
Optimizing DaaS Web Service based Data Mashups

Mahmoud Barhamgi, Chirine Ghedira, Djamal Benslimane, Salah-Eddine Tbahriti, Michael Mrissa

Claude Bernard Lyon1 University, 69622 Villeurbanne, France
firstname.lastname@liris.cnrs.fr

Abstract—Data Mashup is a special class of mashup

application that combines information on the fly from multiple

data sources to respond to transient business needs. In this

paper, we propose two optimization algorithms to optimize

Data Mashups. The first allows for selecting the minimum

number of services required in the data mashup. The second

exploits the services’ constraints on inputs and outputs to filter

out superfluous calls to component services in the data

mashup. These two algorithms are evaluated and tested in the

healthcare application domain, and the reported results are

very promising.

Keywords—Services composition, Optimization, Query

rewriting, Data Services.

1. Introduction
Data mashup is a special class of mashup application

that combines information from several data sources to

meet user requests [9,3]. Typically, data sources are

provided through Web Services; this type of Web services

is known as DaaS (Data-as-a-Service) Web services [5,6].

Data mashup has become so popular over the last few

years; its applications vary from addressing transient

business needs in modern enterprises [9] to conducting

scientific research in e-science communities [3].

Informally speaking, a data mashup represents a
“parameterized query” over a set of DaaS services. For

example, one can “mash-up” the DaaS services in Table-

1, to answer parameterized queries like: Q: “what are the

medications Y that may interact with a given medication

X?”, where the value of X is specified by the user at the

execution time of the data mashup. To answer Q, the

services can be composed as follows: one (or more) of the

services {S3, S4, S5} need to be invoked with the

medication identifier specified by the user, then one (or

more) of the services {S1, S2} are invoked with the

returned interacting medications to retrieve detailed
information about those interacting medications.

One of the most challenging problems when answering

parameterized queries over DaaSs (i.e. constructing data

mashups) is that component services cannot be chosen

precisely at the composition time. Consider for example

the query Q. Suppose also that the mashup creator is

interested in studying the medications whose codes

belong to a specific range of values (both for the specified

medications and their interacting ones), say for instance,

the medications whose code values are between /100/ and

/300/, (i.e. she will invoke the obtained mashup with
values inside the range [100, 300]). The plan for the

mashup answering the query is shown in Figure-1, and is

detailed as follows. The code of the given medication will

be used to invoke S1 and S2. Though they have similar

semantics, both of these services are included in the plan

because the value of the medication’s code is not known

at the mashup creation time; i.e. the plan needs to include

both of these services (which cover different input values

as specified by the Constraints column in Table-1) to

cover all potential input values. The services S3 and S4 are

invoked to retrieve the codes of interacting medications;

these two services are both included because the value of

the medication’s code is not known at the mashup
creation time. Note that the service S5 is excluded because

its ranges of accepted input values and returned output

values do not intersect with those specified in the query

(medications’ codes must be inside the range [100, 300]).

Service Description
Constraints on

inputs/outputs

S1($a,?b,?c) Returns the name b and

reference information c

of a given medication

(identified by its code a)

a ≤ 200

S2($a,?b,?c) a ≥ 200

S3($a,?b)
Returns interacting

medications (identified

by their codes b) of a

given medication

(identified by its code a)

a ≤ 200, b ≤ 400

S4($a,?b) a ≥ 200, b ≤ 400

S5($a,?b)
800 ≥ a ≥ 600, 800

≥ b ≥ 600

Table-1: A Set of DaaS Web Services

The example shows that multiple similar DaaS

services may be mapped to the same part of the query

(e.g. S3, S4, S5 have the same semantics, they all return the

interacting medications of a given one), but cover

different ranges of accepted input values and provide
different ranges of output values (see the Constraints

column in Table-1). The issue the mashup creator is

confronted to is how to choose the minimum number of

similar services that must be combined together to cover

completely (if possible) the value ranges implied by the

mashup query. For example, the mashup creator needs to

realize that only the services S3 and S4 are needed to cover

“completely” the corresponding part of the query (see

Figure-1); the service S5 needs to be eliminated because it

covers value ranges that are irrelevant to the query. Note

that even if it was covering relevant ranges, if S3 and S4

were already selected, then S5 would be redundant as the
corresponding portion of the query is already completely

covered by the combination of S3 and S4. By redundant

we mean that the tuples returned by S5 and which belong

to Q, would be also returned by S3 and S4.

