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Abstract—Data Mashup is a special class of mashup 

application that combines information on the fly from multiple 

data sources to respond to transient business needs. In this 

paper, we propose two optimization algorithms to optimize 

Data Mashups. The first allows for selecting the minimum 

number of services required in the data mashup. The second 

exploits the services’ constraints on inputs and outputs to filter 

out superfluous calls to component services in the data 

mashup.  These two algorithms are evaluated and tested in the 

healthcare application domain, and the reported results are 

very promising. 

Keywords—Services composition, Optimization, Query 

rewriting, Data Services. 

 

1. Introduction 
Data mashup is a special class of mashup application 

that combines information from several data sources to 

meet user requests [9,3]. Typically, data sources are 

provided through Web Services; this type of Web services 

is known as DaaS (Data-as-a-Service) Web services [5,6]. 

Data mashup has become so popular over the last few 

years; its applications vary from addressing transient 

business needs in modern enterprises [9] to conducting 

scientific research in e-science communities [3]. 

Informally speaking, a data mashup represents a 
“parameterized query” over a set of DaaS services. For 

example, one can “mash-up” the DaaS services in Table-

1, to answer parameterized queries like: Q: “what are the 

medications Y that may interact with a given medication 

X?”, where the value of X is specified by the user at the 

execution time of the data mashup.  To answer Q, the 

services can be composed as follows: one (or more) of the 

services {S3, S4, S5} need to be invoked with the 

medication identifier specified by the user, then one (or 

more) of the services {S1, S2} are invoked with the 

returned interacting medications to retrieve detailed 
information about those interacting medications. 

One of the most challenging problems when answering 

parameterized queries over DaaSs (i.e. constructing data 

mashups) is that component services cannot be chosen 

precisely at the composition time. Consider for example 

the query Q. Suppose also that the mashup creator is 

interested in studying the medications whose codes 

belong to a specific range of values (both for the specified 

medications and their interacting ones), say for instance, 

the medications whose code values are between /100/ and 

/300/, (i.e. she will invoke the obtained mashup with 
values inside the range [100, 300]). The plan for the 

mashup answering the query is shown in Figure-1, and is 

detailed as follows. The code of the given medication will 

be used to invoke S1 and S2. Though they have similar 

semantics, both of these services are included in the plan 

because the value of the medication’s code is not known 

at the mashup creation time; i.e. the plan needs to include 

both of these services (which cover different input values 

as specified by the Constraints column in Table-1) to 

cover all potential input values. The services S3 and S4 are 

invoked to retrieve the codes of interacting medications; 

these two services are both included because the value of 

the medication’s code is not known at the mashup 
creation time. Note that the service S5 is excluded because 

its ranges of accepted input values and returned output 

values do not intersect with those specified in the query 

(medications’ codes must be inside the range [100, 300]).  

 

Service Description 
Constraints on 

inputs/outputs 

S1($a,?b,?c) Returns the name b and 

reference information c 

of a given medication 

(identified by its code a) 

a  ≤  200 

S2($a,?b,?c) a  ≥  200 

S3($a,?b) 
Returns interacting 

medications (identified 

by their codes b) of a 

given medication 

(identified by its code a) 

a  ≤  200, b  ≤  400 

S4($a,?b) a   ≥  200, b  ≤  400 

S5($a,?b) 
800 ≥ a ≥ 600, 800 

≥ b ≥ 600 

Table-1: A Set of DaaS Web Services 

The example shows that multiple similar DaaS 

services may be mapped to the same part of the query 

(e.g. S3, S4, S5 have the same semantics, they all return the 

interacting medications of a given one), but cover 

different ranges of accepted input values and provide 
different ranges of output values (see the Constraints 

column in Table-1). The issue the mashup creator is 

confronted to is how to choose the minimum number of 

similar services that must be combined together to cover 

completely (if possible) the value ranges implied by the 

mashup query. For example, the mashup creator needs to 

realize that only the services S3 and S4 are needed to cover 

“completely” the corresponding part of the query (see 

Figure-1); the service S5 needs to be eliminated because it 

covers value ranges that are irrelevant to the query. Note 

that even if it was covering relevant ranges, if S3 and S4 

were already selected, then S5 would be redundant as the 
corresponding portion of the query is already completely 

covered by the combination of S3 and S4. By redundant 

we mean that the tuples returned by S5 and which belong 

to Q, would be also returned by S3 and S4. 

