
Combining configuration and query rewriting for
Web service composition

Amin Mesmoudi
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205, F-69622, France
amin.mesmoudi@liris.cnrs.fr

Michaël Mrissa and Mohand-Saı̈d Hacid
Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France
{michael.mrissa,mshacid}@liris.cnrs.fr

Abstract—In this paper, we investigate the combination of
configuration and query rewriting for semantic Web service
composition. Given a user query and a set of service descrip-
tions, we rely on query rewriting to find services that imple-
ment the functionalities expressed in the user query (discovery
stage). Then, we use configuration to capture dependencies
between services, and to generate a set of composed Web ser-
vices described as a directed acyclic graph, while maintaining
validity with respect to business rules (orchestration stage).
Finally, we propose a semantic ranking algorithm to rank
results according to user preferences (classification stage).

The techniques used in our approach take into account
the semantics of concepts utilized to describe the elements
(services, business rules, query and user preferences) involved
in the composition process. We provide a formal approach
and its implementation, together with experiments on Web
services from different application domains.

I. INTRODUCTION

Domain and service ontologies enable the annotation
of Web service description files with respect to several
aspects (functionality, input and output data, quality of
service, etc.). Domain ontologies formalize the vocabulary
of some application domain (medical, e-business, etc.)
whereas service ontologies formalize the vocabulary used
for describing operational service aspects (operation, input,
output, protocols, etc.). Thanks to these underlying seman-
tic representations and to the reasoning possibilities they
offer, semantic annotation allows to automatically handle
service-related tasks (e.g. discovery and composition) with
the help of reasoning mechanisms (i.e. logical reasoning or
“inference”) [1].

In a service ontology, we can distinguish between two
kinds of Web services: abstract and concrete services.
Abstract services play the role of interfaces (as in object-
oriented programming), while concrete services implement
the abstract services [2]. However, the most known service
ontology OWL-S [3] is bound to concrete services, and
does not offer the logical constructs to describe abstract
services in a flexible way [4].

Composing Web services allows to provide novel and
complex functionalities. However, identifying existing ser-
vices (discovery) and combining them (orchestration), in
order to fulfill the requirements for a complex service, is
extremely time-consuming for a human operator. There are
many approaches devoted to automated synthesis of service

composition [5]. Several techniques exist to compose Web
services, mainly variants of planning [6]. However, these
techniques mainly focus on finding the execution plan,
relying on a predefined template [7]. A template represents
the dependency between different kinds of abstract Web
services. This template should be instantiated, by selecting
concrete Web services, to achieve the composition goal. So
far, this template is created manually (see, e.g., [8]), created
semi-automatically (see, e.g., [9]) or generated using logs
(execution traces) (see, e.g. [7]).

Our contribution in this paper is two-fold:
First, we use a language for describing abstract services,

while remaining independent from any underlying service
ontology that providers could use for describing services at
the concrete level (OWL-S or others).

Second, we propose a three-stage approach to automat-
ically generate a Web service composition template. We
rely on configuration and query rewriting techniques. The
stages can be described as follows: (1) finding the services
that implement the functionality of each goal in the query
(discovery stage), (2) orchestrating the interactions between
selected Web services in order to achieve the composition
and to fulfill user’s requirements (such as constraints)
(orchestration stage) and (3) ranking candidate solutions
according to users’ preferences (classification stage).

In this approach, we use the semantic annotation of
services to automatically generate, without user interven-
tion or logs analysis, composition template from the user
requirements (such as preferences and constraints).

This paper is organized as follows: in Section II, we pro-
vide some background knowledge on query rewriting and
configuration. We highlight the need for a combination of
configuration and query rewriting techniques in Section III.
We present the formal aspects of our approach in Sec-
tion IV, and we discuss the implementation in Section V.
Section VI discusses the advantages and limitations of our
approach, and Section VII gives some directions for future
work.

II. BACKGROUND KNOWLEDGE AND RELATED WORK

In this section, we discuss the main approaches regarding
the use of query rewriting and configuration for Web

service composition. We also highlight our contribution in
this area.

A. Service ontology

As mentioned in the previous section, we can distinguish
between abstract and concrete Web services, as described
in [2]. The most known service ontology, OWL-S [3] is
not relevant for describing abstract services. More precisely,
OWL-S is bound to concrete services, and does not offer
the logical constructs to describe abstract services in a
flexible way [4]. On the contrary, another well-known
service ontology is WSMO [10], which has a capability to
describe abstract services as defined above. However, to the
best of our knowledge, no decidability results are known
for basic reasoning task (such as structural subsumption)
for services described in WSMO.

In our work, we propose a language for describing ser-
vice functionalities at the abstract level, relying on descrip-
tion logic, while remaining independent from underlying
service ontologies that providers use for describing services
at the concrete level (OWL-S or others).