Note that the general case is even harder since DaaS

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.72

464

services may have multiple inputs and multiple outputs

associated with value constraints that intersect partially

with the query’s constraints, and the mashup creator

should be able to select the “minimum” number of

services required for his needs. Furthermore, mashup

queries may be complex; comprising many sub-queries,
matching hundreds of DaaS services, each. This issue is

very important since adding services more than needed

(e.g. adding S5 to S3, S4) would impact badly the execution

time of the mashup without contributing new tuples on

the mashup’s output. Calls to redundant services are

considered as waste of time.

Figure 1: A plan for a data mashup that would return the

interacting medications for any given medication with code value

within the range [100, 300].

In a previous work [1] we proposed an approach to

mash-up DaaS Web services using RDF query rewriting

techniques. In this paper, we extend that approach with

optimization techniques to speed up the execution of data

mashups. The contributions of this paper over our

previous work are the following:

 We propose an efficient algorithm to select the

minimum number of DaaS services matching the

different portions of a mashup query. The algorithm

improves considerably the execution time of mashups.

 We improve the efficiency of our previous mashup
algorithm by introducing the use of Virtual RDF

Views and by clustering services prior to receiving

mashup queries.

 We exploit the services’ data value constraints on

inputs and outputs to optimize the mashup

composition plan.

 We evaluated the performance gain introduced by our

algorithms by a set of experiments conducted in the

healthcare application domain.

The rest of the paper is organized as follows. In

section 2, we extend our approach to data mashup with a

virtual view layer to improve its efficiency. We present

also our algorithm for the selection of the minimum set of
services. In Section 3, we exploit the services constraints

to optimize mashups. In Section 4 we evaluate our

algorithms. In Sections 5 we review related works. In

Section 6 we conclude the paper with our perspectives.

2. A Declarative Approach to Mash-up DaaS

Services
In a previous work [1] we presented a generic approach

to compose DaaS Web services based on RDF query

rewriting techniques. In that work, DaaS services are

modeled as RDF views over domain ontologies to capture

their semantics. These RDF views are used to annotate the

service description files. The approach exploits these
views to rewrite the mashup query directly in terms of

available DaaS Web services. However, this may not be

always desirable because the general problem of query

rewriting has a high complexity of the order NP-Complete

[8] since it may involve searching through an exponential

number of rewritings. This may present an important

scalability problem for the mashup algorithm when the

number of available DaaS Web services is large. In this

paper, we extend our previous approach with a virtual

layer to increase its scalability. Figure-2 presents the

extended data mashup approach. The approach follows a

three-level query model detailed as follows:

 The Query Level: This level consists of a set of domain

ontologies that give users an interface for formulating and

submitting their declarative mashup queries. Mashup

queries are expressed in SPARQL, the do facto query

language for the Semantic Web.

 The Virtual Level: This level consists of the different

“meaningful” parameterized RDF views that can be

implemented by concrete DaaS Web services within an

application domain. The virtual RDF views represent

meaningful queries the data holders would share with

each other in a given application domain. In the
healthcare application domain, the examples include:

“find the interacting medications of a given one”, “find

the different information about a given medication”, etc).

The rationale behind the use of the virtual views is that in

real-life application domains multiple service providers

may provide the same DaaS service (i.e. they implement

the same virtual view), perhaps with different quality

criteria. Meaningful virtual RDF views may be defined by

domain experts and stored by the proposed mashup

system.

 The Concrete Level: This level represents the space of
the DaaS Web services offered on the Web for a

particular domain of application (i.e. the potential

candidates for answering data mashup queries). DaaS

services in this level are represented by their

parameterized RDF views. Concrete DaaS services are

clustered in groups; each group represents a virtual

parameterized RDF view. A concrete DaaS Web service

may further personalize its corresponding virtual RDF

view by specifying value constraints (i.e. order and

equality constraints, e.g. a ≥ 10) on its accepted input

parameters and the returned output parameters. It may

also characterize the quality of the information it provides
[17] (via a set of DQ Data Quality metrics).

