

context. Section III gives an introduction to query and me-

diated ontology (DO and COs) models serving as a basis

for DaaS and mediation service models. Also, in this section

we propose an extension to the DaaS model that allows

automatic detection and resolution of data level conflict with

the help of mediation services. Section IV gives details on

the functioning of each component deployed in our proposal

and the role of each one of them in query processing for

DaaS composition. Section V describes details on the proposed

conflict detection and resolution algorithm. Section VI gives a

global view of our use case as an experimentation. Section VII

explores related work on semantic heterogeneity detection and

resolution during service composition based on query rewriting

approach. Finally we summarize and discuss our results in

Section VIII.

II. MOTIVATION EXAMPLE

In this section, we provide an illustrating example from

where the information needs of health actors are satisfied with

a service oriented approach based on solution proposed by

[2]. This approach raises up many problems, which motivate

our proposal to apply semantic Web technologies to support

mediation during DaaSs composition. Let us consider an e-

health system exporting the set of DaaSs presented in Table I

to query patient data. The description of DaaS can be seen

in Table I, where the symbols “$” and “?” denote inputs and

outputs of DaaSs, respectively. We assume that a physician

submits the following real life query : “Q1: check whether

the medication identified by the code “801” to be prescribed

to Joe with the PIN=80 3 interacts with the ones currently

taken by that patient”.

TABLE I
EXAMPLE OF DAASS AND MEDIATION SERVICES

Service Functionality Constraints and DaaS
provider

S11($x, ?y) Returns drugs y taken
by a given patient x

DaaS provider is hos-
pital1 and y.code ∈
{RxNorm}

S12($x, ?y) DaaS provider is hospital2
and y.code ∈ {NDC}

S21($x, ?y) Returns drugs y that in-
teract with a given one
x

x.code ∈ {RxNorm}
and y.code ∈
{RxNorm}

S22($x, ?y) x.code ∈ {NDC} and
y.code ∈ {NDC}

S3($x, $y) Returns reference infor-
mation y for drug x

x.code ∈ {ICD}

SM1($x, ?y) Returns drug code ex-
pressed in y code for
given drug code ex-
pressed in x code

x.code ∈ {RxNorm}
and y.code ∈ {ICD}

SM2($x, ?y) Returns drug code ex-
pressed in y code for
given drug code ex-
pressed in x code

x.code ∈ {NDC} and
y.code ∈ {ICD}

We assume for the moment that the physician will invoke

3Patient Identification Number

automatically4 the DaaS that provides the list of recent medica-

tion taken by Joe namely S11 or S12. Then, he will invoke S21

and S22 to retrieve the list of drugs that interact with the drugs

returned by S11 or S12 respectively. After that, he will invoke

S3 to retrieve more information about the drugs indicated by

each interaction returned by S21 and S22. However, as the

system does not take into consideration the semantic conflict

at data level, the physician need to invoke manually SM1 and

SM2 to change the drug codes returned respectively by S21

(Rxnorm5standard) and S22(NDC6 standard) to codes accept-

able by S3 (ICD 7 standard). Thus, as the DaaS parameters

use concepts with different semantics, the physician needs to

manually select mediation service to solve semantic conflicts

(Drug classifications, ontological reference, unit,....etc) and

perform a meaningful composition as depicted in figure 1.

The mediation steps remains new steps not considered in the

previous solution when the client’s context differs from the

service providers.

SM1

SM2

S11 S21

S22

Query : « check whether the medication
identified by the code ``801" to be prescribed to Joe
with the PIN=80 interacts with the ones currently

taken by that patient »

S12

S3

Fig. 1. The automatic generated DaaS compositions and the manually
invocation of mediation services

III. MODELS FOR ONTOLOGY, SERVICES AND QUERY

This section gives details on the models adopted in our

proposal.

A. Mediated ontology

Mediation Ontology expresses common entities and

the relations among those entities. It can be visualized

as a graph that contains nodes representing entities and

edges representing relations among the entities. A mediated

ontology, inspired from [2], [6], [7], includes two levels,

namely, the Domain and the Contextual levels. The two

levels have different namespaces for describing the domain

concepts at the generic and contextual levels respectively as

depicted in Figure 2. Such ontology should be defined by

domain experts and specified using RDF/RDFS.

Definition 1 (Domain Ontology): An RDFS Domain

Ontology is 6-tuple < C, D, OP, DP, SC, SP> where

4Querying mediated ontology allows DaaS discovering, after that they will
be composed and executed according to the generated composition model.