B. Semantic Web service composition

Raising the Web service composition problem to the
semantic level offers new opportunities for the automation
of the composition and discovery tasks. Several approaches
have investigated the use of AI planning to automate
semantic Web service composition. The approaches in [11],
[12] are based on a translation of the composition problem
to planning as situation calculus problem. In [13], authors
exploit planning as Model Checking. In [4], the authors
proposed a hybrid approach based on HTN planning and
OWL-DL reasoning. HTN enables task decomposition but
is not semantic-aware, and OWL-DL allows to reason about
Web services. In Lécué et al. [14], [15], the authors use
AI planning and CLM (Causal Link Matrix) to tackle
the semantic service composition problem. However, these
techniques mainly rely on a predefined template to find a
correct execution plan. A template represents the depen-
dency between abstract Web services. To use a template,
abstract services should be instantiated. So far, this template
is created manually (e.g. [8]), semi-automatically (e.g. [9])
or generated using logs (execution traces) (see, e.g., [7].

In our work, we propose a novel approach to auto-
matically generate a Web service composition template,
without user intervention or logs analysis. Dong et al. [16]
as well as Sirin et al. [4] proposed extensions to OWL-S
to represent abstract services of the composition template.
Our templates are described using a DAG (Directed acyclic
graph), this description is free from concrete service de-
scription language. We consider preferences described by
using terms from the service ontology, e.g. functionalities,
inputs/outputs, etc., which have not been considered in pre-
vious works (see, e.g., [17], [18]) on preferences integration
in the composition task. In the following, we review the

main works related to query rewriting and configuration in
order to compose Web services.

C. Query Rewriting

Query rewriting (using views) consists in reformulating
a query according to views that are already available from
the database. Query rewriting techniques have also been
used for Web service composition in [19], [20], [21] where
services are accessed via Datalog queries. Lu et al. [19] pro-
vide a framework for answering queries with a conjunctive
plan that includes inputs and outputs of participating Web
services. In Thakkar et al. [20], a combination of inverse
rules algorithm and tuple-level filtering allows building the
composition. However, in those works, Web services are
matched without taking into account the semantic informa-
tion contained in their descriptions. In Bao et al. [21], a new
algorithm is proposed to construct a composite Web service
i.e. generating the dependencies between already selected
services, but the discovery phase is missing and the authors
only deal with functional constraints. Also, Barhamgi et
al. [22] use query rewriting for querying services described
as RDF views with SPARQL queries, but this work is
focused on data-providing services.

D. Configuration

Configuration has been part of the Artificial Intelligence
(AI) field for a long time. Some attempts to formalize
configuration have been proposed in several works (see,
e.g., [23], [24]). Configuration consists in finding sets of
concrete objects that satisfy the properties of a given model.
With respect to Web service composition, some approaches
based on configuration have been proposed (see, e.g., [25],
[8]). These approaches rely on predefined process templates
that allow selecting services that match the process tem-
plate. In the following, we discuss our contribution and
illustrate it on a typical scenario.

III. DESCRIPTION OF THE PROPOSED APPROACH

In this section, we develop the novel aspects of our
approach for the generation of composition templates, and
we motivate the choice of combining query rewriting and
configuration. Our approach follows the well-known “sep-
aration of concerns” principle [26] and identifies indepen-
dent, consecutive sub-problems (called composition stages)
in the composition problem: discovery and orchestration.
We rely on query rewriting for performing service discovery
and on configuration for solving the orchestration problem.
Furthermore, a classification stage enhances our proposal
with ranking capabilities. Now, let us detail our contribution
according to these three stages:

Discovery: In order to discover sets of services that
answer a user query, we adapt the bucket algorithm used in
query rewriting [27]. We propose two algorithms, the first
one for identifying services according to the concepts in the
query, and the second one for filtering irrelevant rewritings
(missing outputs).

Orchestration: Orchestration consists in finding the
correct order of invocation of services, while taking into
account the business rules related to the application do-
main and the dependencies that exist between services.
We categorize dependencies as follows: functional depen-
dencies, i.e. dependencies between input parameters and
output parameters, and non-functional dependencies, which
depend on the business rules presented as a predefined set
of constraints related to the domain of composition.

We rely on configuration to deal with the orchestration
stage. We propose a formalization of the configuration
problem where business rules are represented as constraints
in the configuration task. Also, we propose a calculus based
on inference rules.

Classification: We propose a ranking model that uses
semantic information available in the service ontology to
classify the results obtained after the composition, accord-
ing to the user preferences. For each result we calculate a
score that represents the semantic proximity between this
result and user preferences. The ranking will be established
using this score.