S1

S2

Union

S1

S2

Union

Join

Out In

S3

S4

Union

465

In Figure-2, we illustrate how DaaS services are

queried and composed in this data mashup approach. As

the figure shows, the user formulates her queries over

domain ontologies (using SPARQL query language).

Next, the posed mashup query is rewritten in terms of the

virtual parameterized RDF views (which represent the

meaningful queries in a given application domain) using

an RDF query rewriting algorithm that we have devised
for that purpose [1]. The virtual RDF views that

participate in the obtained rewriting will be matched

against the RDF views of concrete services from the

concrete space. Matching DaaS services will be used in

constructing the mashup that will answer the posed query.

In such approach, data mashup queries will be always

resolved in a reasonable time due to the following

reasons: (i) the number of logical views (i.e. the virtual

RDF views) is limited compared to concrete DaaS

services, (ii) it suffices to pick up one rewriting only out

of the possible ones and match it to concrete DaaS
services− (i.e. the rewriting algorithm can stop as soon as

the first rewriting is available), (iii) concrete DaaS Web

services implementing a given virtual RDF view can be

ranked and classified prior to query resolution based on

their qualities.

We illustrate these steps based on the running example

in the following sub sections. Since the paper focuses on

the optimization issue by selecting the minimum number

of similar services participating in a mashup (during the

matching phase), we will show briefly how the mashup

query is rewritten in terms of virtual parameterized RDF

views (for deeper details about the rewriting algorithm the
reader is referred to [1]), then we will devote the most of

our talk to the matching phase.

2.1. RDF Query Rewriting

In this phase the query is rewritten in terms of the

virtual parameterized RDF views. Figure-3 shows the

query in the running example along with a set of virtual

parameterized RDF views. The view V1 returns the

different information about a given medication, V2 returns

the interacting medications of a given one (input

parameters are prefixed with “$”, and output parameters

with “?”). The query rewriting algorithm in [1] compares

the graph of the query to those of the virtual RDF views

to determine the portions of the query (i.e. the sub-graphs)
that can be covered by individual RDF views. It

establishes also the partial containment mappings between

the query and the views. Table-2 shows these mappings

between the query and the views in the running example.

The view V1 can be used to cover the class-nodes1 M1Q

and M2Q (we use Q.Ci to denote the class-node Ci in the

RDF graph of Q); the view V2 can be used to cover the

object property interacts. Both combined can be used to

cover the query (cover the whole list of class-nodes and

object properties of the query). The obtained rewriting is

the following:

Q ($w1,?y1,?z1,?w2,?y2,?z2) :- V1($w1, ?y1,?z1) 

V2($w1,?w2)  V1($w2, ?y2,?z2)

Virtual Views Variables Mapping
Covered nodes and

Object properties

V1($w1, ?y1,?z1) M1Q→MV1, w1→a, y1→b,

z1→c

M1Q ($w1, ?y1,?z1)

V1($w2, ?y2,?z2) M2Q→MV1, w2→a, y2→b,

z2→c

M2Q ($w2, ?y2,?z2)

V2($w1,?w2) M1Q→M1V2, M2Q→M2V2,

w1→a, w2→b

Interacts(M1Q, M2Q)

Table-2: The query sub graphs that are covered by virtual RDF

views along with the variables mappings

2.2. Service Matching
In this phase the virtual parameterized RDF views

participating in the obtained rewriting are matched against

the RDF views of concrete services.

1
 A “Class-node” is a variable in a query whose type is a

class in the domain ontology.

Figure 2: Three-level Query Scheme: (a) Ontologies from the query level are used to formulate mashup queries. (b) The query model rewrites

queries in term of the virtual parameterized views from the virtual level. (c) The model then matches virtual views to concrete DaaS Web services

on the concrete level.

466

The purpose is to select candidate services that can be

used to build the data mashup.

