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Abstract—Data Mashup is a special class of mashup appli-
cation that combines information on the fly from multiple data
sources to respond to transient business needs. Data mashup is
a difficult task that would require an important programming
skill on the side of mashups’ creators, and involves handling
many challenging privacy and security concerns raised by
data providers. This situation prevents non-expert users from
mashing up data at large. In this paper, we present a declarative
approach for mashing-up data. The approach allows data
mashup creators to build data mashups without any program-
ming involved. The approach builds the mashups automatically
and takes into account the data’s privacy concerns. We evaluate
the efficiency of the approach via a thorough set of experiments.
The results show that handling data privacy introduces only a
negligible cost in the mashup building time.

Keywords-Privacy, Data Mashup, DaaS Web Services.

I. INTRODUCTION

Mashup is a Web application that integrates data, com-

putation and UI elements provided by several applications

to create on-the-fly new applications. HousingMaps.com is

an example of a Web site that “mashes-up” two other

Web sites: CraigsList and Google Maps; it takes housing

information from CraigsList and displays them on Google’s

maps. The ProgramableWeb.com site lists more than /4800/

online mashups created by Web users.

Data mashup is a special class of mashup application that

combines information from several data sources (typically

provided through Web Services; this type of services is

known as DaaS Data-as-a-Service Web services [1], [2])

to meet user requests [3]. Data mashup has become so

popular over the last few years; its applications vary from

addressing transient business needs in modern enterprises [4]

to conducting scientific research in e-science communities

[3]. However, in spite of its popularity, current data mashup

applications are still limited to very primitive information

integration. This is due to many challenges introduced by

data mashup both for mashup users (i.e. mashup’s creators)

and data providers (i.e. data service providers). On the

side of mashup users, mashing-up data involves carrying

out many challenging tasks including: selecting the data

services that are relevant to user’s needs, mapping their

inputs and outputs to each other (and probably adding some
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mediation services/functions when inputs/outputs don’t fit

each other) and performing some processing on intermediate

results (e.g. joining the outputs of two services, projecting

some attributes, etc). In addition, data mashup are usually

written in some procedural programming languages such as

JavaScript, and the code rarely separates the user interface

layer (dynamic HTML) from the data integration layer.

These challenging tasks hinder average users from building

data mashup applications at large. On the side of data

providers, mashing-up data raises many concerns related to

data privacy and security [5]. Indeed, data providers are often

reluctant to engage in data mashup scenarios for the fear that

their data may be disseminated to untrusted parties or used

for unintended purposes.

A. Motivating Example

Let us assume the following scenario from the healthcare

domain. Assume the physician Alice would like to study

the effects of a given medication on the cholesterol level

of patients. Assume she has at her disposal the services in

Table-I; these services access and manipulate the electronic

healthcare records (EHRs) of patients and are provided by

different healthcare facilities in a private healthcare collab-

oration environment.

Assume that the medical and the personal information of

the patient Cathy are accessed by the services from above.

Cathy was prompted at each healthcare facility to enter her

privacy preferences. Cathy has agreed to share the results

of her medical tests and diseases, but not personal informa-

tion such as name and address, with third-party scientific

organizations for research purposes. Mike, another patient,

has agreed to share all his personal and medical information

with scientific organizations for research purposes.

Alice can use the data services in Table-I to meet her

needs as follows: she invokes S1 and S2 with the given

medication; then she invokes S3 with the obtained patients

to retrieve their personal information. Then she invokes S4

to retrieve the tests whose type is Cholesterol Test.
Alice is faced to the following challenges in this example.

