2011 IEEE International Conference on Services Computing

Optimizing DaaS Web Service based Data Mashups

Mahmoud Barhamgi, Chirine Ghedira, Djamal Benslimane, Salah-Eddine Tbahriti, Michael Mrissa

Claude Bernard Lyonl University, 69622 Villeurbanne, France
firstname.lastname@liris.cnrs.fr

Abstract—Data Mashup is a special class of mashup
application that combines information on the fly from multiple
data sources to respond to transient business needs. In this
paper, we propose two optimization algorithms to optimize
Data Mashups. The first allows for selecting the minimum
number of services required in the data mashup. The second
exploits the services’ constraints on inputs and outputs to filter
out superfluous calls to component services in the data
mashup. These two algorithms are evaluated and tested in the
healthcare application domain, and the reported results are
very promising.

Keywords—Services composition, Optimization, Query
rewriting, Data Services.

1. Introduction

Data mashup is a special class of mashup application
that combines information from several data sources to
meet user requests [9,3]. Typically, data sources are
provided through Web Services; this type of Web services
is known as DaaS (Data-as-a-Service) Web services [5,6].
Data mashup has become so popular over the last few
years; its applications vary from addressing transient
business needs in modern enterprises [9] to conducting
scientific research in e-science communities [3].

Informally speaking, a data mashup represents a
“parameterized query” over a set of DaaS services. For
example, one can “mash-up” the DaaS services in Table-
1, to answer parameterized queries like: Q: “what are the
medications Y that may interact with a given medication
X?”, where the value of X is specified by the user at the
execution time of the data mashup. To answer O, the
services can be composed as follows: one (or more) of the
services {S;, S, S5} need to be invoked with the
medication identifier specified by the user, then one (or
more) of the services {S;, S} are invoked with the
returned interacting medications to retrieve detailed
information about those interacting medications.

One of the most challenging problems when answering
parameterized queries over DaaSs (i.e. constructing data
mashups) is that component services cannot be chosen
precisely at the composition time. Consider for example
the query Q. Suppose also that the mashup creator is
interested in studying the medications whose codes
belong to a specific range of values (both for the specified
medications and their interacting ones), say for instance,
the medications whose code values are between /100/ and
/300/, (i.e. she will invoke the obtained mashup with
values inside the range [100, 300]). The plan for the
mashup answering the query is shown in Figure-1, and is
detailed as follows. The code of the given medication will

978-0-7695-4462-5/11 $26.00 © 2011 IEEE
DOI 10.1109/SCC.2011.72

464

be used to invoke S; and S,. Though they have similar
semantics, both of these services are included in the plan
because the value of the medication’s code is not known
at the mashup creation time; i.e. the plan needs to include
both of these services (which cover different input values
as specified by the Constraints column in Table-1) to
cover all potential input values. The services S; and S, are
invoked to retrieve the codes of interacting medications;
these two services are both included because the value of
the medication’s code is not known at the mashup
creation time. Note that the service Ss is excluded because
its ranges of accepted input values and returned output
values do not intersect with those specified in the query
(medications’ codes must be inside the range [100, 300]).

Constraints on
Service Description
inputs/outputs
Si($a,7b,2¢c) | Returns the name b and a < 200
reference information ¢
S»($a,7b,2c) | of a given medication a > 200
(identified by its code a)

? < <
S4(3a,%) Returns interacting a = 200,b < 400
S4($a,?b) medications (identified a > 200,b < 400

by their codes b) o.f a 800> a= 600, 800
S5($a,2b) given medication
(identified by its code a) >b>600

Table-1: A Set of DaaS Web Services

The example shows that multiple similar DaaS
services may be mapped to the same part of the query
(e.g. S, Sy, Sshave the same semantics, they all return the
interacting medications of a given one), but cover
different ranges of accepted input values and provide
different ranges of output values (see the Constraints
column in Table-1). The issue the mashup creator is
confronted to is how to choose the minimum number of
similar services that must be combined together to cover
completely (if possible) the value ranges implied by the
mashup query. For example, the mashup creator needs to
realize that only the services S; and S, are needed to cover
“completely” the corresponding part of the query (see
Figure-1); the service S5 needs to be eliminated because it
covers value ranges that are irrelevant to the query. Note
that even if it was covering relevant ranges, if S; and S,
were already selected, then S5 would be redundant as the
corresponding portion of the query is already completely
covered by the combination of S; and S;. By redundant
we mean that the tuples returned by S5 and which belong
to O, would be also returned by S; and S,
Note that the general case is even harder since DaaS