 Note that if services were not categorized according to

the implemented virtual RDF views, the query

containment test (i.e. the query subsumption test) in

relation with domain ontology [4] would be used to

determine whether a service and virtual view are

matching each other. In our case, services are clustered

according to the implemented views “prior to” receiving

data mashup queries; i.e. the query containment test is

applied by the time services are published to the mashup
system. Therefore it suffices in this step to select the

minimum number of similar services that must be

combined together to cover the data value constraints for

each of the individual virtual views used in the rewriting

(recall that multiple matching services may exist for the

same virtual RDF view, covering different data values for

input and output parameter values, each). For example, in

the running example, the services S3, S4 and S5 are

returned as matches for the view V2. The issue now is to

determine the minimum number of services that entirely

cover a virtual view (e.g. V1, V2). In case of partial

covering (i.e. available services cover only partially a
virtual view), the user should be notified so that she

knows she should not be waiting for complete answers to

her query.

We propose a two-phase algorithm to determine the

minimum set of services covering a virtual view

efficiently. The algorithm is based on the observation that

services can be represented spatially where constrained

inputs and outputs are the dimensions of the

representation space. This way services can be seen as

convex polyhedrons, and the problem of determining if a

virtual view is covered by a set of matching services

amounts to checking whether a convex polyhedron is

subsumed by a finite union of convex polyhedrons. This

problem is known to be NP-Complete [11]. We propose a

best-effort subsumption algorithm to answer the problem

efficiently. Hereafter we detail our two-phase algorithm.

Sketch of our two-phase algorithm:

To illustrate our algorithm, consider the services S3, S4

and S5. They match the virtual view V2 (in practical cases

there may be hundreds of services returned as matches).

The spatial representations of these services along with
their corresponding virtual view are presented in Figure-4.

Input and output parameters are used as the space

dimensions. Note that in the general case there may be K

constrained input parameters and L constrained output

parameters, thus leading to a space with (K+L)

dimensions. The figure shows that the services S3 and S4

can be jointly used to completely cover the view V2, and

that the service S5 is irrelevant (there is no intersection

between S5 and V2).

The proposed algorithm consists of two phases. In the

first phase, for each individual virtual view in the

rewriting, the algorithm considers a set of N matching
services (the value of N can be fixed by mashup creators)

and eliminates duplicate (redundant) services and the

services that are irrelevant to the virtual view (i.e. those

that do not intersect with the view V, e.g. the service S5).

By the end of this phase, the considered set of matching

services will contain M services (M = N - the number of

eliminated services). In the second phase, the algorithm

tests whether the view is completely subsumed by the

reduced set of matching services M. In case of partial

subsumption, it will add new matching services to M and

Figure-3: A graphical representation of the data mashup query and the virtual RDF views. Blue ovals are Concepts

in domain ontologies; White ovals are Class-nodes; Arcs are Datatype/Object properties in domain ontologies.

467

will restart from scratchthis is repeated till the
considered view is completely covered or there are no

more matching services to add for the virtual view at

hand. The M services in the last iteration constitute the

minimum set of services for the considered virtual view.
w

1

w2

200 400 600 800

2
0

0
4

0
0

6
0

0
8

0
0

S5

S3

S4

V2

a

b

Figure-4: The Graphical Representation of the Constraints

Specified on S3, S4, S5 and V2

The 1
st
 Phase: Eliminating Redundant and Irrelevant

Services The algorithm starts with constructing a table
called the Conflict Table which points out conflicting and

not covered intervals between a view and a set of

matching services G. Assuming that both V and G pose

constraints in the form of predicates (e.g. ct: x1 ≥ x ≥ x2)

on a number m of their inputs/outputs, assume also we

have a k service, a conflict table is defined as follows.

Definition: A conflict table T is a k  (2.m) table relating

V to all of the predicates defined by the set of services

G. An element in T,

, is

 if

 is

satisfiable or is “undefined” otherwise.

Table-3 is the conflict table for our example (we assume

that N=3). The first row represents a template for the

content of the actual conflict table relating V2 to S3, S4,

and S5. For example, the row corresponding to S3 is

constructed as follows:

 is unsatisfied, thus

assigned “undefined”;

 is satisfied, thus

assigned the value
 ;

 and

 are unsatisfied thus assigned “undefined”.

V2 a < low a > high b < low b > high

S3 undefined a > 200 undefined undefined

S4 a < 200 undefined undefined undefined

S5 a < 600 undefined b < 600 undefined
Table-3: The Conflict Table for the Running Example (N=3)

The algorithm then eliminates duplicate services (i.e.
services covering the same values ranges) and the services

that do not intersect with the view V. This task can be

accomplished by computing both the number of defined

elements and the number of conflict-free elements for

each row in the conflicting table.