First, she needs to delve into the data service space and

understand the semantics of each individual service in order

to identify the services that may contribute to the resolution

of her request. Many services may have the same input’s

and output’s types, but completely different semantics. For
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Table I
AVAILABLE DATA WEB SERVICES

Service Semantics
S1($a, ?b) Returns the patients “b” that have been

administered a given medication “a”S2($a, ?b)
S3($a, ?b, ?c) Returns the personal information (name “b”

and address “c”) about a given patient “a”
S4($a, ?b, ?c) Returns the tests (“b” their types, “c” their

value) performed by a given patient “a”
S5($a, ?b) Returns the diseases “b” of a given patient “a”
S6($a, ?b) Returns the diseases “b” against which a given

patient “a” is vaccinated

example, the services S5 and S6 have the same input

and output (Patient and a Disease, respectively), the first

returns the patient’s diseases while the second returns the

diseases against which the patient is vaccinated. Second,

Alice needs to select the participant services and build the

data mashup application. She should realize that the services

S1 through S4 are necessary for her needs, figure out their

execution order and construct the mashup’s execution plan.

For example, she should realize that S1 and S2 can be

executed in parallel and write some programming code to

unify their outputs (to eliminate redundant tuples); then she

should map the obtained output to the inputs of the services

S3 and S4 (she should realize that these two services can be

executed in parallel) and write some programming code to

join their outputs. The output of the join will be the output

of the constructed data mashup. Non-expert users like Alice
(a physician) are not able to conduct the previous tasks that

require important technical and programming skills.

In addition to these challenges, data in data mashup

application are often private and sensitive. Its usage is often

subject to privacy and security constraints imposed by data

providers. For example, the lab A (S4’s provider) may

specify that the test information can be accessed “uncon-
ditionally” by some healthcare authority; “conditionally” by

a scientific organization conducting some research (i.e. the

purpose for which the tests are requested). An example of

conditions could be the respect of patients’ preferences as

to the disclosure of their data. It may also specify that the

tests are “forbidden” for an organization needing them for

doing publicity.

In this paper we propose a declarative and privacy preserv-

ing approach for mashing up DaaS web services. Based on

“declarative” mashup queries over domain ontologies and

a set of privacy and security polices provided by service

providers, our proposed data mashup system generates de-

tailed descriptions of the mashup that fulfills those queries

and preserves data privacy. We summarize bellow our major

contributions in this paper:

First, we propose to model DaaS services as RDF views

over domain ontologies. An RDF view allows capturing the

semantics of the associated DaaS service in a “declarative”

way based on concepts and relationships whose semantics

are formally defined in domain ontologies. Second, we

propose to use query rewriting techniques for mashing-up

data. The use of these techniques to mashup data enables

average users to mashup data as all what they need to do

is just specifying their mashup queries declaratively. Third,

we propose a privacy aware data mashup model. Our model,

given a set of privacy policies defined on domain ontologies,

rewrites received mashup queries to accommodate pertain-

ing privacy conditions (from privacy policies) before their

resolution by the core mashup algorithm.

The remainder of this paper is organized as follows. In

Section II, we model data mashup queries, data web services

and privacy policies over domain ontologies. In Section

III, we present our declarative approach to construct data

mashups. In Section IV, we evaluate the proposed approach

in the healthcare application domain. In Section V, we

compare our approach to related works. Finally, Section VI

summarizes and concludes the paper.

II. DATA SERVICES, QUERIES AND POLICIES

A. Data Mashup Queries

In the proposed approach, mashup creators formulate

their data mashup queries against a Domain Ontology Ω.

We consider the class of conjunctive queries with arithmetic

comparisons expressed in SPARQL query language over

RDFS domain ontologies. Formally, a mashup query is

defined as follows:

Definition 1 (Mashup Queries)

Q(X) : − < G(X,Y ), C >

where Q(X) is called the head of the query; it has the
form of a relational predicate. X and Y are called the
head (or distinguished) and existential variables, respec-
tively. G(X,Y ) is called the body of the query; it contains
a set of RDF triples where each triple is of the form
(subject.property.object). C is a set of constraints on the
body variables, each constraint is of the form: x f a where
x is variable, f ∈ {=, >, <, ≤, ≥} and a is a constant. �

Figure1 (Part-A) shows the graphical representation of our

running example query Q1. A query can be seen as a graph

with two types of nodes: class and literal nodes. Class-

nodes refer to classes in Ω (e.g., M , P and T are class-

nodes). They are linked via object properties and represent

existential variables in the query. Literal nodes represent

data-types (e.g., x, w, z). They are linked with class nodes

via data-type properties. Literal nodes may correspond to

both existential and distinguished variables in a query. The

blue ovals in Figure1 (Part-A) represent concepts in Ω (e.g.