IV. OUR COMPOSITION FRAMEWORK

A. Running Example

To illustrate our proposal, we use the traditional travel
reservation process case study (see, e.g., [28]). A user who
plans to travel to some country for a determined amount of
time needs to book a transport, to find an accommodation,
and to rent a car in order to visit some interesting places
around. This example relies on a domain ontology avail-
able at http://liris.cnrs.fr/∼soc/doku.php?id=transverse. We
model user requirements for a composition with a query
Q specified as a couple < M,P >, where M represents
the Mandatory part of the query and P represents the
Preference part of the query. Each part is specified as a
triple < I,O,C >. With regards to M :
• I (for input) denotes the input data the user provides,

which are handled as constraints in the query,
• O (for output) denotes required information to be

provided as a result of the query,
• C denotes service categories, representing required

functionalities.
In our example, I includes departure and return dates and
locations, and O includes details about flight, train or bus
tickets, hotel, flat or B&B information and type of vehicle
and price and C includes transport, accommodation and
vehicle rental. According to our query representation and
given some user input I , the objective is to provide all
the information required in O, by finding an appropriate
combination of Web services that only make use of the
input I specified in the query. P represents preferences on
inputs(I), outputs(O) and category of services(C). Details
and an example about preferences are given in Section IV-E.

Several services can satisfy the required functionalities,
for instance the transport functionality can be satisfied

by three services: Flight booking, Train booking or Bus
booking. Therefore, an agent must consider all the possible
combinations, then check their validity with respect to
user constraints, such as “select service that can provide
hotel description“, and service constraint, for example “a
hotel booking service requires a reservation date to confirm
booking for a client”. Even with valid combinations, we
need to establish the order of invocation of services with
respect to business rules governing the application, for
example we cannot book a hotel without booking the flight,
or we can use one service if we pay by credit card. One
can show that it is very difficult for a human agent to
do all these operations in the case of a large number of
services provided and a complex user query. We consider
this problems in the rest of paper.

B. Defining a WS description language

In this section, we define the kind of semantic Web
services we consider. We also give an informal introduction
to the knowledge representation language we use.
• A semantic Web services database OT describes the

structural part of services, i.e. abstract services.
• A service S is composed of a set of input parameters

(IS), a set of output parameters (OS) and represents
an abstract function.

In our case study, we assume the existence of eleven
categories of Web services in the application domain (e-
tourism). For instance, hotel, flat, B&B and youth hostel
reservation services are subcategories of the Accommoda-
tion category.

1) The ontology part: To describe the constrained vocab-
ulary that will be used to specify OT , we resort to descrip-
tion logic. The constructs of this description logic include
Conjunction, Existential and Universal quantification. Ax-
ioms in OT are of the form A v D where A is a primitive
concept and D is an arbitrary concept. Roughly speaking
the language corresponds to FLE description logic. The
complete syntax, semantics together with decidability of
concept entailment are described in [29].

For example, in our case study, we represent the sub-
category Plane of the category Transport with Plane v
Transport, the input departurePlace of the service Trans-
port with Transport v ∃HasInput.departureP lace and
the output transportPrice of the service Transport with
Transport v ∃HasOutput.transportPrice.

C. Query Rewriting

We assume that we have a query language L to specify
queries. The construct of L are given in the examples
below. Each part (M and P) of the query Q is defined as a
conjunction of terms. Each term is a concept expressed in
L over the ontology OT . We assume that L is a subset
of the language used to describe OT and presented in
Section IV-B1. In this section we focus on the mandatory
part of the query. The preference part is considered in
Section IV-E.

http://liris.cnrs.fr/~soc/doku.php?id=transverse

We identify three types of concepts in the Mandatory part
of a query: inputs, outputs and service categories. Inputs
have their values provided by the user as query parameters.
Outputs must be provided as an answer to the query
execution, and service categories represent functionalities
to be selected. We use Q to refer to the mandatory part of
a user query.

To make things simple, we define Qcat as the service
category part of the query and we will use QCons to
denote the constraint part. Hence, in this context query
rewriting consists in finding Web services belonging to
the relevant categories (i.e. resolve the Qcat part of the
query), and that satisfy the query by: 1) providing the
required output, and 2) requiring overall no more data
than those provided as inputs (i.e. resolve the QCons

part of the query). Let us consider the following query:
Q = Transport u ∃HasInput.departureP lace

u∃HasInput.destinationP lace u ∃HasInput.
departureDate u ∃HasOutput.transportPriceu
Accommodation u ∃HasInput.checkoutDateu
∃HasOutput.accommodationPriceu
∃HasOutput.accommodationDescription
uCarRental u ∃HasOutput.rentalPrice
u∃HasInput.retrievalDate u ∃HasInput.returnDate
u∃HasOutput.rentalDescription

The inputs specified in query Q are departureP lace,
destinationP lace, departureDate, checkoutDate,
retrievalDate and returnDate. Accordingly, the outputs
expected as a result to the query are transportPrice,
accommodationPrice, accommodationDescription,
rentalPrice, and rentalDescription. We consider a par-
ticular class of abstract services, namely primitive services,
that represents services that can have a concrete service
as instance and does not have abstract services as sub-
categories. For our example: Plane, Train, TouristCarRental
constitute a primitive services.

In order to rewrite the query we use a modified version
of the bucket algorithm presented in [27]. The bucket
algorithm allows to rewrite a user query according to
existing views.