Definition Two defined entries in the table,

 and

are said to be conflicting if i1  i2, and

is not satisfiable. A defined entry

 is said to be

conflict-free if it does not conflict with any other

defined element

 , where i1  i2.

Conflict free entries are determined by comparing entries

from the conflict table related to the same property (input

or output), for different services. If a constraint conflicts

with any other constraint defined by another service, the

entry is conflicting. It is conflict free otherwise. In our

example (see table the Table-3) the defined entries for

both S3 and S4 are conflicting, while those of S5 are

conflict-free.

Proposition
2
: If the number of conflict-free elements in

the i-th row of T, fi, is greater than or equal to /1/, or

the number of defined elements in row i, ti > k, then Si is

redundant.

The algorithm counts the number of defined elements for

each service Si in the corresponding row, ti and computes

the number of conflict-free elements, fi. Then, it removes

from the set all services for which ti is equal to or greater

than the current number of services in the set. It also

removes services that have at least one conflict free

element in the corresponding row of the conflict table.

These two steps are repeated until there are no more

services that fulfill any of the two conditions. The
remaining services form the non-reducible cover set M for

answering the union covering problem. In our example

we have fc1, fc2 = 0, fc3 = 2, t1, t2 = 1(≤ 3), therefore S5 is

removed. In the second iteration, still no service has more

defined entries than the total number of services (t1 = t2 =

1 ≤ 2) and there are no conflict free entries, thus the

algorithm stops. The minimized cover set is M = {S4, S5}.

The 2
nd

 Phase: Testing the Cover After eliminating
irrelevant services, and since the general subsumption is

practically unfeasible [11], a probabilistic (“Monte Carlo

type”) cover-checking algorithm is applied to guess a

point in V that is a point witness to non-cover for the set
of services M (a point located in an uncovered area), if

such a point is found, then the subsumption problem is

solved with a definite NO, i.e. V’s constraints are

unsatisfied with the set M, in such case new matching

services will be added and the matching algorithm is

repeated until the view is covered or there are no new

matching services to add. On the other hand, in case a

subsumption relationship exists, the algorithm would try

in vain to find such a witness. To prevent this situation, a

threshold d for the number of guesses is defined, and the

algorithm may output a probabilistic YES, i.e. V  M with
a predefined probability of error (upper bounded by (1-

λ)d, where λ is the probability that a randomly generated

point P inside V is a point witness to non-cover)
2
. If V

was not covered by M then the set of tested services are

not fulfilling the constraints involved in the query and an

2
 Due to space limitations we do not report the proofs in the paper (they

are available upon an email request).

468

indication will be reported to the user. Continuing with

our example, the algorithm will find that V2 is covered by

the services S3 and S4 and will return YES by the end of

the test (i.e., no more matching services are added).

3. Optimizing the data mashup plan using

service constraints
Executing the mashup obtained in the previous steps is

inefficient. The reason is that some DaaS services are
called with values of input parameters violating their

specified constraints on accepted input values. Indeed

each Web service call usually has some fixed overhead,

typically parsing SOAP/XML headers and going through

the network stack. Therefore, eliminating superfluous

calls (i.e. calls with values violating the service’s input

constraints) will have a significant impact on the

execution time of the whole data mashup.

We exploit the constraints placed on the accepted

values of input parameters (and which are specified in the

RDF views) to filter out superfluous calls to composed

services. For example, filters are inserted before calling S1
and S2 to verify whether the value of the medication’s

code is lower than “200” in the case of S1, and greater

than “200” in the case of S2. In addition, filters are placed

on S4 and S5 as can be seen in Figure-5.

Figure-5: the mashup is optimized using the input constraints as

filters before invoking primitive services

In what follows, we show how filters are interpreted in

the mashup plan. Similarly to traditional Web services
composition, the obtained data mashup is translated into

an execution plan describing both data flow and

intermediary data processing (e.g. joins, unions, etc)

among individual DaaS services. Note that languages like

BPEL4WS [2] that is used to describe workflow-oriented

service compositions cannot be used with data mashups.