Medication, Patient and Test). The variables preceded by

the symbol $ represent the mashup’s inputs (e.g. x) and the

variables preceded by ? represent the mashup’s outputs.
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Figure 1. Part-A: The Query of the Running Example, Part-B: the RDF Views of Available Data Services

B. Data Web Services

Contrary to SaaS Web services, the semantics of a Data

Web service (a.k.a. DaaS Web service) cannot be captured

based solely on its inputs and outputs, preconditions and

effects, rather this requires capturing the semantics of the

relationship that holds between its inputs and outputs. For

this reason, we model DaaS services as RDF Parameter-
ized Views (RPV s) over domain ontologies Ω. RPVs use

concepts and relations from Ω to capture the semantic rela-

tionships between input and output sets of a DaaS service.

Formally, a DaaS Web service Si is described over a Ω
as a predicate Si($Xi, ?Yi) : − < RPVi(Xi, Yi, Zi), Ci >,

where:

• Xi and Yi are the sets of input and output variables

of Si, respectively. Input and output variables are also

called as distinguished variables. They are prefixed with

the symbols “$”and “?” respectively.

• RPVi(Xi, Yi, Zi) represents the semantic relationship

between input and output variables. Zi is the set of ex-

istential variables relating Xi and Yi. RPVi(Xi, Yi, Zi)
has the form of RDF triples where each triple is of the

form (subject.property.object).

• Ci is a set of data value constraints expressed over the

Xi, Yi or Zi variables.

Figure1 (Part-B) shows the graphs corresponding to the

RPVs of the services in the running example. An RPV

requires a particular set of inputs (the parameter values) in

order to retrieve a particular set of outputs; outputs cannot

be retrieved unless inputs are bound. For example, one

cannot invoke the service S1 from above without specifying

a medication for which it is needed to learn the patients

that have been taking it. Therefore, a parameterized view

indicates in its head which parameters are inputs, and which

parameters are outputs.

C. Privacy Policies

In our data mashup model, upon publishing a new DaaS

service to the mashup server, service providers provide also

the privacy policies regulating the usage of their published

services. A privacy policy is a set of rules specifying to

whom the provided data may be disclosed (a.k.a recipients)

and how the data may be used (a.k.a. purposes). A privacy

policy may further personalize data disclosures by defining

conditions under which a data item is disclosed. For exam-

ple, the medical test information may be disclosed to given

recipient if patients have opted in to approve the disclosure.
We suppose that privacy policies are defined over domain

ontologies. For each datatype property of a data concept

within a domain ontology, privacy rules specify the recipi-
ents that have access to the value of the property, the purpose
for which the access is granted, and a set of conditions that

must be met.
Formally, a privacy rule is a 4-tuple < R,P, S, PC >,

where: R is the class of recipients for which the authoriza-

tion is specified, P is the purpose for which the data can

be accessed, S is the data class whose data properties will

be accessed, PC is a set of Property-Conditions (Pi, Ci)
couples; the semantics of each couple is that the property

Pi of the concept S can be accessed if the set of conditions

Ci is satisfied.
Each condition Ci is expressed against concepts and

relations in domain ontology using RDF queries (e.g. using

SPARQL query language). The Rule-1 below specifies that

personal data such as name can be released to a Researcher
for the purpose of Conducting Research, provided that the

data subject (i.e. the patient) has consented to this disclosure
(the same condition applies to the property hasAddress).

The condition is specified using the ontological concepts

Patient and PatientPrivacyPrefernces from Ω (the concept

PatientPrivacyPrefernces is defined in the considered do-

main ontology to model the user’s privacy preferences as to

the disclosure of his personal data, e.g. name, address, etc).