5http://www.nlm.nih.gov/research/umls/RxNorm/
6The National Drug Code (NDC) is a unique product identifier used in the

United States for drugs
7ICD: International Common Denomination

98

DO

Patient

Brandname

Drug

DO:Interacts
Physician

DO: treats DO: Prescribed

DO:HasBrandname

Name

Do:Has-name

Name
DO: HasName

DO: TakesDO:Has-SSN

SSN

CODosageCODrug-code

Classe

DatatypeCO:Drug-code

RxnormNDC

NDC to
ICD

CO:
Has_functCO:

Has_funct

rdfs:subClassof

CO:Dosage

MGIU

Mg to IUIU to Mg

CO:
Has_funct

CO:
Has_funct

rdfs:subClassof rdfs:subClassof

rdfs:subClassof

Disjoint

CO:HasDrugcode CO:HasDosage

Sibling
Relationship

Property

Subclasse
property

(a)

(b)

ICD

ICD to
RxNORM

rdfs:subClassof

CO:
Has_funct

Rxnorm
to ICD

ICD to
NDC

Reference

DO:HasReference

Fig. 2. (a) Domain ontology and (b) Contextual Ontologies

C is a set of classes; D is a set of data types; OP
is a set of object properties; DP is a set of data type

properties; SC is a relation over C × C, representing the

sub-class relationship between classes; SP is a relation over

(OP × OP) ∪ (DP × DP), representing the sub-property

relationship between homogeneous properties. Figure 2.(a)

depicts the Domain Ontology, in which class nodes are

represented by ovals and data type nodes are represented by

rectangles8.

Definition 2 (Contextual Ontology): An RDFS Contextual

Ontology is 3 tuple < Cg, Ci, τ >, where:

• Cg is a set of concepts that represent the different

conflictual aspects of a generic concept in DO. Each Cg

has a name and a set of sub concepts; the name represents

a conflictual aspect of the associated generic concept. In

the example depicted in Figure 2.(b), CO:Drug-code
and CO:Dosage are Cg concepts.

• Ci is a distinct set of concepts having the same super-

concept Cg . By definition, Ci are not allowed to have

sub-concepts. The properties of Ci are defined as follows

: Name of concept; Id is the property that represents

the sequence number of a Ci concept among its sib-

lings; A couple of properties reference the conversion

functions between objects of Ci using their identifiers

as references. The function name denotes the conversion

from Ci to subsequent or precedent sibling, for instance

NDC-to-ICD or Rxnorm-to-ICD as it follows the

mapping direction. Supported conversions between sib-

ling subclasses are n −→ 1 and 1 −→ 1.

8More explication about the Domain ontology can be found in [2]

• τ refers to the sibling relationships on Ci and Cg . The

relationships among elements of Cg is disjoint. However

elements of Ci of a given Cg have peer relationship.

They have similar data semantics, so that conversion or

mapping can be performed among them.

Let us illustrate this definition with an example in Fig-

ure 2(b). The concept DO:Drug has a conflictual aspect called

“code” that is described as a member of Cg in CO (i.e.

CO : Drug − Code). The defined concept CO:Drug-Code
can be represented differently in drug classifications, such as,

Ci = {NDC, ICD,RxNorm, etc.}.

B. Conjunctive queries

In this paper we address conjunctive queries expressed using

SPARQL, the do facto query language for the Semantic Web9.

Definition 3: A conjunctive queries Q has the form: Q(X):-

< G(X,Y), Cq > where : Q(X) is the head of Q, it has the

form of relational predicate and represents the result of query;

G(X,Y) is the body of Q, it contains a set of RDF triples

where each triple is of the form (subject. property.object); X

and Y are called the distinguished and existential variables

respectively, X and Y are subjects and objects in the RDF

triples; Cq = {C1q, C2q,, Cnq} is a set of constraints

expressed on X and Y variables in terms of traditional intervals

or arithmetic expression like xθconstant , yθconstant and

where θ ∈ {<,>≤,≥} . Formulated queries use concepts

from DO ontology and properties from CO ontologies. Thus,

a query can be seen as a graph with two types of nodes;

class and literal nodes. Class nodes refer to classes in the

9SPARQL : http://www.w3.org/TR/rdf-sparql-query/

99

ontology. They are linked via object properties. Literal nodes

represent data types and are linked with class nodes via data

type properties. Figure 3 depicts the RDF graph of the query

Q1 described in our scenario.