In order to rewrite a query Q, the bucket algorithm starts
by creating a bucket for each subgoal containing the views
that are relevant. Then, it considers the conjunction of the
different views in each bucket, and finally applies filtering
mechanisms in order to build the rewriting. The reader may
refer to [27] for more details.

We build our proposal on an analogy between the bucket
algorithm and the Web service composition problem. In our
proposal, views correspond to primitive services, predicates
to concepts and subgoals to service categories. Views in the
original bucket algorithm correspond to primitive services
in our context, and they are associated with constraints
related to the service.

The propagation rule given in Algorithm 1, where C,D
and S are concepts in the ontology such that D @ S is an
element of the ontology, is first applied. We denote by LC

the set of all the leaves (primitive services) that belong to

Algorithm 1 Propagation rule
1: for all C in Q do
2: LC = {C}
3: for all S in LC do
4: for all D @ S in OT and D /∈ LC do
5: LC = LC ∪ {D}
6: end for
7: if ∃D @ S in OT then
8: LC = LC \ {S}
9: end if

10: end for
11: end for

the category C. For example, for the category Transport,
LC = {Plane, Train,Bus}. We assume that Qcat is not
empty, which means that at least there is one C in the query
Q. Here are some explanation of Algorithm 1:

• Line 2: we initialize every LC with one category
element C.

• Lines 3-10: we collect in each set LC primitive
services.

• Lines 3-6: we add the subconcept D of a service S to
LC if it is not yet in LC ,

• Lines 7-9: we remove the service S from LC if this
concept has at least one sub-concept.

Then, we generate the bucket table as the Cartesian product
of all LC generated from Algorithm 1. Let L =

⋃
C LC and

let BC be the set of all possible rewritings of Qcat, then
BC =

∏
l∈L l. To verify the subsumption, we make use of

a DL reasoner based on tableau calculus (see, e.g., [30]).
In the implementation we make use of Pellet [31].

At the end of the process, several combinations of
services will satisfy the Qcat part of the query, which
means that the selected services satisfy the query in terms
of functionality. Each Row of BC is a possible rewriting of
the query Q. Cells describe primitive services. Hence, each
row contains a combination of Web services that fulfil the
Qcat part of the query. In the sequel, we use Qc

cat to denote
the fact that the service category c is an element of Qcat.

To each row of the table, we apply Algorithm 2. Its
primary goal is to filter irrelevant combinations of services
that do not provide all the required output parameters
specified in Q. In addition, it identifies inputs that services
require and that are not provided in Q (MI).

We denote by D the primitive services used to rewrite
Q. For each service D, we define its inputs as Di

cons and
its outputs as Do

cons. We assume that all the outputs in the
request are missing and every time we find a service that
provides an output that is in the request, we remove it from
the set of missing outputs denoted by MO. At the end of
processing of each line, if there are missing outputs, we
remove this line from the table because this set of services
does not provide the required outputs. Finally, we add one
column to the BC table to represent MI .

Algorithm 2 I/O algorithm
1: for all row L in BC do
2: MI = ∅,MO = Qo

cons

3: for all service D in Ls do
4: MI = MI ∪ {Di

cons}\Qi
cons

5: MO = MO\{MO ∩Do
cons}

6: end for
7: if MO 6= ∅ then
8: some output is missing: invalid combination
9: remove the line from the table

10: else
11: record MI
12: end if
13: end for

D. Configuration

The configuration task consists in establishing the order
of invocation of services with respect to business constraints
that usually govern application domains. Constraints in-
clude dependency relationships between Web service in-
vocations, data and control flow constraints such as “Car-
Rental can only be validated if the flight is booked”, etc.

1) Formal Representation of Composition Constraints:
To represent the constraints involved in the configuration,
we use three sets D, I , E such that:
• D represents a set of dependency relationships related

to the domain of composition, D ⊆ S×S, (s1, s2) ∈
D denotes that the execution of s1 must precede the
execution of s2.

• I represents a set of incompatibility relationships, I ⊆
S×S, (s1, s2) ∈ I denotes that it is strictly forbidden
to put s1 and s2 in the same composition.

• E represents a set of requirement relationships, E ⊆
S × S, (s1, s2) ∈ E denotes that it is mandatory to
find the service s1 in a composition involving s2.

2) A Calculus for Configuration: The configuration task
is defined as a deductive reasoning task that uses business
rules represented as constraints between services to provide
a dependency graph G that represents the dependencies
between services that form the composition template. We
define a dependency graph G as a tuple G = (V,R),
where V is a set of services involved in the composition,
R ⊆ V × V represents a set of dependencies between
services, (s1, s2) ∈ R denotes the fact that a service s2
cannot be invoked before the end of the execution of the
service s1.