IEEE
computer
® psouety

services may have multiple inputs and multiple outputs
associated with value constraints that intersect partially
with the query’s constraints, and the mashup creator
should be able to select the “minimum” number of
services required for his needs. Furthermore, mashup
queries may be complex; comprising many sub-queries,
matching hundreds of DaaS services, each. This issue is
very important since adding services more than needed
(e.g. adding Ssto S, Sy) would impact badly the execution
time of the mashup without contributing new tuples on
the mashup’s output. Calls to redundant services are
considered as waste of time.

Figure 1: A plan for a data mashup that would return the
interacting medications for any given medication with code value
within the range [100, 300].

In a previous work [1] we proposed an approach to
mash-up DaaS Web services using RDF query rewriting
techniques. In this paper, we extend that approach with
optimization techniques to speed up the execution of data
mashups. The contributions of this paper over our
previous work are the following:

e We propose an efficient algorithm to select the
minimum number of DaaS services matching the
different portions of a mashup query. The algorithm
improves considerably the execution time of mashups.
We improve the efficiency of our previous mashup
algorithm by introducing the use of Virtual RDF
Views and by clustering services prior to receiving
mashup queries.

We exploit the services’ data value constraints on
inputs and outputs to optimize the mashup
composition plan.

We evaluated the performance gain introduced by our
algorithms by a set of experiments conducted in the
healthcare application domain.

The rest of the paper is organized as follows. In
section 2, we extend our approach to data mashup with a
virtual view layer to improve its efficiency. We present
also our algorithm for the selection of the minimum set of
services. In Section 3, we exploit the services constraints
to optimize mashups. In Section 4 we evaluate our
algorithms. In Sections 5 we review related works. In
Section 6 we conclude the paper with our perspectives.

465

2. A Declarative Approach to Mash-up DaaS

Services

In a previous work [1] we presented a generic approach
to compose DaaS Web services based on RDF query
rewriting techniques. In that work, DaaS services are
modeled as RDF views over domain ontologies to capture
their semantics. These RDF views are used to annotate the
service description files. The approach exploits these
views to rewrite the mashup query directly in terms of
available DaaS Web services. However, this may not be
always desirable because the general problem of query
rewriting has a high complexity of the order NP-Complete
[8] since it may involve searching through an exponential
number of rewritings. This may present an important
scalability problem for the mashup algorithm when the
number of available DaaS Web services is large. In this
paper, we extend our previous approach with a virtual
layer to increase its scalability. Figure-2 presents the
extended data mashup approach. The approach follows a
three-level query model detailed as follows:

o The Query Level: This level consists of a set of domain
ontologies that give users an interface for formulating and
submitting their declarative mashup queries. Mashup
queries are expressed in SPARQL, the do facto query
language for the Semantic Web.

e The Virtual Level: This level consists of the different
“meaningful ” parameterized RDF views that can be
implemented by concrete DaaS Web services within an
application domain. The virtual RDF views represent
meaningful queries the data holders would share with
each other in a given application domain. In the
healthcare application domain, the examples include:
“find the interacting medications of a given one”, “find
the different information about a given medication”, etc).
The rationale behind the use of the virtual views is that in
real-life application domains multiple service providers
may provide the same DaaS service (i.e. they implement
the same virtual view), perhaps with different quality
criteria. Meaningful virtual RDF views may be defined by
domain experts and stored by the proposed mashup
system.

o The Concrete Level: This level represents the space of
the DaaS Web services offered on the Web for a
particular domain of application (i.e. the potential
candidates for answering data mashup queries). DaaS
services in this level are represented by their
parameterized RDF views. Concrete DaaS services are
clustered in groups; each group represents a virtual
parameterized RDF view. A concrete DaaS Web service
may further personalize its corresponding virtual RDF
view by specifying value constraints (i.e. order and
equality constraints, e.g. a > 10) on its accepted input
parameters and the returned output parameters. It may
also characterize the quality of the information it provides
[17] (via a set of DQ Data Quality metrics).