DO:hasreference

?y2

CO:CodeValue

rdf:type

rdf:type CO:CodeValue

rdf:type

CO: HasCode

DO: takes

DO:Drug

rdf:type

DO: HasSSN

‘’80'’

?y1

Q ($w1,?Y1,$z1,?Y2):
?P . Rdf:type . O:Patient
?P . DO:hasSSN . ‘‘80’’
?P . DO:takes .?D1
?D1 . Rdf:type .DO:Drug
?D1 . CO:hasCode ?A
?A . Rdf:type CO:Drug-code
?A . CO:codeValue ?y1
?D1 .DO:intercats . ?D2
?D2 . Rdf:type .DO:Drug
?D2 .CO:hasCode ?C
?D2 .DO:hasreference ?y2
?C .Rdf:type CO:Drug-code
?C .DO:codeValue ‘‘801’’

DO:Patient

‘’801'’

C

CO:Drug-code

A

CO: Drug-Code

D2DO:Interacts

Rdf:type

CO: HasCode

D1P

Fig. 3. Query in the running example

C. Extended DaaS model

We deem appropriate to follow the work of [2] to formalize

the modeling of DaaS as PRV over a mediated ontology. As

a DaaS is modeled uniquely over the entities of DO, it does

not provides explicit semantics about its input and output

parameters, so we extend its description with additional

information describing more precisely how the semantics of

the DO concepts are described according to the CO. Then,

each DaaS model will be expressed as an adorned query [8].

The adornment is an annotation on variables, appearing in

input and output parameters of a given DaaS and expressed

in term of CO.

Definition 4 : The DaaS Sj is described as view in a

Datalog-like notation over a DO and CO thus Sj model is

Sj($Xj , ?Yj) : − < Gj(Xj , Yj , Zj), Coj > |αXj
, αYj

where:

Xj and Yj are the sets of input and output variables of Sj

respectively; Gj represents the functionality of the DaaS which

is described as a semantic relationship between input and

output variables; Zj is the set of existential variables relating

Xj and Yj ; Coj = {Coj1 , ..., Cojn} is a set of constraints

expressed on Xj , Yj or Zj variables like xθconstant and

yθconstant where θ ∈ {<,>≤,≥}; αXj
and αYj

, named

adornment, are a set of RDF triplets describing the semantic

(ontological reference, unit...etc) or domain expression of

Xj and Yj respectively. Each adornment α is indicated by

the 2-tuple; < Cg, Ci > where Cg: is a CO concept that

represent the different conflictual aspects of Xj or Yj ; Ci is

a subconcept’s Cg .

Figure 4 gives an RDF view of the DaaS S11 depicted in

Table 1 with an adornment depicted in red color.

D. Mediation service model

Mediation Services are also represented as a DaaS model

(expressed in term of CO only) whereas their adornments are

described as a set of RDF triples that define the conversion

function between peers of CO : Ci sub-concepts from the

same CO : Cg concept in a declarative way. We remind the

CO:Codevalue
rdf:type

rdf:type

S11 ($z,?y) :-
(?P.rdf:type.O:Patient)
(?P.O:hasSSN.$z)
(?D. rdf:type.O:Drug)
(?P.O:takes ?D)
(?M.CO:HasCode.?C)
(?C rdf:type CO:Drug-code)
(?C rdf:type CO:RxNorm)
(?C CO:codeValue ?y)

CO:Drug-Code

CO: RxNorm
?y

C

DO:Patient DO:Drug

rdf:type

P D
DO:takes

rdf:type

DO:hasSSN

$z

CO: Hascode

Fig. 4. DaaS model

reader that the different CO : Ci are organized as an ordered

list, hence a conversion from one to another is always a

concatenation of conversion functions.

Definition 5 : Mediation service Sj is modeled as below:

Sj($Ij , ?Oj) : − < Gj(Ij , Oj) > |αFunc<Ij ,Oj>; Where $Ij
and ?Oj defines the input and output parameter respectively

required for using mediation service; αFunc<Ij ,Oj> represents

the conversion function from CO : Ij to CO : Oj .