We translate the mashup plan in terms of set of operations

that can be executed by a data streaming execution engine

that we have implemented for our purposes. The plan is

translated as follows. Each service occurrence in the

mashup will be translated to an “invoke” operation. Note
that an invoke operation in our plans is different in nature

from those found in BPEL as it invokes the web service

for each single tuple in its input relation. The outputs of

similar web services (services covering the same portion

of the query) will be unified by a “union” operation that

is responsible for removing redundant tuples. “Join”

operations will be used to feed a service with data tuples

coming from its parents in the mashup plan. “Select”

operations are used to filter out tuples that do not satisfy a
specified constraint (e.g. <, =, > constraints), thus

removing superfluous calls to services. It is important to

note that data tuples are streamed between the different

operations; i.e. our execution engine does not wait until

an operation produces all its output tuples to proceed with

the execution of subsequent operations, rather an

operation starts to execute as soon as its preceding

operations begin to produce tuples on their outputs. For

space limitation, we don’t show the final mashup plan.

4. Evaluation
To evaluate the performance gain obtained from

applying our optimization algorithms, we implemented

them in our data mashup system and tested the approach

in the healthcare domain. In the context of the French

project PAIRSE3, we were provided with access to a set
of /411/ DaaS web services implemented on top of /17/

medical databases storing medical information (e.g.,

medications, diseases, medical tests, allergies, ongoing

treatments, etc) about more than /30,000/ patients. The

WSDL description files of these services are annotated

with RDF views that are defined over a medical ontology

to capture their semantics. These services are “mashed

up” by health actors to answer their daily data needs.

We had two objectives in our conducted experiments:

(i) we wanted to show that the introduction of virtual

views (in the virtual layer) improves the response time of
our data mashup system; (ii) we wanted to evaluate the

cost incurred in finding the minimum number of services

matching the virtual views (at the mashup creation time),

and see if that cost is justified by the gain obtained in the

mashup execution time; we wanted also to evaluate the

gain in the mashup execution time introduced by the filter

algorithm. All algorithms were implemented in Java, and

the reported results in all experiments are the average of

/10/ runs.

Objective-I: With help of the healthcare experts we

defined the set of virtual RDF views that represent the

services. We identified /20/ different virtual views. We

clustered our /411/ services according to the virtual views

using an OWL-DL-based subsumption test [4] prior to

receiving the mashup queries. We considered mashup

queries with a varying size (from 3 class-nodes to 10

class-nodes −recall that class-nodes are basic atoms of an

RDF query [1]). Figure-6 shows the performance of the

mashup query algorithm when (i) the queries are rewritten
directly in terms of available services (i.e., the initial

approach is applied), (ii) in terms of the virtual views (i.e.,

3 https://picoforge.int-evry.fr/cgi-bin/twiki/view/Pairse/Web/

S1

S2

Union

S1

S2

Union

Join

Out In

S3

S4

Union

w2 ≤

200

 w2 ≥

200

w2 ≤

200

 w2 ≥

200

w2 ≤

200

 w2 ≥

200

469

0

1000

2000

3000

4000

5000

6000

7000

8000

3 5 7 10

Without virtual

views

With virtual

views

With virtual

views and the

minimum set of

services

Number of Class-nodes per query

ms

 Figure-6: The response time of the mashup system before and after

introducing the virtual layer and when the minimum set of services

algorithm is applied

the extended approach is applied), and (iii) in terms of the

virtual views with applying the algorithm of the minimum

set of services. Obviously, the use of virtual views
improves “considerably” the response time of the mashup

system. This gain is due to three factors: (i) the number of

virtual views is limited compared to concrete services (20

vs. 411), (ii) the mashup algorithm is no longer required

to go through all potential rewritings; it can stop as soon

as a rewriting is found and (iii) concrete services are

matched (i.e., clustered using the ontology-based

subsumption test [4]) to the virtual views “prior to”

receiving the mashup queries. The results show also that

the algorithm of the minimum set of services introduced

only a weak overhead at the mashup creation time.
Objective-II: We considered set of mashup queries with

varying number of virtual views. We compared the

mashup execution time when (i) the mashup is not

optimized with the minimum set of services algorithm

(i.e. the mashup includes some redundant and irrelevant

services that would waste time at the mashup execution

time), (ii) the mashup is optimized with the minimum set

of services algorithm and when (iii) both the minimum set

of services and the filter algorithms are applied. The

results in Figure-7 show that the optimization algorithms

shorten the execution time of the data mashup. This

performance gain is due to the following factors: (i) the
minimum set of services algorithm eliminates all

redundant and irrelevant services whose invocations

would return only redundant tuples on the mashup’s

outputs, and (ii) the filter algorithm eliminates

superfluous calls to component services that would return

empty (or error) results.