Note that the general case is even harder since DaaS 
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services may have multiple inputs and multiple outputs 

associated with value constraints that intersect partially 

with the query’s constraints, and the mashup creator 

should be able to select the “minimum” number of 

services required for his needs. Furthermore, mashup 

queries may be complex; comprising many sub-queries, 
matching hundreds of DaaS services, each. This issue is 

very important since adding services more than needed 

(e.g. adding S5 to S3, S4) would impact badly the execution 

time of the mashup without contributing new tuples on 

the mashup’s output. Calls to redundant services are 

considered as waste of time. 

 

 

 

 

 

 
 

 

 

 

 
 

Figure 1: A plan for a data mashup that would return the 

interacting medications for any given medication with code value 

within the range [100, 300]. 
 

In a previous work [1] we proposed an approach to 

mash-up DaaS Web services using RDF query rewriting 

techniques. In this paper, we extend that approach with 

optimization techniques to speed up the execution of data 

mashups. The contributions of this paper over our 

previous work are the following:  

 We propose an efficient algorithm to select the 

minimum number of DaaS services matching the 

different portions of a mashup query. The algorithm 

improves considerably the execution time of mashups. 

 We improve the efficiency of our previous mashup 
algorithm by introducing the use of Virtual RDF 

Views and by clustering services prior to receiving 

mashup queries. 

 We exploit the services’ data value constraints on 

inputs and outputs to optimize the mashup 

composition plan. 

 We evaluated the performance gain introduced by our 

algorithms by a set of experiments conducted in the 

healthcare application domain. 

The rest of the paper is organized as follows. In 

section 2, we extend our approach to data mashup with a 

virtual view layer to improve its efficiency. We present 

also our algorithm for the selection of the minimum set of 
services. In Section 3, we exploit the services constraints 

to optimize mashups. In Section 4 we evaluate our 

algorithms. In Sections 5 we review related works. In 

Section 6 we conclude the paper with our perspectives. 

2. A Declarative Approach to Mash-up DaaS 

Services 
In a previous work [1] we presented a generic approach 

to compose DaaS Web services based on RDF query 

rewriting techniques. In that work, DaaS services are 

modeled as RDF views over domain ontologies to capture 

their semantics. These RDF views are used to annotate the 

service description files. The approach exploits these 
views to rewrite the mashup query directly in terms of 

available DaaS Web services. However, this may not be 

always desirable because the general problem of query 

rewriting has a high complexity of the order NP-Complete 

[8] since it may involve searching through an exponential 

number of rewritings. This may present an important 

scalability problem for the mashup algorithm when the 

number of available DaaS Web services is large. In this 

paper, we extend our previous approach with a virtual 

layer to increase its scalability. Figure-2 presents the 

extended data mashup approach. The approach follows a 

three-level query model detailed as follows: 

 The Query Level: This level consists of a set of domain 

ontologies that give users an interface for formulating and 

submitting their declarative mashup queries. Mashup 

queries are expressed in SPARQL, the do facto query 

language for the Semantic Web. 

 The Virtual Level: This level consists of the different 

“meaningful” parameterized RDF views that can be 

implemented by concrete DaaS Web services within an 

application domain. The virtual RDF views represent 

meaningful queries the data holders would share with 

each other in a given application domain. In the 
healthcare application domain, the examples include: 

“find the interacting medications of a given one”, “find 

the different information about a given medication”, etc). 

The rationale behind the use of the virtual views is that in 

real-life application domains multiple service providers 

may provide the same DaaS service (i.e. they implement 

the same virtual view), perhaps with different quality 

criteria. Meaningful virtual RDF views may be defined by 

domain experts and stored by the proposed mashup 

system.  

 The Concrete Level: This level represents the space of 
the DaaS Web services offered on the Web for a 

particular domain of application (i.e. the potential 

candidates for answering data mashup queries). DaaS 

services in this level are represented by their 

parameterized RDF views. Concrete DaaS services are 

clustered in groups; each group represents a virtual 

parameterized RDF view. A concrete DaaS Web service 

may further personalize its corresponding virtual RDF 

view by specifying value constraints (i.e. order and 

equality constraints, e.g. a ≥ 10) on its accepted input 

parameters and the returned output parameters. It may 

also characterize the quality of the information it provides 
[17] (via a set of DQ Data Quality metrics). 
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In Figure-2, we illustrate how DaaS services are 

queried and composed in this data mashup approach. As 

the figure shows, the user formulates her queries over 

domain ontologies (using SPARQL query language). 