CO:CodeDrugvalue

?x

CO:CodeDrugvalue

?z

CO:HasDrugcode CO:HasDrugcode

Rdf:type
Rdf:typeRdf:type

Rdf:type

CO:DrugCode

CO:ICD
CO:funct

CO:NDC

NDC-to-ICD

SM2 ($x,?z) :-
(?D rdf:type DO:Drug)
(?D CO:hasCode ?C)
(?C rdf:type CO:NDC)
(?C rdf:type CO:DrugCode)
(?C CO:Codevalue ?z)
(?D CO:hasCode ?A)
(?A rdf:type CO:ICD)
(?A rdf:type CO:DrugCode)
(?A CO:Codevalue $x)
(CO:NDC CO:hasfunct CO:NDC-to-ICD)

?C ?A

DO:Drug

D

rdf:type

Fig. 5. Mediation service model

Figure 5 illustrates the RDF view of a mediation service

SM2 utilized for converting a Drug-code from S22 to S3.

IV. ARCHITECTURE AND QUERY PROCESSING

In this section, our reference architecture is presented and

supported by the role of each of its modules in the query

processing for the composition and the mediation of DaaS, as

shown in Figure 6.

A. Reference architecture

Data level: The lowest level of the architecture contains

information stored in different components. Service level:
The service level publishes the different services provided by

several systems to different actors. This level provides two

services categories. DaaS services category: provides specific

data from databases or retrieve a document complaint model.

Mediation services category: used mainly for mapping and

converting the output parameter of a specific DaaS to the input

parameter of a subsequent DaaS during service composition.

These services advertise their WSDL 10 definitions into a ser-

vice registry. For automatic discovery, selection, composition

10WSDL provides an XML-based grammar for describing a service inter-
face

100

and mediation of service, the service registry includes a set

of services descriptions (WSDL files) semantically annotated

with PRVs expressed in term of mediated ontology. Medi-
ated level: The mediated level is composed of two modules:

Mediated ontology: The mediated ontology contains all the

concepts and relations defined in domain. It will be used

to annotate and query services (DaaSs, mediation services).

We divide the ontology into two ontological levels which

cuts the concept space into a Domain Ontology (DO) and a

set of extensions named Contextual Ontologies (CO). DaaS
composition system : Contains four sub-modules: the Service

Locator Module (SLM), the Query Rewriting Module (QRM),

the Conflict Detection and Resolution Module (CDRM) and

the Query Plan Execution Module (QPEM). Interface level:
The aim of this layer is to provide the interface for user

whereby he can perform a query and receive results sets.

Interface
level

Mediated Level

DaaS
composition Service level Data

level

User Mediated
Ontolog(a)2

Service
registry(b)

SLM

Mediated
ontology

3

4,8

QRM

CDRM

67,9

QPEM

10

Doc

DB

Services
instances11

12

Query
interface1

Resultat
resititution 13

14

5

(a) : Mediated Ontology; Domain and Contextaul ontologies

(b) : Registry includes annotated DaaS and mediation services with PRVs.

Fig. 6. Architecture and query processing for DaaS composition and
mediation.

B. Query processing for Data-as-a-Services composition

The complete query processing steps are depicted in Fig-

ure 6. They include four processes. First, query formulation

and service discovery, second, query rewriting, third, conflict

detection and resolution, and finally query execution and result

restitution. Firstly, query formulation and service discovery
: In (1) and (2) the user issues SPARQL queries in terms of

mediated ontology. Doing so, in (3) and (4) the SLM discovers

DaaSs from the service registry that partially or completely

matches the query entities (class nodes, object property nodes).

Secondly, query rewriting : In (5), given a query Q and a

set of DaaSs, the QRM rewrites Q as composition of DaaSs

whose union of RDF graphs covers the RDF graph of Q.

The composition query rewriting algorithm adopted in our

work has two main phases: Finding the covered query’s sub-
graphs and Composition generation as detailed in [2]. Thirdly,

conflict detection and resolution : In (6), considering each

combination generated by the QRM, which may encompasses

semantic conflicts, CDRM tests any conflict by comparing

output and input of subsequent DaaS in each query rewritings.

The conflict is resolved with the insertion of a call to mediation

services (7,8). Thus, in each DaaS combination, mediation

services are added to resolve conflicts (9). Fourthly, query
execution and result restitution: In (10, 11, 12), orchestrating

the conflict-free composite service that has been generated

requires a translation into an execution plan describing the

data and control flows. Finally, (in 13 and 14) the QPEM

synthesizes results and returns them to users through user

interface.