The goal specification in our configuration task is repre-
sented as a tuple (S,MI), where S is a set of services to be
composed and MI is a set of missing inputs represented as
a set of functional constraints. One rewriting of the query
example is represented as follows:

(S,MI) = ({Plane,Hotel, TouristCarRental},
{location, chekinDate})

Additionally, the dependency relationships for the e-

tourism domain are :
D = {(Transport, CarRental), (Transport,

Accommodation), (Accommodation,CarRental)}
Our inference rules work on a pair of sets C.G where

C is the specification of the goal and G is the solution
of the configuration represented as a graph. We start with
the initial goal and the empty solution (C.(∅,∅)), and the
algorithm ends when no more inference rule applies. In
order to simplify the definition of rules we use the following
notations (with (s, d) ∈ S × S):

• A functional dependency is denoted by (s, d)i where
i ∈ (sicons ∩MI) and ∃o ∈ docons s.t. o v i.
This dependency reflects the relationships between
service inputs and outputs.

• An induced dependency is denoted by D(s) =
{(s, d)/ ∃d ∈ S ∪ V and ∃(x, y) ∈ D, s.t. s v x
and d v y}. This set reflects the dependencies of a
service s deduced from the set D of dependencies of
a domain.

• A path of indirect dependency is referred to by
Path(x, y) = {(x, x1), (x1, x2), ..., (xi−1, xi), (xi, y)}
with x 6= x1 and xi 6= y
This set reflects an indirect dependency relationship
between two services.

Now we present the rules used in the configuration
phase. In the following Ŕ denotes the changed/new set of
dependencies:

1) (S ∪ {s},MI).(V,R)→ (S,MI).(V ∪ {s}, Ŕ) with
Ŕ = R ∪ D(s) and D(s) is the set of induced
dependencies related to the service s.

2) (S,MI ∪ {i}).(V.R) → (S,MI).(V, Ŕ) iff
∃{s1, s2} ⊆ V with (s1, s2)i
Ŕ = R if (s1, s2) ∈ R else Ŕ = R ∪ (s1, s2)

3) (S,MI ∪ {i}).(V,R) → (S,MI).(V,R) if ∃í ∈
Qi

cons with í v i
4) (∅,MI).(V ∪ {x, y}, R)→ (∅,MI).(V́ , R)

V́ = V ∪ {x, y} iff @(s1, s2) ∈ I with (x v s1 and
y v s2) or (x v s2 and y v s1)
V́ = V ∪ {⊥} otherwise

5) (∅,MI).(V ∪ {x, y}, R)→ (∅,MI).(V́ , R)
V́ = V ∪{x} iff @(s1, s2) ∈ E,∃y ∈ V with (x v s1
and y v s2)
V́ = V ∪ {⊥} otherwise

6) (S,MI).(V,R)→ (Ś, ḾI).(V́ , Ŕ)
7) (∅,MI).(V,R ∪ Path(x, y) ∪ (x, y)) →

(∅,MI).(V,R ∪ Path(x, y))
8) (∅,MI).(V,R ∪ Path(x, x)) → (∅,MI).(V ∪
{⊥}, R)

Let us give some intuition regarding the interpretation of
these rules:

• Rule 1 simply expresses that each time we add a
service to the graph of dependencies, we must add
all dependencies related to this service, these depen-
dencies must be related to another service in S or V .

• Rule 2 reflects the creation of dependency relation-
ships between services.

• Rule 3 removes missing inputs provided by another
part of the query.

• Rule 4 detects incompatibilities between services.
• Rule 5 controls the requirements of services.
• Rule 6 detects deadlocks between services (cycles in

the solution graph).
• Rule 7 optimizes dependencies between services (re-

moves useless dependencies).
The configuration task starts with V = ∅, R = ∅ and

S = Ls, where Ls is the set of services induced by
the specification at the row L of the bucket table. If the
inference task ends with MI = ∅, and ⊥ /∈ V we conclude
that the composition is correct. Otherwise, we delete the
row L from the bucket table. If MI 6= ∅, there are missing
inputs that cannot be provided in the composition, and if
⊥ ∈ V, there is an inconsistency between services. Let us
illustrate our approach with an example that is the previous
example of the goal specification and business rules of the
e-tourism domain:
• Initial state:

(S,MI) = ({Plane,Hotel, TouristCarRental},
{location, chekinDate})

• Application of the Rule 1 to Plane, Hotel and Tourist-
CarRental results in the creation of new dependencies

• Application of the Rule 2 to checkinDate means that
this missing input can be provided from another ser-
vice of the same composition

• Application of the Rule 3 to location means that this
missing input can be provided by the user query

• Application of the Rule 4 remove useless dependencies
• After triggering these rules we obtain the following

solution:
(S,MI) = (∅, ∅)
(V,R) = ({ Plane, Hotel, TouristCarRental},{
(Plane, Hotel), (Hotel, TouristCarRental) })

The inference mechanism performs the selection and the
application of rules while keeping satisfied a predefined
triggering order between rules. This order is specified as
follows: R7 4 R6 4 R5 4 R4 4 R2 4 R3 4 R1. Here
R1 has the higher priority, then R3, and so on. The result
of the configuration phase is a DAG (Directed Acyclic
Graph).