Note that the overhead introduced by the minimum set

algorithm at the mashup creation time is justified by the

performance gain found at the mashup execution time

since mashups are created once and used many times.

5. Related Works
Since the data mashup research problem is relatively

new, there has been only a small amount of research work

addressing it. In the following, we review the most

prominent ones of these works and compare them to ours.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3 5 7 10

Optimized with

minimum and

filter alghorithms

Optimized with

Minimum

services

alghorithm

Un-Optimized

Mashup

ms

Number of virtual views per query

 Figure-7: The mashup execution time before and after optimization

The Web Service Management System (WSMS) in [14]

allows users to mashup data services by directly

expressing their queries in terms of data services’

relations. Contrary to our system, the WSMS’s users are

assumed to have an understanding of the semantics of the
services that are available to them. The work introduced

two optimization algorithms. The first exploits the service

selectivity to arrange component services in the mashup.

Services with the lowest selectivity are executed first in

the mashup to reduce the number of tuples that must be

processed by subsequent services in the plan. The second

uses variable chunk volumes for data exchanged among

component services. Compared to WSMS, our system

takes a more fundamental approach to the optimization

issue by selecting only the minimum number of services

that cover the mashup query. We use also the services

constraints to filter out superfluous calls to services.
The Web Service Mediator System WSMED [13]

allows users to mashup data services by defining

relational views on top of them. Users can then query data

by formulating their mashup queries over defined views.

Users can also enhance defined views with primary-key

constraints which can be exploited to optimize the

mashups. The main drawback of the WSMED system is

its high reliance on users; i.e. users are supposed to import

the services relevant to their needs; define views on top of

them and enhance the views with primary key constraints.

The latter task requires from users to have a good
understanding of the services’ semantics. In our system,

DaaS Web services are modeled as RDF views over

domain ontologies where primary key constraints are

defined explicitly by the concepts’ skolem functions, thus

the discussed Primary key based optimizations are

included by default in our query processing model.

The CLIDE System [12] addresses the problem of

semi-automatic interactive data mashup query

formulation over a set of data services. The system helps

mashup creators formulate feasible queries over data

services by proposing a set of actions with which the

query remains answerable. Once again, the data mashup
creators are assumed to understand the semantics of

exposed data services when they make actions during the

mashup query formulation process. Furthermore, users are

470

supposed to drop code to wire the selected data services

and do intermediate data processing operations (e.g. join,

select, etc) among selected services. In addition, the work

addresses only specific queries as opposed to

parameterized queries addressed in this paper.

In other academic mashup systems [15,16,7,10], data
mashup users are required to select the data services

manually (which assumes they are able to understand

their semantics), figure out the execution plan of selected

services (i.e. the services orchestration in the mashup)

and connect them to each other and drop code (in

JavaScript) to mediate between incompatible

inputs/outputs of involved services. This prevents average

users from mashing up data services at large. Our mashup

system addresses this limitation by proposing a

declarative mashup approach, where users need only to

focus on the required data and the system will find and

mash-up the services for them.
A considerable body of recent work addresses the

problem of composition (or orchestration) of multiple

web services to carry out a particular task, e.g. [18,19]. In

general, that work is targeted more toward workflow-

oriented applications (e.g., the processing steps involved

in fulfilling a purchase order), rather than applications

coordinating data obtained from multiple web services, as

addressed in this paper. Although these approaches have

recognized the benefits of optimizing compositions, they

have not, as far as we are aware, investigated the selection

of minimum set of services or used the inputs/outputs data
value constraints for the optimization.