Rule-1:

[R :Researcher,
P :Research,
S :Patient,
PC:{<hasName, "?P rdf:type O:Patient,

?P hasPrivacyPreferences ?PP,
?PP rdftype O:PatientPrivacyPrefernces,
?PP hasPrivacyPrefName ‘yes’">,
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<hasAddress, "?P rdf:type O:Patient,
?P hasPrivacyPreferences ?PP,
?PP rdftype O:PatientPrivacyPrefernces,
?PP hasPrivacyPrefAddress ‘yes’">,

}
]

The Rule-2 below specifies that the property hasValue
of the concept Test may be disclosed to a Researcher for

conducting research provided that the patient has consented

to this disclosure. Note that the patient’s privacy preferences

regarding his medical tests are modeled by the ontological

concept TestPrivacyPrefernces, the object property hasTest-
PrivacyPreferences links the concept Patient to TestPriva-
cyPrefernces in Ω.

Rule-2:

[R :Researcher,
P :Research,
S :Test,
PC:{<hasValue, "?P rdf:type O:Patient,

?P hasTestPrivacyPreferences ?TP,
?TP rdftype O:TestPrivacyPrefernces,
?PP PrefValue ‘yes’">,

}
]

III. A DECLARATIVE APPROACH TO DATA MASHUPS

In this section, we describe our privacy-preserving data

mashup approach. Our approach consists of three steps:

(i) rewriting the mashup query to accommodate pertaining

privacy constraints, (ii) rewriting the modified mashup query

in terms of available data web services, and (iii) constructing

the data mashup plan.

A. Accommodating Privacy Constraints in the Mashup
Query

In this step declarative data mashup queries are rewritten

to accommodate pertaining privacy conditions from data

privacy policies. Since privacy constraints have the forms

of RDF queries, they can easily be incorporated in the

posed data mashup queries. For example, SPARQL allows

for the incorporation of such constraints at the datatype
property level by using the OPTIONAL construct. The

semantics of the OPTIONAL construct is as follows: in

a conjunctive RDF query, all query variables must bind

to values in the matched RDF graph in order for the

query to return results. If a query variable is defined as

optional (i.e. it is defined inside an OPTIONAL block),

then the query may still be resolved if that variable is left

unbound (i.e., when some RDF triples are missing in the

matched graph.). In this case, Null values will be returned for

unbound variables. Privacy can be enforced at the datatype

property level (of each data concept from Ω) by putting

each datatype property that is subject to privacy conditions

along with the conditions that must be met to disclose the

property value inside the same OPTIONAL block. If these

conditions are false, the datatype property will be withheld

independently of other datatype properties requested in the

query. For example, the mashup query Q1 from above can

be rewritten to include the privacy constraints specified in

Rules-1 and Rule-2 as follows (Parts A and B of Figure 2

show Q1 before and after the modification respectively): (i)
the datatype property hasSSN is prohibited for Researchers
and as a result the distinguished variable ?y is deleted

from the SELECT clause, (ii) the property hasName can be

accessed by Researcher for conducting scientific researches
provided the patient’s consent; the property hasName along

with its privacy condition (?PP hasPrivacyPrefName “Yes”)

are put inside an OPTIONAL block. If the property

hasPrivacyPrefName does not bind to the value “yes”, the

variable ?w will be assigned the Null value independently

of the other datatype properties in Q1. The same applies to

the properties hasAddress and hasValue (the latter represents

the medical Test’s value). However note that in data mashup

applications mashup queries are not matched directly against

data, rather they are only accessible through a set of data

services and therefore mashup queries need to be rewritten in

terms of available services. In the next section we propose an

RDF-oriented query rewriting algorithm to rewrite the data

mashup query in term of DaaS Web services. Our RDF query

rewriting algorithm handles conjunctive queries (i.e. all RDF

triples in the query are “implicitly” linked by the AND

operator). The presence of the OPTIONAL constructs

in the modified query makes it a non-conjunctive one. To

keep the mashup query processable by the query rewriting

algorithm, all privacy conditions are added in the conjunctive
form to the mashup query but without enforcing any of the

specific data values that are used in those conditions.
For each datatype property p that is subject to privacy

conditions Cpi , we conjunctively extend the mashup query

Q with RDF triples representing Cpi
without enforcing

specific data value constraints (i.e. equality and order data

value constraints, e.g. x = 10). For example, the datatype

property hasName in Q1 has the following privacy

condition:

<<hasName, "?P rdf:type O:Patient,
?P hasPrivacyPreferences ?PP,
?PP rdftype O:PatientPrivacyPrefernces,
?PP hasPrivacyPrefName ‘yes’">,} ]

The condition prescribes that the instance of the

class PatientPrivacyPrefernces that is associated

with the patient whose name is requested in the

query must have the value “yes” for its datatype

property hasPrivacyPrefName. Therefore, Q1 is

rewritten to project out the value of the property

hasPrivacyPrefName as follows:

<<hasName, "?P rdf:type O:Patient,
?P hasPrivacyPreferences ?PP,
?PP rdftype O:PatientPrivacyPrefernces,
?PP hasPrivacyPrefName ?w1 ">,} ]
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SELECT ?y,?w,?z,?v
WHERE {

?P rdf:type Patient
?P hasSSN ?y
?P hasName ?w
?P hasAddress ?z
?P takes ?M
?M rdf:type Medication
?M name $x
?P hasTest ?T
?T rdf:type Test
?T type "Cholesterol"
?T hasValue ?v
}

SELECT ?w,?z,?v
WHERE {

?P rdf:type Patient
?P hasPrivacyPreferences ?PP
?PP rdf:type PatientPrivacyPreferences
?PP purpose ``Scientific Research"
?PP recipient ``Researcher"
?P hasSSN ?y
OPTIONAL {?P hasName ?w

?PP hasPrivacyPrefName``yes"}
OPTIONAL {?P hasAddress ?z

?PP hasPrivacyPrefAddress``yes"}
?P takes ?M
?M rdf:type Medication
?M name $x
?P hasTest ?T
?T rdf:type Test
?T type "Cholesterol"
?P hasTestPrivacyPreferences ?TP
?TP rdf:type TestPrivacyPrefernces
OPTIONAL {?T hasValue ?v

?TP PrefValue``yes"}
?TP purpose ``Scientific Research"
?TP recipient ``Researcher"
}

SELECT ?w,?z,?v,?w1,?z1,?v1
WHERE {

?P rdf:type Patient
?P hasPrivacyPreferences ?PP
?PP rdf:type PatientPrivacyPreferences
?PP purpose ``Scientific Research"
?PP recipient ``Researcher"
?P hasSSN ?y
?P hasName ?w
?PP hasPrivacyPrefName ?w1
?P hasAddress ?z
?PP hasPrivacyPrefAddress ?z1
?P takes ?M
?M rdf:type Medication
?M name $x
?P hasTest ?T
?T rdf:type Test
?T type "Cholesterol"
?P hasTestPrivacyPreferences ?TP
?TP rdf:type TestPrivacyPrefernces
?T hasValue ?v
?TP PrefValue ?v1
?TP purpose ``Scientific Research"
?TP recipient ``Researcher"
}A B C

Figure 2. Part-A shows the original query (Q1), Part-B shows the modified query with the optional constructs, Part-C shows the modified query in the
conjunctive form

The modified query does not enforce any specific value for

the newly added property hasPrivacyPrefName. It just

binds it to a new distinguished variable w1 (i.e., variable

appearing in the query head). Specific value enforcement,

such as the constraint w1=“yes”, will be carried out in a

later step, e.g. the constraint w1=“yes” will be tested in the

later step to decide whether or not the patient’s name shall

be disclosed to the recipient. The same applies to the rest

of datatype properties that are subject to privacy constraints

in Q1. The modified query at the end of this step is shown

in Figure 2 (Part-C). Q1 then becomes a conjunctive RDF

query that can be rewritten in terms of available services.

B. Mashup Query Rewriting

In a previous work [17] we proposed an efficient RDF

query rewriting algorithm. Given a data mashup query Q and

a set of DaaS services represented by their corresponding

RPV s V = v1, v2, vi, the algorithm rewrites Q as a

composition of DaaS services whose union of RDF graphs

(denoted to by GV ) covers the RDF graph of Q (denoted to

by GQ).