E. User preferences and Ranking

Integrating user preferences in composition allows us to
obtain ranked results. In our work, we are interested in user
preferences at the process level (such as “FlightService is
preferred to BusService”) and at the service input/output
level (such as “we prefer a service that accepts credit card
payment” for input preference, “we prefer a service that
shows if a car has GPS” for output preference). Once the
configuration task achieved, we obtain several results that
can satisfy the M part of the query. Here, we propose to

rank these results according to preferences expressed in part
P of the query.

First, we define a “concept score” that is calculated for
each concept in P and represents the degree of relevance
between a composition and one concept in P . Next, a
global score for the composition is calculated from indi-
vidual concept scores. Our technique is inspired from the
computation of geographical scores in [32]. We adapted this
technique as it provides an interesting similarity with our
work. Indeed, the computation of geographical scores relies
on two measures: closeness and specificity. We noticed
that the more specific a solution is, the better ; and
accordingly, we noticed that it is interesting to calculate
the closeness between concepts of the query and concepts
of the composition in order to evaluate its relevance. The
experiments are in favor of this assumption.

1) Concept score: A concept score represents the degree
of relevance between a concept in P and the composition
result. It is characterized by the following two elements:

Definition (Closeness) Semantic distance between the part
P of the query and the concept.

Definition (Specificity) A weight discounting term based
on the semantic extent of the concept.

The relevance S(c,R) between a composition R and a
preference concept c is calculated as follows:

S(c,R) = Closeness(c,R).Specificity(c) (1)

In the next equation, V i
cons and V o

cons represent sets of
inputs and outputs respectively related to the services in V .

Closeness(c,R) =



1 iff c ∈ V ∪ V i
cons ∪ V o

cons

with R = (V, Ŕ)
α iff ∃y, y @ c such that y ∈ V
∪V i

cons ∪ V o
conswithR = (V, Ŕ)

β iff ∃y, c @ y such that y ∈ V
∪V i

cons ∪ V o
conswithR = (V, Ŕ)

0 otherwise
(2)

α and β indicate the minimum score between two subsumed
concepts in the ontology. In our evaluation ontology, we
fixed α=0.7 and β=0.4. These values are chosen for the
purpose of the tests we conducted. They can differ from a
context to another.

Specificity(c) = 1/extent(c) (3)

The function extent(c) is the semantic extent implied
by the concept c. It is related to the hierarchical position
of the concept in the ontology, and intuitively measures the
granularity of a domain concept. For example, let us take
X v Y and Y v Z, if X has no sub-concepts, the extent
value of X is 1, for Y the extent value is 2 and for Z
the extent value is 3. In the case of several extents for one
concept, we take the greatest value.

Definition (Composition score)
We define the composition score S(R,P) for a given

composition result R using P as follows:

S(R,P) =

∑
c∈P S(c,R)

|P |
(4)

After computing all the composition scores of candidate
compositions we apply a descending sort and obtain the
final (ranked) results.

V. IMPLEMENTATION

In this section, we describe our prototype implementation
to generate composition template. We implemented three
components: discovery, configuration and ranking.

With respect to the discovery component, we imple-
mented the algorithms presented in Section IV-C. We relied
on ANTLR1 to implement a query parser. We used the Jena
library2 to access to service ontology.

With respect to the configuration component, we imple-
mented the calculus defined in Section IV-D2, the goal is to
generate a graph of dependencies between services, starting
from a set of rewritings, the service ontology and a set of
business rules formally described in Section IV-D1. As an
implementation of this component we utilized the Drools3

rules engine together with the Jena 2 library for ontology
access.

With respect to the ranking component we implemented
our ranking model defined in Sect IV-E with the Jena library
to access to service ontology.

Our framework is an open source and available for down-
load on the project website4 under the GNU LGPL license.
We provide a sample package that demonstrates how to use
our framework with some scenarios, one of those scenarios
is a GUI application that loads the ontology, executes user
queries and displays results as directed graphs. We use
the standard graphical Java components and JUNG (java
universal network/graph)5 framework to display graphs.

VI. PRELIMINARY RESULTS

In this section, we describe our evaluation environment,
show the different tests and discuss the interpretation of the
obtained results.

A. Experimentation Setup
We conducted experiments to evaluate the approach. In

the experiments, the computer used to run the prototype
system has the following features: Intel R© CoreTM 2 CPU,
2.1 GHz with 1.5GB RAM, under Windows 7. In our
testing phase, we used OWL-S TC6, a collection of OWL-
S descriptions. We generated an ontology that provides
abstract descriptions for these services. We obtained an on-
tology with 2590 services, available on the project website.