6. Conclusion
In this paper we presented a query model to resolve

parameterized queries over DaaS Web services. We

proposed to rewrite mashup queries in terms of virtual

RDF views representing meaningful data queries in a

given application domain. We presented also a set of
optimization algorithms to speed up the mashup execution

time and evaluated their introduced performance gain. As

a future work, we would like to extend our data mashup

optimization framework with a mechanism that takes into

account the quality of service QoS aspects (like the

service response time, service reputation, etc).

7. References
[1] M. Barhamgi, D. Benslimane, and B. Medjahed, "A

Query Rewriting Approach for Web Service

Composition," IEEE Transactions on Services

Computing (TSC), vol. 3, no. 3, pp. 206-222, 2010.

[2] Business Process Execution Language for Web

Services. ftp://www6.software.ibm.com/developer/wsbpel.pdf.

[3] D. Butler, "Mashups mix data into global service,"

Nature, vol. 439, pp. 6-7, January 2006., Available:
http://dx.doi.org/10.1038/439006a.

[4] D. Calvanese, and M. Lenzerini, "Conjunctive Query

Containment under Description Logics Constraints,"

CoRR, vol. 1, no. 2, pp. 9-30, 2005.

[5] Michael J. Carey, "Declarative Data Services: This Is

Your Data on SOA," in IEEE International

Conference on Service-Oriented Computing and

Applications, California, USA, 2007, p. 4.

[6] A. Dan, R. Johnson, and A. Arsanjani, "Information as

a Service: Modeling and Realization," in
International Conference on Software Engineering,

2008, p. 2.

[7] H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin,

"Mashup Advisor: A Recommendation Tool for

Mashup Development," in 2009 IEEE International

Conference on Web Services (ICWS 2009), China,

pp. 337-344.

[8] A. Halevy, A. Mendelzon, Y. Sagiv, and D.

Srivastava, "Answering Queries Using Views," in

PODS, 1995, pp. 95-104.

[9] Anant Jhingran, "Enterprise Information Mashups:

Integrating Information, Simply," in VLDB, Seoul,
Korea, 2007, pp. 3-4.

[10] Anne H. H. Ngu, Michael Pierre Carlson, and Hye-

young Paik, "Semantic-Based Mashup of Composite

Applications," IEEE Transactions on Services

Computing, vol. 3, no. 1, pp. 2-15, 2010.

[11] Aris M. Ouksel, Oana Jurca and Karl Aberer,

"Efficient Probabilistic Subsumption Checking for

Content-Based Publish/Subscribe Systems," in

Middleware 2006, 7th International Middleware

Conference, Australia, 2006, pp. 121-140.

[12] M. Petropoulos, A. Deutsch, and Y. Katsis,
"Exporting and interactively querying Web service-

accessed sources: The CLIDE System," ACM Trans.

Database Syst., vol. 4, no. 32, 2007.

[13] Manivasakan Sabesan and Tore Risch, "Adaptive

Parallelization of Queries over Dependent Web

Service Calls," in, WISS 2009, China, 2009.

[14] Utkarsh Srivastava, Kamesh Munagala, and Jennifer

Widom"Query Optimization over Web Services," in

VLDB, Seoul, Korea, 2006, pp. 355-366.

[15] Junichi Tatemura et al., "UQBE: uncertain query by

example for web service mashup," in SIGMOD

Conference, Canada, 2008, pp. 1275-1280.
[16] Junichi Tatemura et al., "Mashup Feeds: : continuous

queries over web services," in SIGMOD Conference,

2007, pp. 1128-1130.

[17] H. Truong and S. Dustdar, "On Analyzing and

Specifying Concerns for Data as a Service," in The

2009 Asia-Pacific Services Computing Conference

(IEEE APSCC 2009), Singapore, 2009, pp. 7-11.

[18] M. Shiaa, J. Fladmark, and B. Thiell, “An

Incremental Graph-based Approach to Automatic

Service Composition” Proc. of the Int. Conf. on

Services Computing (SCC’08), Honolulu, 2008.
[19] P. Hennig and W. Balke, “Highly Scalable Web

Service Composition Using Binary Tree-Based

Parallelization,” Proc. of the Int. Conf. on Web

Services (ICWS’10), Los Alamitos, USA, 2010.

471