Domain

Ontology
‘ Query Level

Virtual Parameterized
Virtual Level RDF Views

Concrete
Services

Concrete Level

Figure 2: Three-level Query Scheme: (a) Ontologies from the query level are used to formulate mashup queries. (b) The query model rewrites
queries in term of the virtual parameterized views from the virtual level. (¢) The model then matches virtual views to concrete DaaS Web services

on the concrete level.

In Figure-2, we illustrate how DaaS services are
queried and composed in this data mashup approach. As
the figure shows, the user formulates her queries over
domain ontologies (using SPARQL query language).
Next, the posed mashup query is rewritten in terms of the
virtual parameterized RDF views (which represent the
meaningful queries in a given application domain) using
an RDF query rewriting algorithm that we have devised
for that purpose [1]. The virtual RDF views that
participate in the obtained rewriting will be matched
against the RDF views of concrete services from the
concrete space. Matching DaaS services will be used in
constructing the mashup that will answer the posed query.
In such approach, data mashup queries will be always
resolved in a reasonable time due to the following
reasons: (i) the number of logical views (i.e. the virtual
RDF views) is limited compared to concrete DaaS
services, (i) it suffices to pick up one rewriting only out
of the possible ones and match it to concrete DaaS
services— (i.e. the rewriting algorithm can stop as soon as
the first rewriting is available), (iif) concrete DaaS Web
services implementing a given virtual RDF view can be
ranked and classified prior fo query resolution based on
their qualities.

We illustrate these steps based on the running example
in the following sub sections. Since the paper focuses on
the optimization issue by selecting the minimum number
of similar services participating in a mashup (during the
matching phase), we will show briefly how the mashup
query is rewritten in terms of virtual parameterized RDF
views (for deeper details about the rewriting algorithm the
reader is referred to [1]), then we will devote the most of
our talk to the matching phase.

2.1. RDF Query Rewriting

In this phase the query is rewritten in terms of the
virtual parameterized RDF views. Figure-3 shows the

Service Matching
N i "_\ « . Data

466

%

| Query Formulation

¥SPARQL Query
RDF Query
Rewriting

v

]

« Rewriting

v

Mashup

query in the running example along with a set of virtual
parameterized RDF views. The view V; returns the
different information about a given medication, ¥, returns
the interacting medications of a given one (input
parameters are prefixed with “$”, and output parameters
with “?””). The query rewriting algorithm in [1] compares
the graph of the query to those of the virtual RDF views
to determine the portions of the query (i.e. the sub-graphs)
that can be covered by individual RDF views. It
establishes also the partial containment mappings between
the query and the views. Table-2 shows these mappings
between the query and the views in the running example.
The view ¥, can be used to cover the class-nodes' Mo
and Mo (we use Q.C; to denote the class-node C; in the
RDF graph of Q); the view V, can be used to cover the
object property interacts. Both combined can be used to
cover the query (cover the whole list of class-nodes and
object properties of the query). The obtained rewriting is
the following:

Q ($Wla?yln?zln?WZn?YZa?ZZ)
V2($W1,?W2) A V1($W2, ?yZ,?Zz)

V1($W1, ?yl,?Zl) A

Covered nodes and

Virtual Views Object properties

Variables Mapping

Vi($wi, ?2y1,221) Miq—Myi, wi—a, yi—b, | Mig (Swi, ?y1,721)
Z1—C

Vi($wa, ?y2,725) Mq—Myi, wo—a, ya—b, | Mag (Swa, ?y2,725)
Zp—C

Vz($W|,?Wz) MIQ—>M|V2, MzQ—>M2v2,

w;—a, Wo,—b

Interacts(Miq, Maq)

Table-2: The query sub graphs that are covered by virtual RDF
views along with the variables mappings

2.2. Service Matching

In this phase the virtual parameterized RDF views
participating in the obtained rewriting are matched against
the RDF views of concrete services.

' A “Class-node” is a variable in a query whose type is a
class in the domain ontology.