Assuming for the moment that the DaaSs to be used has

been found by a discovery process (3 and 4), such as by

querying a mediated ontology the client must perform all of

the actions cited above. Steps 1,2,3,4 and 5 have been imple-

mented in systems that is based on query rewriting approach

[2] to compose and execute DaaS composition model. Steps

6, 7, 8 and 9 achieved by CDRM are new steps required to do

this when the clients context differs from the service providers.

V. CONFLICTS DETECTION AND RESOLUTION

In this phase we provide details about semantics conflicts

detection and resolution in the DaaS combinations or rewrit-

ings generated by the QRM. Each rewriting will be passed

in the CDRM. The CDRM is based on two-stage algorithm.

The first stage (line 2 in algorithm 1) identifies the conflicts

between the CO classes from subsequent DaaS in each rewrit-

ing. The conflicts are stored in a temporary Conflict Object

set (COB) that stores mediation service parameters (input and

output) and the position of the conflict. In case where conflicts

are detected in any rewritings, the second component does

the Conflict Resolution Module invokes the mediation service

using the correspondences stored in COB (line 4 in algorithm

1).

Algorithm 1 Conflict Detection and Resolution algorithm

Require: R rewritings set, Meds mediation Service set.

Ensure: R’ rewritings without conflict set.

1: for each r ∈ {R} do
2: COB= Detection(r)

3: if COB �= ∅ then
4: R’= Resolution(r,COB,Meds)

5: else
6: R′ = r, No conflicts are detected in Rewriting r

7: end if
8: end for
9: return R′

A. Conflict Detection

Conflicts arise when data elements that have to be ex-

changed between two interconnected DaaSs are interpreted

differently. For this, as each DaaS service is adorned by

CO concepts, we will compare each adornment for each

interconnected DaaSs in each combination. For instance, let

CO : Ri and CO : Ei be subclasses of the same conflictual

class CO : Cg . Thus, if two interconnected DaaS Si and Sj
having respectively in their RDF descriptions, the concepts

101

CO : Ri and CO : Ei as adornment of their input and output

parameters, then, we have a semantic conflict of concept Cgi.
The semantic conflict type is a member of the set of conflictual

concepts Cg = {Dosage,DrugCode,, etc}. Indeed, the

algorithm 2 is divided into two steps. The first step (line 1-3

in algorithm 2) takes each rewriting and iteratively verify the

rule expressed previously for each parameter (adornment only)

exchanged between interconnected services to find out all pos-

sible conflicts. The second step (line 4 in algorithm 2) stores

conflict detected previously in the Conflicts-Objects set COB
identified as 3 tuple < O(Si), I(Sj), index − position >
where O(Si) is an adorned output parameter of a given DaaS

source Si , I(Sj) is an adorned input parameter of a given

DaaS target Sj , Index − position indicates the position to

which the service of mediation will be introduced into each

combination.

Algorithm 2 Conflict Detection Algorithm

Require: r rewriting , i, z ∈ N,

Ensure: COB Conflict Object Set ,

1: for i = 1 to n− 1 do
2: if Output.Si AND Input.Sj+1 have the same conflict-

ual concept and different CO subclasses then
3: COBz = New conflict object(output.Si, input.Si+1,

index-position(i+1)

4: Add (COB , COBz)

5: end if
6: end for
7: return COB

B. Conflict Resolution

In this stage, the algorithm 3 will cross the list of the

conflicting objects stored in COB for every rewriting and

determines for every conflicting object, the appropriate me-

diation services allowing its resolution. A mediation service

SMn allowing the resolution of a conflicting object COBi
between interconnected DaaS Si and Sj is identified through:

• The input parameterCO : O(Si), which is the output of

Si;

• The output parameterCO : I(Sj) which is the input of

Sj ;

• The conversion function as an adornment, defined as

property of CO : O(Si) and targets CO : I(Sj).

Once the mediation service is specified the algorithm 3 will

invoke it automatically from the Mediation service register in

the rewriting according to index position stored previously.

We deem appropriate to put a simplification hypothesis that

each mediation service, in the register, resolves elementary

conflict between subsequent COi concepts from the same Cg

concept. Then, for each conflictual object COBi of COB,

the algorithm 3 insert in each rewriting the mediation service

allowing their resolution.

As a consequence, in the motivation example presented

in section II, the mediation services SM1(RxNorm-ICD) and

Algorithm 3 Conflict Resolution Algorithm

Require: r rewriting with conflict, COB a set of Conflict

Object, SMn mediation service set, i, j, k, z ∈ N.