Next, the posed mashup query is rewritten in terms of the 

virtual parameterized RDF views (which represent the 

meaningful queries in a given application domain) using 

an RDF query rewriting algorithm that we have devised 
for that purpose [1]. The virtual RDF views that 

participate in the obtained rewriting will be matched 

against the RDF views of concrete services from the 

concrete space. Matching DaaS services will be used in 

constructing the mashup that will answer the posed query. 

In such approach, data mashup queries will be always 

resolved in a reasonable time due to the following 

reasons: (i) the number of logical views (i.e. the virtual 

RDF views) is limited compared to concrete DaaS 

services, (ii) it suffices to pick up one rewriting only out 

of the possible ones and match it to concrete DaaS 
services− (i.e. the rewriting algorithm can stop as soon as 

the first rewriting is available), (iii) concrete DaaS Web 

services implementing a given virtual RDF view can be 

ranked and classified prior to query resolution based on 

their qualities. 

We illustrate these steps based on the running example 

in the following sub sections. Since the paper focuses on 

the optimization issue by selecting the minimum number 

of similar services participating in a mashup (during the 

matching phase), we will show briefly how the mashup 

query is rewritten in terms of virtual parameterized RDF 

views (for deeper details about the rewriting algorithm the 
reader is referred to [1]), then we will devote the most of 

our talk to the matching phase. 

 

2.1. RDF Query Rewriting 

In this phase the query is rewritten in terms of the 

virtual parameterized RDF views. Figure-3 shows the 

query in the running example along with a set of virtual 

parameterized RDF views. The view V1 returns the 

different information about a given medication, V2 returns 

the interacting medications of a given one (input 

parameters are prefixed with “$”, and output parameters 

with “?”). The query rewriting algorithm in [1] compares 

the graph of the query to those of the virtual RDF views 

to determine the portions of the query (i.e. the sub-graphs) 
that can be covered by individual RDF views. It 

establishes also the partial containment mappings between 

the query and the views. Table-2 shows these mappings 

between the query and the views in the running example. 

The view V1 can be used to cover the class-nodes1 M1Q 

and M2Q (we use Q.Ci to denote the class-node Ci in the 

RDF graph of Q); the view V2 can be used to cover the 

object property interacts.  Both combined can be used to 

cover the query (cover the whole list of class-nodes and 

object properties of the query). The obtained rewriting is 

the following: 

Q ($w1,?y1,?z1,?w2,?y2,?z2) :- V1($w1, ?y1,?z1)  

V2($w1,?w2)   V1($w2, ?y2,?z2) 

Virtual Views Variables Mapping 
Covered nodes and 

Object properties 

V1($w1, ?y1,?z1) M1Q→MV1, w1→a, y1→b, 

z1→c 

M1Q ($w1, ?y1,?z1) 

V1($w2, ?y2,?z2) M2Q→MV1, w2→a, y2→b, 

z2→c 

M2Q ($w2, ?y2,?z2) 

V2($w1,?w2) M1Q→M1V2, M2Q→M2V2, 

w1→a, w2→b 

Interacts(M1Q, M2Q) 

Table-2: The query sub graphs that are covered by virtual RDF 

views along with the variables mappings 

2.2. Service Matching 
In this phase the virtual parameterized RDF views 

participating in the obtained rewriting are matched against 

the RDF views of concrete services. 

                                                
1
 A “Class-node” is a variable in a query whose type is a 

class in the domain ontology.  

Figure 2: Three-level Query Scheme: (a) Ontologies from the query level are used to formulate mashup queries. (b) The query model rewrites 

queries in term of the virtual parameterized views from the virtual level. (c) The model then matches virtual views to concrete DaaS Web services 

on the concrete level. 
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The purpose is to select candidate services that can be 

used to build the data mashup. 