O:Medication

Mashup Query

V1(%$a,7b,?c)
(?M rdf:type O:Medication)
(?M O:hasCode $a)

(?M O:MedName ?b)
(?M O:hasReference ?c)

Q (Sw1,2y1,721,7W2,7y2,722)
(?M; rdf:type O:Medication)
(?M; O:hasCode $w;)

(?M; O:MedName ?y,)

(?M; O:hasReference 7z;)
(?M; O:Interacts ?M;)

(?M; rdf:type O:Medication)
(?M; O:hasCode ?w3)

(?M; O:MedName ?y;)

(?M; O:hasReference 7z;)
w1>100,w;<300,
w,>100,w,<300

V2($a,7b)
(?M; rdf:type O:Medication)
(?M; O:hasCode $a)
(?M; O:Interacts ?M;)
(?M; rdf:type O:Medication)
(?M; O:hasCode ?b)

Figure-3: A graphical representation of the data mashup query and the virtual RDF views. Blue ovals are Concepts
in domain ontologies;: White ovals are Class-nodes: Arcs are Datatype/Obiject properties in domain ontologies.

The purpose is to select candidate services that can be
used to build the data mashup.

Note that if services were not categorized according to
the implemented virtual RDF views, the query
containment test (i.e. the query subsumption test) in
relation with domain ontology [4] would be used to
determine whether a service and virtual view are
matching each other. In our case, services are clustered
according to the implemented views “prior to” receiving
data mashup queries; i.e. the query containment test is
applied by the time services are published to the mashup
system. Therefore it suffices in this step to select the
minimum number of similar services that must be
combined together to cover the data value constraints for
each of the individual virtual views used in the rewriting
(recall that multiple matching services may exist for the
same virtual RDF view, covering different data values for
input and output parameter values, each). For example, in
the running example, the services S;, S; and S; are
returned as matches for the view V5. The issue now is to
determine the minimum number of services that entirely
cover a virtual view (e.g. V;, V,). In case of partial
covering (i.e. available services cover only partially a
virtual view), the user should be notified so that she
knows she should not be waiting for complete answers to
her query.

We propose a two-phase algorithm to determine the
minimum set of services covering a virtual view
efficiently. The algorithm is based on the observation that
services can be represented spatially where constrained
inputs and outputs are the dimensions of the
representation space. This way services can be seen as
convex polyhedrons, and the problem of determining if a

467

virtual view is covered by a set of matching services
amounts to checking whether a convex polyhedron is
subsumed by a finite union of convex polyhedrons. This
problem is known to be NP-Complete [11]. We propose a
best-effort subsumption algorithm to answer the problem
efficiently. Hereafter we detail our two-phase algorithm.

Sketch of our two-phase algorithm:

To illustrate our algorithm, consider the services S3, Sy
and Ss5. They match the virtual view V; (in practical cases
there may be hundreds of services returned as matches).
The spatial representations of these services along with
their corresponding virtual view are presented in Figure-4.
Input and output parameters are used as the space
dimensions. Note that in the general case there may be K
constrained input parameters and L constrained output
parameters, thus leading to a space with (K+L)
dimensions. The figure shows that the services S; and Sy
can be jointly used to completely cover the view ¥, and
that the service Ss is irrelevant (there is no intersection
between Ss and V73).

The proposed algorithm consists of two phases. In the
first phase, for each individual virtual view in the
rewriting, the algorithm considers a set of N matching
services (the value of N can be fixed by mashup creators)
and eliminates duplicate (redundant) services and the
services that are irrelevant to the virtual view (i.e. those
that do not intersect with the view ¥, e.g. the service S5).
By the end of this phase, the considered set of matching
services will contain M services (M = N - the number of
eliminated services). In the second phase, the algorithm
tests whether the view is completely subsumed by the
reduced set of matching services M. In case of partial
subsumption, it will add new matching services to M and

will restart from scratch—this is repeated till the
considered view is completely covered or there are no
more matching services to add for the virtual view at
hand. The M services in the last iteration constitute the
minimum set of services for the considered virtual view.

a A
g P
5} | \
| SS :
g N
58
N Sa !
— |
gi—1 V2 -—':
|
Ss)

»
»
200 600 b

800

Figure-4: The Graphical Representation of the Constraints
Specified on S3, S4, S5 and V,

The 1% Phase: Eliminating Redundant and Irrelevant
Services— The algorithm starts with constructing a table
called the Conflict Table which points out conflicting and
not covered intervals between a view and a set of
matching services G. Assuming that both /" and G pose
constraints in the form of predicates (e.g. ct: x; > x > x,)
on a number m of their inputs/outputs, assume also we
have a & service, a conflict table is defined as follows.

Definition: A conflict table T is a k x (2.m) table relating
V to all of the predicates defined by the set of services
G. An element in T, T] is —,Ct if ctj A —,ctj is
satisfiable or is “undefi ned ” otherWlse.