Ensure: r′ rewriting without conflict.

1: for each COBz in COB do
2: {according to conflict object identify mapping function

(Output.Si,Input.Sj) from CO ontology}
3: ADD (SMn, COi.indexe) {ADD mediation service

SMi}
4: COBi.index = COBi.index+1 {increment the index

for the next mediation invocation}
5: end for
6: return r’ {Rewriting without conflict}

SM2(NDC-ICD) are added to the first and second DaaS

compositions to resolve conflict as depicted in figure 1.

Afterwards, the obtained conflict-free compositions will be

translated into execution plans (i.e. orchestrations , represented

as Directed Acyclic Graph)describing the data and control

flows as explained in [2].

VI. IMPLEMENTATION

A prototype implementing the motivation example de-

scribed in Section II 11 has been developed in Java 1.7

which can generate DaaS compositions that are executed in

the open source GlassFish tools bundle for eclipse 12. Our

prototype illustrate how users can formulate different queries

and how our system handles these queries to generate DaaS

compositions without conflict.

Figure 7 presents the user interface of composition and

mediation system. Users edit their queries in the Query Editor.

The panel on the left-hand side, in one hand, gives a view of

the DaaS and mediation services and in other hand, the DO

and CO ontologies. Executing the query specified in the query

editor results in the compositions shown in the “Compositions

and mediation” tab. Jena-2.6.4 is used as the reasoning engine

for RDFS 13.

Also, we created the Domain and the Contextual ontologies

with Protege tool 4.114. We have used DO and CO ontologies

to annotate the DaaS and mediation service description files

(i.e. WSDLs) with an extended PRVs views as depicted in

Figure 8 and Figure 9 respectively. The annotated files are

then published to a Web service registry. Thus, by extending

the parametrized RDF view by the CO concepts, the CDRM
performs reasoning on the CO ontology to detect Conflicts

within the generated rewriting. The CDRM invokes the me-

diated service which execute the predefined conversion or

mapping function defined in CO. In sum, the set of conflict

types identified in our solution is the set of conflictual concepts

CO : Cg (Drug-Code, dosage). However, other conflict types

11The implementation test is available in
https://sites.google.com/site/drugimplementationtest/.

12http://dlc.sun.com.edgesuite.net/glassfish/eclipse/
13Jena Homepage http://jena.sourceforge.net
14http://protege.stanford.edu/

102

Fig. 7. System Interface

can be added as CO : Cg in order to resolve more semantic

conflicts. The CDRM translated the DaaS compositions gen-

erated by QRM to produce DaaS compositions without any

semantic conflict. Based on the prototype system, the results of

experiment prove that the Service Composition and Mediation

engine is feasible and effective [9].

Fig. 8. DaaS annotation

Fig. 9. Mediation service annotation

VII. RELATED WORK

This section explores related work on both query rewriting

techniques and semantic heterogeneity detection and resolu-

tion for service composition.

Many works have proposed solution for automatic Web

service composition approaches based on query rewriting

approaches [2], [3], [4], [5]. Also these works are closest

to ours since all of these are targeted at DaaS services and

explicitly regard DaaS as Parametrized RDF views (SPARQL

queries) and transform the service composition problem into

a query rewriting problem. However, we can say that DaaS

composition systems proposed by these works don’t have

faced the data level heterogeneities at semantic level; unlike to

our work who proposes a service oriented approach to resolve

data level conflict by extending the PRVs service model for

DaaS and mediation service.

Besides, most of the efforts in Web services composition fo-

cus on automatically constructing the workflow logic by means

of ontologies, but only a few approaches have been developed

to handle semantic heterogeneity in Web services composition.

In this sense, [10], [11], [12], [13] has investigated the data-

level heterogeneity between Web services through mapping

relations to establish the direct correspondence between the

messages of two services. Also these works require Input-

Output service parameters to be annotated with classes from

the Domain ontology as semantics, which is too rigid. How-

ever, unlike to our approach these approaches are restricted to

simple composition scenarios in which only two services are

integrated.

Another set of work which is very related to our efforts

in the area of context representation for web service com-

position. The approaches discussed in [14] and [15] propose

a lightweight ontology which needs a small set of generic

concepts to capture contextual semantics. Unlike to [14], [15]

proposes solution where the data mediation is achieved by

103

only a mediator (external) Web service inserted between the

service during the composition execution. These services are

semantically described using the WSDL extensibility elements

and a domain ontology to which are associated the contextual

ontologies. Unlike to [15] proposition where the notion of

context is defined as a semantic object, we define declaratively

the context as the extension of an PRV (adornment).