 Note that if services were not categorized according to 

the implemented virtual RDF views, the query 

containment test (i.e. the query subsumption test) in 

relation with domain ontology [4] would be used to 

determine whether a service and virtual view are 

matching each other. In our case, services are clustered 

according to the implemented views “prior to” receiving 

data mashup queries; i.e. the query containment test is 

applied by the time services are published to the mashup 
system. Therefore it suffices in this step to select the 

minimum number of similar services that must be 

combined together to cover the data value constraints for 

each of the individual virtual views used in the rewriting 

(recall that multiple matching services may exist for the 

same virtual RDF view, covering different data values for 

input and output parameter values, each). For example, in 

the running example, the services S3, S4 and S5 are 

returned as matches for the view V2. The issue now is to 

determine the minimum number of services that entirely 

cover a virtual view (e.g. V1, V2). In case of partial 

covering (i.e. available services cover only partially a 
virtual view), the user should be notified so that she 

knows she should not be waiting for complete answers to 

her query.  

We propose a two-phase algorithm to determine the 

minimum set of services covering a virtual view 

efficiently. The algorithm is based on the observation that 

services can be represented spatially where constrained 

inputs and outputs are the dimensions of the 

representation space. This way services can be seen as 

convex polyhedrons, and the problem of determining if a 

virtual view is covered by a set of matching services 

amounts to checking whether a convex polyhedron is 

subsumed by a finite union of convex polyhedrons. This 

problem is known to be NP-Complete [11]. We propose a 

best-effort subsumption algorithm to answer the problem 

efficiently. Hereafter we detail our two-phase algorithm. 

Sketch of our two-phase algorithm: 

To illustrate our algorithm, consider the services S3, S4 

and S5. They match the virtual view V2 (in practical cases 

there may be hundreds of services returned as matches). 

The spatial representations of these services along with 
their corresponding virtual view are presented in Figure-4. 

Input and output parameters are used as the space 

dimensions. Note that in the general case there may be K 

constrained input parameters and L constrained output 

parameters, thus leading to a space with (K+L) 

dimensions. The figure shows that the services S3 and S4 

can be jointly used to completely cover the view V2, and 

that the service S5 is irrelevant (there is no intersection 

between S5 and V2).  

The proposed algorithm consists of two phases. In the 

first phase, for each individual virtual view in the 

rewriting, the algorithm considers a set of N matching 
services (the value of N can be fixed by mashup creators) 

and eliminates duplicate (redundant) services and the 

services that are irrelevant to the virtual view (i.e. those 

that do not intersect with the view V, e.g. the service S5). 

By the end of this phase, the considered set of matching 

services will contain M services (M = N - the number of 

eliminated services). In the second phase, the algorithm 

tests whether the view is completely subsumed by the 

reduced set of matching services M. In case of partial 

subsumption, it will add new matching services to M and 

Figure-3: A graphical representation of the data mashup query and the virtual RDF views. Blue ovals are Concepts 

in domain ontologies; White ovals are Class-nodes; Arcs are Datatype/Object properties in domain ontologies. 
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will restart from scratchthis is repeated till the 
considered view is completely covered or there are no 

more matching services to add for the virtual view at 

hand. The M services in the last iteration constitute the 

minimum set of services for the considered virtual view. 
w
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Figure-4: The Graphical Representation of the Constraints 

Specified on S3, S4, S5 and V2 

The 1
st
 Phase: Eliminating Redundant and Irrelevant 

Services The algorithm starts with constructing a table 
called the Conflict Table which points out conflicting and 

not covered intervals between a view and a set of 

matching services G. Assuming that both V and G pose 

constraints in the form of predicates (e.g. ct: x1 ≥ x ≥ x2) 

on a number m of their inputs/outputs, assume also we 

have a k service, a conflict table is defined as follows. 

Definition:  A conflict table T is a k  (2.m) table relating 

V to all of the predicates defined by the set of services 

G. An element in T,   
 
, is     

 
 if    

 
     

 
 is 

satisfiable or is “undefined” otherwise. 

Table-3 is the conflict table for our example (we assume 

that N=3). The first row represents a template for the 

content of the actual conflict table relating V2 to S3, S4, 

and S5. For example, the row corresponding to S3 is 

constructed as follows:    
      

  is unsatisfied, thus 

assigned “undefined”;    
      

  is satisfied, thus 

assigned the value     
       ;    

      
  and 

   
      

  are unsatisfied thus assigned “undefined”. 

 

V2 a < low a > high b < low b > high 

S3 undefined a > 200 undefined undefined 

S4 a < 200 undefined undefined undefined 

S5 a < 600 undefined b < 600 undefined 
Table-3: The Conflict Table for the Running Example  (N=3)  

The algorithm then eliminates duplicate services (i.e. 
services covering the same values ranges) and the services 

that do not intersect with the view V. This task can be 

accomplished by computing both the number of defined 

elements and the number of conflict-free elements for 

each row in the conflicting table. 