Table-3 is the conflict table for our example (we assume
that N=3). The first row represents a template for the
content of the actual conflict table relating ¥, to S;, Sy,
and S5. For example, the row corresponding to S; is
constructed as follows: cty A—ct} is unsatisfied, thus

assigned “undefined”; ct? A—ct? is satisfied, thus
assigned the value —ct? =a > 200; ctd A—ct? and
ct A —cty are unsatisfied thus assigned “undefined”.

V, a <low a > high b <low b > high
S; | undefined a>200 undefined | undefined
Sy a <200 undefined | undefined | undefined
S5 a <600 undefined b <600 undefined

Table-3: The Conflict Table for the Running Example (N=3)
The algorithm then eliminates duplicate services (i.e.
services covering the same values ranges) and the services
that do not intersect with the view V. This task can be
accomplished by computing both the number of defined
elements and the number of conflict-free elements for
each row in the conflicting table.

Definition 7wo defined entries in the table, T, 11] and T
are said to be conflicting if i; #1i, and V /\ T A T,
is not satisfiable. A defined entry T s sazd to ?Je

l

468

conflict-free if it does not conflict with any other

defined element Tizlz, where i; #i».
Conflict free entries are determined by comparing entries
from the conflict table related to the same property (input
or output), for different services. If a constraint conflicts
with any other constraint defined by another service, the
entry is conflicting. It is conflict free otherwise. In our
example (see table the Table-3) the defined entries for
both S; and S, are conflicting, while those of S5 are
conflict-free.

Propositionz: If the number of conflict-free elements in
the i-th row of T, f; is greater than or equal to /1/, or
the number of defined elements in row i, t; > k, then S; is
redundant.

The algorithm counts the number of defined elements for
each service S; in the corresponding row, #; and computes
the number of conflict-free elements, f. Then, it removes
from the set all services for which ¢ is equal to or greater
than the current number of services in the set. It also
removes services that have at least one conflict free
element in the corresponding row of the conflict table.
These two steps are repeated until there are no more
services that fulfill any of the two conditions. The
remaining services form the non-reducible cover set M for
answering the union covering problem. In our example
we have fc,, fc; =0, fc; =2, t;, t, = 1(< 3), therefore S5 is
removed. In the second iteration, still no service has more
defined entries than the total number of services (t; = ¢, =
1 < 2) and there are no conflict free entries, thus the
algorithm stops. The minimized cover set is M = {Sy, Ss}.

The 2" Phase: Testing the Cover— After eliminating
irrelevant services, and since the general subsumption is
practically unfeasible [11], a probabilistic (“Monte Carlo
type”) cover-checking algorithm is applied to guess a
point in V that is a point witness to non-cover for the set
of services M (a point located in an uncovered area), if
such a point is found, then the subsumption problem is
solved with a definite NO, i.e. V’s constraints are
unsatisfied with the set M, in such case new matching
services will be added and the matching algorithm is
repeated until the view is covered or there are no new
matching services to add. On the other hand, in case a
subsumption relationship exists, the algorithm would try
in vain to find such a witness. To prevent this situation, a
threshold d for the number of guesses is defined, and the
algorithm may output a probabilistic YES, i.e. V' M with
a predefined probability of error (upper bounded by (1-
A)?, where 1 is the probability that a randomly generated
point P inside V is a point witness to non-cover)z. ftr
was not covered by M then the set of tested services are
not fulfilling the constraints involved in the query and an

% Due to space limitations we do not report the proofs in the paper (they
are available upon an email request).

indication will be reported to the user. Continuing with
our example, the algorithm will find that 7, is covered by
the services S; and S; and will return YES by the end of
the test (i.e., no more matching services are added).

3. Optimizing the data mashup plan using

service constraints

Executing the mashup obtained in the previous steps is
inefficient. The reason is that some DaaS services are
called with values of input parameters violating their
specified constraints on accepted input values. Indeed
each Web service call usually has some fixed overhead,
typically parsing SOAP/XML headers and going through
the network stack. Therefore, eliminating superfluous
calls (i.e. calls with values violating the service’s input
constraints) will have a significant impact on the
execution time of the whole data mashup.

We exploit the constraints placed on the accepted
values of input parameters (and which are specified in the
RDF views) to filter out superfluous calls to composed
services. For example, filters are inserted before calling S,
and S, to verify whether the value of the medication’s
code is lower than “200” in the case of S;, and greater
than “200” in the case of S,. In addition, filters are placed
on S, and Ssas can be seen in Figure-5.