The rewriting algorithm has two phases:

1) Phase-I: Finding Relevant Sub-Graphs: In the first

phase, our data mashup system compares GQ to every RPV
vi in V and determines the class nodes and object properties

in GQ that are covered by vi. The system stores information

about covered class nodes and object properties as a partial

containment mapping in a mapping table. The mapping table

points out the different possibilities of using an RPV to

cover parts of GQ.

Example: Let us illustrate this phase using our running

example. We consider the following candidate services:

• The Services S1 and S2- S1 has a matching object

property takes. The class nodes S1.P and S1.M linked

by this property map to the corresponding class nodes

in Q1 (i.e. to Q1.P and Q1.M ). The functional data-

type properties of the concepts Patient and Medication
are projected by S1 (i.e. they correspond to distin-

guished variables in S1). Therefore S1 is considered

as covering the object property takes. The covered

property takes(Q1.M , Q1.P )is inserted in the mapping

table (Table 2). The same discussion applies to S2.

• Service S3- S3 has a class node S3.P that can be

matched with Q1.P . All the data-type properties of

Q1.P that bound to distinguished variables in Q1 also

bound to distinguished variables in S3. Furthermore,

Q1.P is involved in object properties in Q1. However,

S3 has the functional property hasSSN of Patient bound

to a distinguished variable in its RDF view. Therefore,

S3 can be used to cover Q1.P .

• Service S4- has a matching object-property hasTest.
The class-nodes linked by hasTest S4.P and S4.T
map to the corresponding classes in Q1 (Q1.P and

Q1.T ). S4 binds the functional properties of Patient
(i.e. hasSSN) to distinguished variables. The properties

type and hasValue of Test are not functional. Therefore,

S4 must also cover the class-node Q1.T , which is

possible. The covered class-node and object-property

are inserted in the partial mapping table.

• Services S8 and S9- S8 in Figure 3 has a match-

ing object-property hasPatientPrivacyPreferences. The
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Service Covered classnodes & properties
S1($x, ?y) takes(P,M)

S2($x, ?y) takes(P,M)

S3($y, ?w, ?z) P (y, w, z)

S4($y,‘cholesterol’, ?v) hasTest(P, T )T (′cholesterol′, v)
S8($y,‘Researcher’, hasPatientPrivacyPreferences(P, PP )

‘Research’ ?w1, ?z1) PP (‘Researcher’,‘Research’, w1, z1)

S9($y,‘Researcher’, hasTestPrivacyPreferences(P, TP )

‘Research’ ?v1) TP (‘Researcher’,‘Research’, v1)

Table II
MAPPING TABLE

class-nodes linked by this property map to the corre-

sponding class-nodes in Q1. S8 does not bind the func-

tional properties of the concept PatientPrivacyPrefer-
nces to distinguished variables and therefore it has to

cover the class-node Q1.PP as well which is possible.

The same discussion applies to S9 in Figure 3 with

replacing the object property hasPatientPrivacyPrefer-
nces by hasTestPrivacyPreferences and the class-node

Q1.PP by Q1.TP .
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Figure 3. Two Additional DaaS Services

2) Phase-II: Generating DaaS service Compositions:
After the construction of the mapping table in the

previous phase, the mashup system explores the different

combinations from that table. It considers the combination

of disjoint sets of covered object properties and class

nodes. A combination is said to be a valid rewriting of

Q (also a valid composition) if (1) it covers the whole

set of class-nodes and object-properties in Q, and (2) it

is executable. A composition is said to be executable if

all input parameters necessary for the invocation of its

component services are bound or can be made bound by

x
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Figure 4. The Data Mashup’s Plan

the invocation of primitive services whose input parameters

are bound.

Example- Continuing with the running example, there

are two possible combinations C1 = {S1, S3, S4, S8, S9}
and C2 {S2, S3, S4, S8, S9 }. Let us now consider the

combination C1; only S1($x, ?y) can be invoked at the

beginning as its input parameter is bound. After the

invocation of S1, the variable y become available; hence,

the services S3, S4, S8, S9 become invokable. Consequently

C1 is executable and is considered as a valid composition.