VIII. CONCLUSION

In this paper, the DaaS service composition proposed in [2]

has been extended to handle the semantic conflict based on

a mediation service approach. Indeed, a two layers mediated

ontology has been proposed to extend the DaaS model and to

define a mediation services. The loosely coupled aspect of our

approach, allows keeping mediation concerns orthogonal from

functionalities of DaaS.

We have also performed preliminary evaluation that showed

satisfactory results. In the future, we plan to define an inter-

context semantic model to consider the detection and the

resolution of complex semantic conflict.

REFERENCES

[1] W. Zhao, C. Liu, and J. Chen, “Automatic composition of information-
providing web services based on query rewriting,” SCIENCE CHINA
Information Sciences, pp. 1–17, 2010, 10.1007/s11432-011-4341-5.

[2] M. Barhamgi, D. Benslimane, and B. Medjahed, “A query rewriting
approach for web service composition,” IEEE Transactions on Services
Computing, vol. 3, pp. 206–222, 2010.

[3] L. Zhou, H. Chen, J. Wang, and Y. Zhang, “Semantic web-based data
service discovery and composition,” Semantics, Knowledge and Grid,
International Conference on, vol. 0, pp. 213–219, 2008.

[4] J. Lu, Y. Yu, and J. Mylopoulos, “A lightweight approach to semantic
web service synthesis,” in Web Information Retrieval and Integration,
2005. WIRI ’05. Proceedings. International Workshop on Challenges in,
2005, pp. 240 – 247.

[5] R. Vaculı́n, H. Chen, R. Neruda, and K. Sycara, “Modeling and
discovery of data providing services,” in Proceedings of the 2008
IEEE International Conference on Web Services. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 54–61. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1474549.1474834

[6] S. Ram and J. Park, “Semantic conflict resolution ontology (scrol): an
ontology for detecting and resolving data and schema-level semantic
conflicts,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 16, no. 2, pp. 189 – 202, feb. 2004.

[7] Q. Liu, T. Huang, S.-H. Liu, and H. Zhong, “An ontology-based
approach for semantic conflict resolution in database integration,”
Journal of Computer Science and Technology, vol. 22, pp.
218–227, 2007, 10.1007/s11390-007-9028-4. [Online]. Available:
http://dx.doi.org/10.1007/s11390-007-9028-4

[8] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati,
“A principled approach to data integration and reconciliation in data
warehousing,” in In Proceedings of the International Workshop on
Design and Management of Data Warehouses (DMDW99, 1999.

[9] A. I. Amine, B. Djamal, B. Mahmoud, M. Mrissa, and A. Zaia,
“Electronic health record daas services composition based on query
rewriting,” Transactions on Large-Scale Data and Knowledge-Centered
Systems, vol. 4, pp. 95–123, 2011.

[10] B. Spencer and Y. Liu, “Inferring data transformation rules to integrate
semantic web services,” in In International Semantic Web Conference.
Springer, 2004, pp. 456–470.

[11] D. Gagne, M. Sabbouh, S. Bennett, and S. Powers, “Using data
semantics to enable automatic composition of web services,” in Services
Computing, 2006. SCC ’06. IEEE International Conference on, sept.
2006, pp. 438 –444.

[12] M. Sabbouh, J. L. Higginson, C. Wan, and S. R. Bennett, “Using
mapping relations to semi automatically compose web services,” in
Proceedings of the 2008 IEEE Congress on Services - Part I, ser.
SERVICES ’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 211–218. [Online]. Available: http://dx.doi.org/10.1109/SERVICES-
1.2008.12

[13] M. Nagarajan, K. Verma, A. Sheth, and J. Miller, “Ontology driven
data mediation in web services,” International Journal of Web Services
Research, vol. 4, no. 4, pp. 104–126, 2007.

[14] X. Li, S. Madnick, H. Zhu, and Y. Fan, “Reconciling Semantic Hetero-
geneity in Web Services Composition,” ICIS 2009 Proceedings, p. 20,
2009.

[15] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar, “A context
model for semantic mediation in web services composition,” in Con-
ceptual Modeling - ER 2006, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2006, vol. 4215, pp. 12–25.

104