Figure-5: the mashup is optimized using the input constraints as
filters before invoking primitive services

In what follows, we show how filters are interpreted in
the mashup plan. Similarly to traditional Web services
composition, the obtained data mashup is translated into
an execution plan describing both data flow and
intermediary data processing (e.g. joins, unions, etc)
among individual DaaS services. Note that languages like
BPEL4WS [2] that is used to describe workflow-oriented
service compositions cannot be used with data mashups.
We translate the mashup plan in terms of set of operations
that can be executed by a data streaming execution engine
that we have implemented for our purposes. The plan is
translated as follows. Each service occurrence in the
mashup will be translated to an “invoke” operation. Note
that an invoke operation in our plans is different in nature
from those found in BPEL as it invokes the web service
for each single tuple in its input relation. The outputs of

469

similar web services (services covering the same portion
of the query) will be unified by a “union” operation that
is responsible for removing redundant tuples. “Join”
operations will be used to feed a service with data tuples
coming from its parents in the mashup plan. “Select”
operations are used to filter out tuples that do not satisfy a
specified constraint (e.g. <, =, > constraints), thus
removing superfluous calls to services. It is important to
note that data tuples are streamed between the different
operations; i.e. our execution engine does not wait until
an operation produces all its output tuples to proceed with
the execution of subsequent operations, rather an
operation starts to execute as soon as its preceding
operations begin to produce tuples on their outputs. For
space limitation, we don’t show the final mashup plan.

4. Evaluation

To evaluate the performance gain obtained from
applying our optimization algorithms, we implemented
them in our data mashup system and tested the approach
in the healthcare domain. In the context of the French
project PAIRSE’, we were provided with access to a set
of /411/ DaaS web services implemented on top of /17/
medical databases storing medical information (e.g.,
medications, diseases, medical tests, allergies, ongoing
treatments, etc) about more than /30,000/ patients. The
WSDL description files of these services are annotated
with RDF views that are defined over a medical ontology
to capture their semantics. These services are “mashed
up” by health actors to answer their daily data needs.

We had two objectives in our conducted experiments:
(/) we wanted to show that the introduction of virtual
views (in the virtual layer) improves the response time of
our data mashup system; (ii) we wanted to evaluate the
cost incurred in finding the minimum number of services
matching the virtual views (at the mashup creation time),
and see if that cost is justified by the gain obtained in the
mashup execution time; we wanted also to evaluate the
gain in the mashup execution time introduced by the filter
algorithm. All algorithms were implemented in Java, and
the reported results in all experiments are the average of
/10/ runs.

Objective-I: With help of the healthcare experts we
defined the set of virtual RDF views that represent the
services. We identified /20/ different virtual views. We
clustered our /411/ services according to the virtual views
using an OWL-DL-based subsumption test [4] prior to
receiving the mashup queries. We considered mashup
queries with a varying size (from 3 class-nodes to 10
class-nodes —recall that class-nodes are basic atoms of an
RDF query [1]). Figure-6 shows the performance of the
mashup query algorithm when (7) the queries are rewritten
directly in terms of available services (i.e., the initial
approach is applied), (i7) in terms of the virtual views (i.e.,

? https://picoforge.int-evry.fr/cgi-bin/twiki/view/Pairse/ Web/

8000 1S

7000 - B Without virtual
6000 - views

5000 1 B With virtual
4000 - views

3000 1 With virtual

views andthe
minimum set of
services

2000
1000

5 7 10
Number of Class-nodes per query

18000

16000 B Optimized with

minimum and
I[
3 5 7 10

filter alghorithms
Number of virtual views per query

14000
12000

10000 Optimized with

Minimum
services
alghorithm
Un-Optimized
Mashup

8000
6000
4000
2000

Figure-6: The response time of the mashup system before and after
introducing the virtual layer and when the minimum set of services
algorithm is applied