1http://www.antlr.org/
2http://jena.sourceforge.net
3http://www.jboss.org/drools
4http://liris.cnrs.fr/∼soc/doku.php?id=transverse
5http://jung.sourceforge.net
6http://projects.semwebcentral.org/projects/owls-tc/

(a) w.r.t categories (b) w.r.t query functionalities

(c) w.r.t query functionalities(n=4) (d) w.r.t query functionali-
ties(n=8)

Figure 1. Evolution of the total execution time

B. Results

The objective is to investigate the influence of some
parameters on the execution time of the composition pro-
cess. Figure 1(a) shows the execution time of the com-
position task with respect to the number of categories
available. In this experiment, we executed the same query
and changed the number of available categories. Our test
query contains five requested functionalities. One can see
that the execution time does not depend directly on the
number of categories available. The important change in
this experiment is in the transition from 400 to 500 services
and 500 to 600 services. This change is a result of the
addition of services that have a direct relationship with the
requested functionalities.

In a second experiment, we studied the impact of the
number of functionalities in the query. Figure 1(b) shows
this variation. We executed various queries on the same
ontology. For each application we chose random function-
alities. One can see that there is a minor change in execution
time at the beginning and suddenly the composition time
becomes drastic.

In a third experiment we studied the impact of the
number of functionalities in the query and the number
of primitive services related to a requested functionality
in the composition time. Figure 1(c) and 1(d) show this
variation. We did two experiments for different values of
“n” the average number of primitive services related to
a requested functionality. For each experiment we were
interested in the variation of execution time versus the
number of requested functionalities. In the first curve (n=4),
one can see that the change in execution time is stable
despite the regular increase of the number of functionalities.
In the second curve (n=8), we can see that there is a stable
change in execution time at the beginning and at one point
the composition time explodes. This result is due to the

http://www.antlr.org/
http://jena.source forge.net
http://www.jboss.org/drools
http://liris.cnrs.fr/~soc/doku.php?id=transverse
http://jung.sourceforge.net
http://projects.semwebcentral.org/projects/owls-tc/

use of Cartesian product in the rewriting algorithm. Other
parameters have some impact on the execution time, for
example the number of missing input for a rewriting, the
size of business rules associated with a domain, etc.

VII. CONCLUSION

In this paper, we provided a framework that relies on the
combination of query rewriting and configuration, together
with a formal definition of the underlying languages and an
implementation with a use case, in order to facilitate the
composition of semantic Web services.

The main feature of the proposed approach is its con-
struction as a three-stage process that relies on 1) a simple
formalization of semantic Web services that supports query
rewriting, and 2) a clear separation between constraints and
service/domain knowledge description. Also, the proposed
approach accommodates user preferences as part of the
composition process.

There are many research directions to pursue. For exam-
ple it could be interesting to generalize the use of business
rules so that it can accommodate exceptions. Another
important issue is to support approximate queries. In this
domain, providing semantic similarity between composi-
tion remains challenging. These issues are currently being
investigated.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

REFERENCES

[1] M.-S. Hacid, F. Lécué, A. Léger, C. Rey, and F. Toumani, “Les
web services sémantiques, automate et intégration i. introduction,
éléments et scénarios, découverte de services web,” Technique et
Science Informatiques, vol. 28, no. 2, pp. 229–262, 2009.

[2] J. Yang, “Web service componentization,” Communications of the
ACM, vol. 46, no. 10, pp. 35–40, 2003.

[3] D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. V.
McDermott, D. L. McGuinness, B. Parsia, T. R. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. P. Sycara, “Bringing Semantics
to Web Services: The OWL-S Approach,” in SWSWPC, ser. Lecture
Notes in Computer Science, J. Cardoso and A. P. Sheth, Eds., vol.
3387. Springer, 2004, pp. 26–42.

[4] E. Sirin, B. Parsia, and J. Hendler, “Template-based composition of
semantic web services,” in Aaai fall symposium on agents and the
semantic web, 2005, pp. 85–92.

[5] A. Marconi and M. Pistore, “Synthesis and Composition of Web
Services,” Formal Methods for Web Services, pp. 89–157, 2009.

[6] J. Rao and X. Su, “A survey of automated web service composition
methods,” Semantic Web Services and Web Process Composition, pp.
43–54, 2005.

[7] F. Lécué, Y. Gorronogoitia, R. Gonzalez, M. Radzimski, and
M. Villa, “SOA4All: An Innovative Integrated Approach to Services
Composition,” in Web Services (ICWS), 2010 IEEE International
Conference on. IEEE, 2010, pp. 58–67.

[8] Q. Sheng, B. Benatallah, Z. Maamar, and A. Ngu, “Configurable
Composition and Adaptive Provisioning of Web Services,” IEEE
Transactions on Services Computing, vol. 2, no. 1, pp. 34–49, 2009.

[9] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic composition
of web services using semantic descriptions,” in Web Services:
Modeling, Architecture and Infrastructure workshop in conjunction
with ICEIS2003. Citeseer, 2003.