Definition Two defined entries in the table,  
  

    and  
  

    

are said to be conflicting if i1  i2, and    
  

      
  

    

is not satisfiable. A defined entry  
  

    is said to be 

conflict-free if it does not conflict with any other 

defined element  
  

   , where i1  i2. 

Conflict free entries are determined by comparing entries 

from the conflict table related to the same property (input 

or output), for different services. If a constraint conflicts 

with any other constraint defined by another service, the 

entry is conflicting. It is conflict free otherwise. In our 

example (see table the Table-3) the defined entries for 

both S3 and S4 are conflicting, while those of S5 are 

conflict-free. 

Proposition
2
: If the number of conflict-free elements in 

the i-th row of T, fi, is greater than or equal to /1/, or 

the number of defined elements in row i, ti > k, then Si is 

redundant.  

The algorithm counts the number of defined elements for 

each service Si in the corresponding row, ti and computes 

the number of conflict-free elements, fi. Then, it removes 

from the set all services for which ti is equal to or greater 

than the current number of services in the set. It also 

removes services that have at least one conflict free 

element in the corresponding row of the conflict table. 

These two steps are repeated until there are no more 

services that fulfill any of the two conditions. The 
remaining services form the non-reducible cover set M for 

answering the union covering problem. In our example 

we have fc1, fc2 = 0, fc3 = 2, t1, t2 = 1(≤ 3), therefore S5 is 

removed. In the second iteration, still no service has more 

defined entries than the total number of services (t1 = t2 = 

1 ≤ 2) and there are no conflict free entries, thus the 

algorithm stops. The minimized cover set is M = {S4, S5}. 

The 2
nd

 Phase: Testing the Cover After eliminating 
irrelevant services, and since the general subsumption is 

practically unfeasible [11], a probabilistic (“Monte Carlo 

type”) cover-checking algorithm is applied to guess a 

point in V that is a point witness to non-cover for the set 
of services M (a point located in an uncovered area), if 

such a point is found, then the subsumption problem is 

solved with a definite NO, i.e. V’s constraints are 

unsatisfied with the set M, in such case new matching 

services will be added and the matching algorithm is 

repeated until the view is covered or there are no new 

matching services to add. On the other hand, in case a 

subsumption relationship exists, the algorithm would try 

in vain to find such a witness. To prevent this situation, a 

threshold d for the number of guesses is defined, and the 

algorithm may output a probabilistic YES, i.e. V  M with 
a predefined probability of error (upper bounded by (1-

λ)d, where λ is the probability that a randomly generated 

point P inside V is a point witness to non-cover)
2
. If V 

was not covered by M then the set of tested services are 

not fulfilling the constraints involved in the query and an 

                                                
2
 Due to space limitations we do not report the proofs in the paper (they 

are available upon an email request). 
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indication will be reported to the user. Continuing with 

our example, the algorithm will find that V2 is covered by 

the services S3 and S4 and will return YES by the end of 

the test (i.e., no more matching services are added). 

3. Optimizing the data mashup plan using 

service constraints 
Executing the mashup obtained in the previous steps is 

inefficient. The reason is that some DaaS services are 
called with values of input parameters violating their 

specified constraints on accepted input values. Indeed 

each Web service call usually has some fixed overhead, 

typically parsing SOAP/XML headers and going through 

the network stack. Therefore, eliminating superfluous 

calls (i.e. calls with values violating the service’s input 

constraints) will have a significant impact on the 

execution time of the whole data mashup.  

We exploit the constraints placed on the accepted 

values of input parameters (and which are specified in the 

RDF views) to filter out superfluous calls to composed 

services. For example, filters are inserted before calling S1 
and S2 to verify whether the value of the medication’s 

code is lower than “200” in the case of S1, and greater 

than “200” in the case of S2. In addition, filters are placed 

on S4 and S5 as can be seen in Figure-5. 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure-5: the mashup is optimized using the input constraints as 

filters before invoking primitive services 

In what follows, we show how filters are interpreted in 

the mashup plan. Similarly to traditional Web services 
composition, the obtained data mashup is translated into 

an execution plan describing both data flow and 

intermediary data processing (e.g. joins, unions, etc) 

among individual DaaS services. Note that languages like 

BPEL4WS [2] that is used to describe workflow-oriented 

service compositions cannot be used with data mashups. 