the extended approach is applied), and (iii) in terms of the
virtual views with applying the algorithm of the minimum
set of services. Obviously, the use of virtual views
improves “considerably” the response time of the mashup
system. This gain is due to three factors: (i) the number of
virtual views is limited compared to concrete services (20
vs. 411), (if) the mashup algorithm is no longer required
to go through all potential rewritings; it can stop as soon
as a rewriting is found and (iif) concrete services are
matched (i.e., clustered using the ontology-based
subsumption test [4]) to the virtual views “prior to”
receiving the mashup queries. The results show also that
the algorithm of the minimum set of services introduced
only a weak overhead at the mashup creation time.
Objective-II: We considered set of mashup queries with
varying number of virtual views. We compared the
mashup execution time when (i) the mashup is not
optimized with the minimum set of services algorithm
(i.e. the mashup includes some redundant and irrelevant
services that would waste time at the mashup execution
time), (i7) the mashup is optimized with the minimum set
of services algorithm and when (#ii) both the minimum set
of services and the filter algorithms are applied. The
results in Figure-7 show that the optimization algorithms
shorten the execution time of the data mashup. This
performance gain is due to the following factors: (i) the
minimum set of services algorithm eliminates all
redundant and irrelevant services whose invocations
would return only redundant tuples on the mashup’s
outputs, and (i7) the filter algorithm eliminates
superfluous calls to component services that would return
empty (or error) results.

Note that the overhead introduced by the minimum set
algorithm at the mashup creation time is justified by the
performance gain found at the mashup execution time
since mashups are created once and used many times.

5. Related Works

Since the data mashup research problem is relatively
new, there has been only a small amount of research work
addressing it. In the following, we review the most
prominent ones of these works and compare them to ours.

470

Figure-7: The mashup execution time before and after optimization

The Web Service Management System (WSMS) in [14]
allows users to mashup data services by directly
expressing their queries in terms of data services’
relations. Contrary to our system, the WSMS’s users are
assumed to have an understanding of the semantics of the
services that are available to them. The work introduced
two optimization algorithms. The first exploits the service
selectivity to arrange component services in the mashup.
Services with the lowest selectivity are executed first in
the mashup to reduce the number of tuples that must be
processed by subsequent services in the plan. The second
uses variable chunk volumes for data exchanged among
component services. Compared to WSMS, our system
takes a more fundamental approach to the optimization
issue by selecting only the minimum number of services
that cover the mashup query. We use also the services
constraints to filter out superfluous calls to services.

The Web Service Mediator System WSMED [13]
allows users to mashup data services by defining
relational views on top of them. Users can then query data
by formulating their mashup queries over defined views.
Users can also enhance defined views with primary-key
constraints which can be exploited to optimize the
mashups. The main drawback of the WSMED system is
its high reliance on users; i.e. users are supposed to import
the services relevant to their needs; define views on top of
them and enhance the views with primary key constraints.
The latter task requires from users to have a good
understanding of the services’ semantics. In our system,
DaaS Web services are modeled as RDF views over
domain ontologies where primary key constraints are
defined explicitly by the concepts’ skolem functions, thus
the discussed Primary key based optimizations are
included by default in our query processing model.

The CLIDE System [12] addresses the problem of
semi-automatic interactive data mashup query
formulation over a set of data services. The system helps
mashup creators formulate feasible queries over data
services by proposing a set of actions with which the
query remains answerable. Once again, the data mashup
creators are assumed to understand the semantics of
exposed data services when they make actions during the
mashup query formulation process. Furthermore, users are

supposed to drop code to wire the selected data services
and do intermediate data processing operations (e.g. join,
select, etc) among selected services. In addition, the work
addresses only specific queries as opposed to
parameterized queries addressed in this paper.

In other academic mashup systems [15,16,7,10], data
mashup users are required to select the data services
manually (which assumes they are able to understand
their semantics), figure out the execution plan of selected
services (i.e. the services orchestration in the mashup)
and connect them to each other and drop code (in
JavaScript) to mediate between incompatible
inputs/outputs of involved services. This prevents average
users from mashing up data services at large. Our mashup
system addresses this limitation by proposing a
declarative mashup approach, where users need only to
focus on the required data and the system will find and
mash-up the services for them.

A considerable body of recent work addresses the
problem of composition (or orchestration) of multiple
web services to carry out a particular task, e.g. [18,19]. In
general, that work is targeted more toward workflow-
oriented applications (e.g., the processing steps involved
in fulfilling a purchase order), rather than applications
coordinating data obtained from multiple web services, as
addressed in this paper. Although these approaches have
recognized the benefits of optimizing compositions, they
have not, as far as we are aware, investigated the selection
of minimum set of services or used the inputs/outputs data
value constraints for the optimization.