[10] S. Arroyo and M. Stollberg, “WSMO Primer. WSMO Deliver-
able D3.1, DERI Working Draft,” WSMO, Tech. Rep., 2004,
http://www.wsmo.org/2004/d3/d3.1/.

[11] S. Narayanan and S. McIlraith, “Simulation, verification and au-
tomated composition of web services,” in Proceedings of the 11th
international conference on World Wide Web. ACM, 2002, pp.
77–88.

[12] S. Sohrabi, N. Prokoshyna, and S. McIlraith, “Web service composi-
tion via the customization of Golog programs with user preferences,”
Conceptual Modeling: Foundations and Applications, pp. 319–334,
2009.

[13] M. Pistore, P. Traverso, and P. Bertoli, “Automated composition
of web services by planning in asynchronous domains,” Proc.
ICAPS’05, 2005.

[14] F. Lécué and A. Léger, “A formal model for semantic web service
composition,” The Semantic Web-ISWC 2006, pp. 385–398, 2006.

[15] F. Lécué, A. Delteil, A. Léger, and O. Boissier, “Web service
composition as a composition of valid and robust semantic links,”
International Journal of Cooperative Information Systems, vol. 18,
no. 1, pp. 1–62, 2009.

[16] J. Dong, Y. Sun, S. Yang, and K. Zhang, “Dynamic web service com-
position based on OWL-S,” Science in China Series F: Information
Sciences, vol. 49, no. 6, pp. 843–863, 2006.

[17] N. Lin, U. Kuter, and E. Sirin, “Web service composition with user
preferences,” The Semantic Web: Research and Applications, pp.
629–643, 2008.

[18] S. Sohrabi and S. McIlraith, “Preference-based Web service com-
position: A middle ground between execution and search,” The
Semantic Web–ISWC 2010, pp. 713–729, 2010.

[19] J. Lu, Y. Yu, and J. Mylopoulos, “A lightweight approach to semantic
web service synthesis,” in WIRI. IEEE Computer Society, 2005,
pp. 240–247.

[20] J. L. A. Snehal Thakkar and C. A. Knoblock, “A data integration
approach to automatically composing and optimizing web services,”
in 2004 ICAPS Workshop on Planning and Scheduling for Web and
Grid Services, June 2004.

[21] S. Bao, L. Zhang, C. Lin, and Y. Yu, “A Semantic Rewriting
Approach to Automatic Information Providing Web Service Com-
position,” The Semantic Web–ASWC 2006, pp. 488–500, 2006.

[22] M. Barhamgi, D. Benslimane, and B. Medjahed, “A query rewriting
approach for web service composition,” IEEE T. Services Computing,
vol. 3, no. 3, pp. 206–222, 2010.

[23] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker,
“Configuration knowledge representations for semantic web applica-
tions,” AI EDAM, vol. 17, no. 1, pp. 31–50, 2003.

[24] R. Klein, M. Buchheit, and W. Nutt, “Configuration as model con-
struction: The constructive problem solving approach,” in Artificial
Intelligence in Design, vol. 94. Citeseer, 1994, pp. 201–218.

[25] P. Albert, L. Henocque, and M. Kleiner, “An end-to-end
configuration-based framework for automatic sws composition,” in
ICTAI (1). IEEE Computer Society, 2008, pp. 351–358.

[26] E. W. Dijkstra, “On the role of scientific thought,” Selected Writings
on Computing: A Personal Perspective, pp. 60–66, 1982.

[27] A. Y. Halevy, “Answering queries using views: A survey,” The VLDB
Journal, vol. 10, no. 4, pp. 270–294, 2001.

[28] B. Srivastava and J. Koehler, “Web service composition-current
solutions and open problems,” in ICAPS 2003 Workshop on Planning
for Web Services, vol. 35. Citeseer, 2003.

[29] S. Rudolph, “Exploring Relational Structures Via FLE F\! LE,”
Conceptual Structures at Work, pp. 233–233, 2004.

[30] I. Horrocks, U. Sattler, and S. Tobies, “Practical reasoning for very
expressive description logics,” Logic Journal of IGPL, vol. 8, no. 3,
p. 239, 2000.

[31] E. Sirin and B. Parsia, “Pellet: An owl dl reasoner,” in 2004
International Workshop on Description Logics. Citeseer, 2004, p.
212.

[32] H. Toda, N. Yasuda, Y. Matsuura, and R. Kataoka, “Geographic
information retrieval to suit immediate surroundings,” in GIS, 2009,
pp. 452–455.

	Introduction
	Background knowledge and Related Work
	Service ontology
	Semantic Web service composition
	Query Rewriting
	Configuration

	Description of the proposed approach
	Our Composition framework
	Running Example
	Defining a WS description language
	The ontology part

	Query Rewriting
	Configuration
	Formal Representation of Composition Constraints
	A Calculus for Configuration

	User preferences and Ranking
	Concept score

	Implementation
	Preliminary results
	Experimentation Setup
	Results

	Conclusion
	References