We translate the mashup plan in terms of set of operations 

that can be executed by a data streaming execution engine 

that we have implemented for our purposes. The plan is 

translated as follows. Each service occurrence in the 

mashup will be translated to an “invoke” operation. Note 
that an invoke operation in our plans is different in nature 

from those found in BPEL as it invokes the web service 

for each single tuple in its input relation. The outputs of 

similar web services (services covering the same portion 

of the query) will be unified by a “union” operation that 

is responsible for removing redundant tuples. “Join” 

operations will be used to feed a service with data tuples 

coming from its parents in the mashup plan. “Select” 

operations are used to filter out tuples that do not satisfy a 
specified constraint (e.g. <, =, > constraints), thus 

removing superfluous calls to services. It is important to 

note that data tuples are streamed between the different 

operations; i.e. our execution engine does not wait until 

an operation produces all its output tuples to proceed with 

the execution of subsequent operations, rather an 

operation starts to execute as soon as its preceding 

operations begin to produce tuples on their outputs. For 

space limitation, we don’t show the final mashup plan. 

4. Evaluation  
To evaluate the performance gain obtained from 

applying our optimization algorithms, we implemented 

them in our data mashup system and tested the approach 

in the healthcare domain. In the context of the French 

project PAIRSE3, we were provided with access to a set 
of /411/ DaaS web services implemented on top of /17/ 

medical databases storing medical information (e.g., 

medications, diseases, medical tests, allergies, ongoing 

treatments, etc) about more than /30,000/ patients. The 

WSDL description files of these services are annotated 

with RDF views that are defined over a medical ontology 

to capture their semantics. These services are “mashed 

up” by health actors to answer their daily data needs. 

We had two objectives in our conducted experiments: 

(i) we wanted to show that the introduction of virtual 

views (in the virtual layer) improves the response time of 
our data mashup system; (ii) we wanted to evaluate the 

cost incurred in finding the minimum number of services 

matching the virtual views (at the mashup creation time), 

and see if that cost is justified by the gain obtained in the 

mashup execution time; we wanted also to evaluate the 

gain in the mashup execution time introduced by the filter 

algorithm. All algorithms were implemented in Java, and 

the reported results in all experiments are the average of 

/10/ runs. 

Objective-I: With help of the healthcare experts we 

defined the set of virtual RDF views that represent the 

services. We identified /20/ different virtual views. We 

clustered our /411/ services according to the virtual views 

using an OWL-DL-based subsumption test [4] prior to 

receiving the mashup queries. We considered mashup 

queries with a varying size (from 3 class-nodes to 10 

class-nodes −recall that class-nodes are basic atoms of an 

RDF query [1]). Figure-6 shows the performance of the 

mashup query algorithm when (i) the queries are rewritten 
directly in terms of available services (i.e., the initial 

approach is applied), (ii) in terms of the virtual views (i.e., 

                                                
3 https://picoforge.int-evry.fr/cgi-bin/twiki/view/Pairse/Web/ 
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 Figure-6: The response time of the mashup system before and after 

introducing the virtual layer and when the minimum set of services 

algorithm is applied 

the extended approach is applied), and (iii) in terms of the 

virtual views with applying the algorithm of the minimum 

set of services. Obviously, the use of virtual views 
improves “considerably” the response time of the mashup 

system. This gain is due to three factors: (i) the number of 

virtual views is limited compared to concrete services (20 

vs. 411), (ii) the mashup algorithm is no longer required 

to go through all potential rewritings; it can stop as soon 

as a rewriting is found and (iii) concrete services are 

matched (i.e., clustered using the ontology-based 

subsumption test [4]) to the virtual views “prior to” 

receiving the mashup queries. The results show also that 

the algorithm of the minimum set of services introduced 

only a weak overhead at the mashup creation time.  
Objective-II: We considered set of mashup queries with 

varying number of virtual views. We compared the 

mashup execution time when (i) the mashup is not 

optimized with the minimum set of services algorithm 

(i.e. the mashup includes some redundant and irrelevant 

services that would waste time at the mashup execution 

time), (ii) the mashup is optimized with the minimum set 

of services algorithm and when (iii) both the minimum set 

of services and the filter algorithms are applied. The 

results in Figure-7 show that the optimization algorithms 

shorten the execution time of the data mashup.  This 

performance gain is due to the following factors: (i) the 
minimum set of services algorithm eliminates all 

redundant and irrelevant services whose invocations 

would return only redundant tuples on the mashup’s 

outputs, and (ii) the filter algorithm eliminates 

superfluous calls to component services that would return 

empty (or error) results. 