6. Conclusion

In this paper we presented a query model to resolve
parameterized queries over DaaS Web services. We
proposed to rewrite mashup queries in terms of virtual
RDF views representing meaningful data queries in a
given application domain. We presented also a set of
optimization algorithms to speed up the mashup execution
time and evaluated their introduced performance gain. As
a future work, we would like to extend our data mashup
optimization framework with a mechanism that takes into
account the quality of service QoS aspects (like the
service response time, service reputation, etc).

7. References

[1] M. Barhamgi, D. Benslimane, and B. Medjahed, "A
Query Rewriting Approach for Web Service
Composition," [EEE Transactions on Services
Computing (TSC), vol. 3, no. 3, pp. 206-222, 2010.

[2] Business Process Execution Language for Web
Services. fip://wwwé.software.ibm.com/developer/wsbpel.pdf.

[3] D. Butler, "Mashups mix data into global service,"
Nature, vol. 439, pp. 6-7, January 2006., Available:
http://dx.doi.org/10.1038/439006a.

[4] D. Calvanese, and M. Lenzerini, "Conjunctive Query
Containment under Description Logics Constraints,"
CoRR, vol. 1,no. 2, pp. 9-30, 2005.

471

[5] Michael J. Carey, "Declarative Data Services: This Is
Your Data on SOA," in [EEE International
Conference on Service-Oriented Computing and
Applications, California, USA, 2007, p. 4.

[6] A. Dan, R. Johnson, and A. Arsanjani, "Information as
a Service: Modeling and Realization," in
International Conference on Software Engineering,
2008, p. 2.

[7] H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin,

"Mashup Advisor: A Recommendation Tool for

Mashup Development," in 2009 IEEE International

Conference on Web Services (ICWS 2009), China,

pp. 337-344.

A. Halevy, A. Mendelzon, Y. Sagiv, and D.

Srivastava, "Answering Queries Using Views," in

PODS, 1995, pp. 95-104.

[9] Anant Jhingran, "Enterprise Information Mashups:
Integrating Information, Simply," in VLDB, Seoul,
Korea, 2007, pp. 3-4.

[10] Anne H. H. Ngu, Michael Pierre Carlson, and Hye-
young Paik, "Semantic-Based Mashup of Composite
Applications," [EEE Transactions on Services
Computing, vol. 3, no. 1, pp. 2-15, 2010.

[11] Aris M. Ouksel, Oana Jurca and Karl Aberer,
"Efficient Probabilistic Subsumption Checking for
Content-Based Publish/Subscribe ~ Systems," in
Middleware 2006, 7th International Middleware
Conference, Australia, 2006, pp. 121-140.

[12] M. Petropoulos, A. Deutsch, and Y. Katsis,
"Exporting and interactively querying Web service-
accessed sources: The CLIDE System," ACM Trans.
Database Syst., vol. 4, no. 32, 2007.

[13]Manivasakan Sabesan and Tore Risch, "Adaptive
Parallelization of Queries over Dependent Web
Service Calls," in, WISS 2009, China, 2009.

[14] Utkarsh Srivastava, Kamesh Munagala, and Jennifer
Widom"Query Optimization over Web Services," in
VLDB, Seoul, Korea, 2006, pp. 355-366.

[15] Junichi Tatemura et al., "UQBE: uncertain query by
example for web service mashup," in SIGMOD
Conference, Canada, 2008, pp. 1275-1280.

[16] Junichi Tatemura et al., "Mashup Feeds: : continuous
queries over web services," in SIGMOD Conference,
2007, pp. 1128-1130.

[171H. Truong and S. Dustdar, "On Analyzing and
Specifying Concerns for Data as a Service," in The
2009 Asia-Pacific Services Computing Conference
(IEEE APSCC 2009), Singapore, 2009, pp. 7-11.

[18]M. Shiaa, J. Fladmark, and B. Thiell, “An
Incremental Graph-based Approach to Automatic
Service Composition” Proc. of the Int. Conf. on
Services Computing (SCC’08), Honolulu, 2008.

[19]P. Hennig and W. Balke, “Highly Scalable Web
Service Composition Using Binary Tree-Based
Parallelization,” Proc. of the Int. Conf. on Web
Services (ICWS’10), Los Alamitos, USA, 2010.

(8]