The same applies to C2.

C. Constructing the Mashup

1) Arranging Services in the Mashup: Component ser-

vices in a composition must be mashed up in a particular

order depending on their access patterns (i.e. the ordering

of their inputs and outputs). If a service Sj has an input x
that is obtained from an output y of Si then Sj must be

preceded by Si in the mashup plan; we say that there is

a dependency between Si and Sj (Sj depends on Si). We

define a dependency graph as a directed acyclic graph G in

which nodes correspond to services and edges correspond

to dependency constraints between component services. The

mashup plan must reflect G. Figure4 shows the mashup plan

for C1 and C2 (they are superposed); there is a dependency

constraint between the service S1 and all of the services S3,

S8, S4 and S9, therefore these later services are preceded

by S1 in the plan (the same applies between S2 and the

services S3, S8, S4 and S9).

2) Enforcing Privacy Constraints: In previous steps, the

datatype properties that participate in validating privacy con-

straints were projected out along with the initial data items

requested in the original mashup query Q. In this step we

augment the mashup plan with privacy filters that take into

account the values of these additional datatype properties

to evaluate the privacy constraints for individual datatype

properties that are subject to privacy constraints in the initial

query. Null values will be returned for datatype properties

whose privacy constraints evaluate to False. Privacy filters

are added on the outputs of services returning some privacy

sensitive data. The semantics of a privacy filter is defined as

follows:
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Let t (resp., tp) be a tuple in the output table T (resp.,

Tp) of a service S returning some privacy sensitive data,

t[i] and tp[i] be the projected datatype properties that are

subject to privacy constraints, and constraint(t[i]) be

a boolean function that evaluates the privacy constraints

associated with t[i]. A tuple tp is inserted in Tp as follows:

For each tuple t ∈ T
For i = 1 to n /* n is the number of columns in T */

if const(t[i]) = true Then tp [i] = t[i]
else tp [i] = null

Discard all tuples that are null in all columns in Tp

Continuing with our running example, as Figure 4, two

privacy filters F1 and F2 are added on the outputs of the

services S3 and S4 respectively. The filter F1 computes the

values of w and z as follows:

w = w if w1 = ‘yes’, otherwise w = null

z = z if z1 = ‘yes’, otherwise z = null

The filter F2 computes the values v as follows:

v = v if v1 = ‘yes’, otherwise v = null

The obtained mashup plan after the insertion of privacy

filters represents the data mashup that will be returned to

the user.

IV. EVALUATION

To illustrate the viability of our approach to data mashup,

we applied it to the healthcare domain. We were provided

with access to /411/ medical Web services defined on top of

/23/ different medical databases storing medical information

(e.g. diseases, medical tests, allergies, etc) about more than

/30,000/ patients. The usage of these medical data services

was conditioned by a set of /47/ privacy and security rules.

For each patient in these databases, we have randomly gener-

ated data disclosure preferences with regard to /10/ medical

actors (e.g. researcher, physician, nurse, etc) and different

purposes (e.g., scientific research). These preferences are

stored in an independent database and accessed via 10 Web

services, each giving the preferences relative to a particular

type of medical data (e.g., ongoing treatments, Allergies).

We conducted a set of experiments to measure the cost

incurred in privacy preservation. We considered two sets of

mashup queries. The first one included queries about a given

patient, each with a different size: Q1 requests the “Personal

information” of the patient Alice (1 class-node in the query

graph), Q2 requests the “Personal information”, “Allergies”

and “Ongoing Treatments” of Alice (3 class-nodes), and Q3

requests the “Personal information”, “Allergies”, “Ongoing

Treatments”, “Cardiac Conditions” and “Biological Tests” of

Alice. (5 class-nodes). The second set uses the same queries

Q1, Q2 and Q3 but for all of patients living in Lyon. All

queries were posed by the same actor (researcher) and for the

same purpose (medical research). Figure 5 depicts the results
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Figure 5. The Experimental Results