Note that the overhead introduced by the minimum set 

algorithm at the mashup creation time is justified by the 

performance gain found at the mashup execution time 

since mashups are created once and used many times. 

5. Related Works 
Since the data mashup research problem is relatively 

new, there has been only a small amount of research work 

addressing it. In the following, we review the most 

prominent ones of these works and compare them to ours. 
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 Figure-7: The mashup execution time before and after optimization 

The Web Service Management System (WSMS) in [14] 

allows users to mashup data services by directly 

expressing their queries in terms of data services’ 

relations. Contrary to our system, the WSMS’s users are 

assumed to have an understanding of the semantics of the 
services that are available to them. The work introduced 

two optimization algorithms. The first exploits the service 

selectivity to arrange component services in the mashup. 

Services with the lowest selectivity are executed first in 

the mashup to reduce the number of tuples that must be 

processed by subsequent services in the plan. The second 

uses variable chunk volumes for data exchanged among 

component services. Compared to WSMS, our system 

takes a more fundamental approach to the optimization 

issue by selecting only the minimum number of services 

that cover the mashup query. We use also the services 

constraints to filter out superfluous calls to services.  
The Web Service Mediator System WSMED [13]  

allows users to mashup data services by defining 

relational views on top of them. Users can then query data 

by formulating their mashup queries over defined views. 

Users can also enhance defined views with primary-key 

constraints which can be exploited to optimize the 

mashups. The main drawback of the WSMED system is 

its high reliance on users; i.e. users are supposed to import 

the services relevant to their needs; define views on top of 

them and enhance the views with primary key constraints. 

The latter task requires from users to have a good 
understanding of the services’ semantics. In our system, 

DaaS Web services are modeled as RDF views over 

domain ontologies where primary key constraints are 

defined explicitly by the concepts’ skolem functions, thus 

the discussed Primary key based optimizations are 

included by default in our query processing model. 

The CLIDE System [12]  addresses the problem of 

semi-automatic interactive data mashup query 

formulation over a set of data services. The system helps 

mashup creators formulate feasible queries over data 

services by proposing a set of actions with which the 

query remains answerable. Once again, the data mashup 
creators are assumed to understand the semantics of 

exposed data services when they make actions during the 

mashup query formulation process. Furthermore, users are 
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supposed to drop code to wire the selected data services 

and do intermediate data processing operations (e.g. join, 

select, etc) among selected services. In addition, the work 

addresses only specific queries as opposed to 

parameterized queries addressed in this paper. 

In other academic mashup systems [15,16,7,10], data 
mashup users are required to select the data services 

manually (which assumes they are able to understand 

their semantics), figure out the execution plan of selected 

services (i.e. the services orchestration in the mashup) 

and connect them to each other and drop code (in 

JavaScript) to mediate between incompatible 

inputs/outputs of involved services. This prevents average 

users from mashing up data services at large. Our mashup 

system addresses this limitation by proposing a 

declarative mashup approach, where users need only to 

focus on the required data and the system will find and 

mash-up the services for them. 
A considerable body of recent work addresses the 

problem of composition (or orchestration) of multiple 

web services to carry out a particular task, e.g. [18,19]. In 

general, that work is targeted more toward workflow-

oriented applications (e.g., the processing steps involved 

in fulfilling a purchase order), rather than applications 

coordinating data obtained from multiple web services, as 

addressed in this paper. Although these approaches have 

recognized the benefits of optimizing compositions, they 

have not, as far as we are aware, investigated the selection 

of minimum set of services or used the inputs/outputs data 
value constraints for the optimization. 

6. Conclusion 
In this paper we presented a query model to resolve 

parameterized queries over DaaS Web services. We 

proposed to rewrite mashup queries in terms of virtual 

RDF views representing meaningful data queries in a 

given application domain. We presented also a set of 
optimization algorithms to speed up the mashup execution 

time and evaluated their introduced performance gain. As 

a future work, we would like to extend our data mashup 

optimization framework with a mechanism that takes into 

account the quality of service QoS aspects (like the 

service response time, service reputation, etc).  
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