obtained for the queries in sets 1 and 2,(the time shown

includes both the mashup construction time and the mashup

execution time). Set-2 (as opposed to Set-1) amplifies the

cost incurred by set-1 at the mashup “execution phase” by a

factor equals to the number of returned patients. The results

for Set 1 show that privacy handling adds only a slight

increase in the query rewriting time (note that the mashup

execution time is neglected for one patient). This is due to

the fact that the number of services used to retrieve privacy

preferences is limited compared to the number of services

used to retrieve data (10 versus 411 in our experiments). The

results for Set 2 show that the extra time needed to handle

privacy in the added privacy filters is still relatively low if

compared to the time required for answering queries without

addressing privacy concerns.

V. RELATED WORKS

A. Mashup Systems and Tools

Several mashup editors have been introduced by the

industry with the objective of making the process of mashups

creation as simple and “programmable-free” as possible.

Examples include Yahoo Pipes [6], Google Mashup Editor

[7], Intel Mash Maker [8]. These products allow average

users to create mashups without any programming involved;

the users need just to drag and drop services, operators, feeds

and/or user inputs and to visually connect them. However,

the knowledge required from users is not trivial because

they are still expected to know exactly what the mashup

inputs and outputs are, and to figure out all the interme-

diate steps needed to generate the desired outputs from

the inputs. This includes selecting the needed services/data

sources, mapping their inputs and outputs to each other and

probably adding some mediation services/functions when

inputs/outputs don’t fit each other. Compared to these indus-

trial mashup editors and to other academic mashup systems

[9], [10], [11], users of our system are not required to

select the services manually, connect them to each other

and drop code (in JavaScript) to mediate between incompat-

ible inputs/outputs of involved services. This is completely

carried out by the system in a transparent fashion. That is,

our approach is declarative; users need just to specify the
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information they need without specifying how this infor-

mation is obtained. Furthermore, although data privacy and

security are two crucial issues that must be addressed in

data integration applications, these approaches have not, as

far as we are aware, provided mechanisms and solutions to

address data privacy and security concerns, whereas in our

data mashup system data privacy and security are considered

as central issues.

B. Web Service Composition

A considerable body of recent work addresses the problem

of composition (or orchestration) of multiple Web services

to carry out a particular business task, e.g. [12], [13],

[14]. However, these works consider only SaaS Web ser-
vices (Software-as-a-Service Web services) and focus only

on describing workflow-oriented applications, rather than

applications coordinating data obtained from multiple data

sources exported as Web services as addressed in this paper.

In these approaches, the exploited composition algorithms

(which are largely inspired by AI planning techniques)

regard services as actions and therefore assume that the

capability of a Web service (i.e. a SaaS Web service) can

be modeled by representing the service’s inputs, outputs,

preconditions and effects (IOPEs) [15]. This assumption

makes these approaches inapplicable to DaaS Web services

whose capabilities (i.e. semantics) can only be represented

by capturing the semantic relationships between the service’s

inputs and outputs in relation with the schemes of underlying

data sources. In contrast, we model services are RDF views

over domain ontologies to capture the semantic relationships

between their inputs and outputs sets. We exploit these views

to mashup available DaaS Web services on the fly. Our

solution can be applied to both types of Web services (i.e.

SaaS and DaaS services).

VI. CONCLUSION

In this paper, we have presented a declarative and privacy

preserving approach to mashup data Web services on the

fly while preserving data privacy. We modeled data Web

services as parameterized RDF views over domain ontolo-

gies; defined views are then used to annotate the service

descriptions files (e.g. WSDLs files). We proposed to use

query rewriting techniques to rewrite data mashup queries

in terms of available data Web service. Specifically, mashup

queries are first modified to accommodate data privacy

constraints from privacy policies; then are rewritten in terms

of available services using an RDF-oriented query rewriting

algorithm. We applied the proposed approach to mashup

/411/ data Web services from the healthcare application

domain; the obtained results are very promising. As a future

work, we intend to test the proposed approach in different

application domains like the e-Government and e-Tourism.
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