
	
 1	

Protection des données personnelles lors de la composition des
services DaaS pour Mashup

Building Privacy-Aware DaaS Services Mashup

Salah-Eddine Tbahriti1, Mahmoud Barhamgi1, Nabila Benharkat2, Chirine Ghedira1, Djamal
Benslimane1, Michael Mrissa1

1 LIRIS UMR5205, Université Claude Bernard Lyon1, 69622 Villeurbanne, France
prenom.nom@liris.cnrs.fr

2 LIRIS UMR5205, INSA de Lyon, 7 av. Jean Capelle, 69621 Villeurbanne, France
nabila.benharkat@insa-lyon.fr

Résumé.

La technologie Mashup est l’une des applications émergentes du Web 2.0. Les applications mashups
sont des applications hybrides dans lesquelles au moins deux services Web sont composés dans
l’objectif de créer un nouveau service Web. Cette composition permet d’apporter une valeur ajoutée et
présente ainsi une solution prometteuse pour l’intégration des données hétérogènes échangées par ces
services. Cependant, les mashups rencontrent plusieurs limitations qui empêchent leur émergence.
D'une part, les processus d’intégration actuels utilisés pour la création de mashup requièrent une
implication considérable du concepteur humain, lequel est plus au moins familier avec les techniques
de composition des services Web. D'autre part, la composition de plusieurs services diffusant des
données peut révéler des informations personnelles confidentielles et enfreindre la vie privée des
individus concernés par ces données. Dans cet article, nous présentons une approche de composition
de services Web pour les concepteurs de Mashup de données où l’implication du concepteur se limite
seulement à formuler les requêtes. Nous proposons aussi un modèle de confidentialité des données
personnelles qui est exploité dans l’approche de composition.

Mots clés. Services DaaS, vues RDF, Composition de services, Confidentialité des données personnelles

1. Introduction

Le paradigme Mashup vise à utiliser et intégrer des sources de données et des
fonctionnalités d’API (Interfaces de programmation) fournies par différentes applications en
une seule application Web composite [1] [37] [39]. Pour cela, il agrège les informations de
toutes les APIs qui le composent pour les publier a travers un nouveau service Web. En effet,
la mise en place de nombreuses APIs dites ouvertes a permis le développement des mashups.
Un des exemples le plus courant de mashup est Google Maps [38]. Le système Trulia aux
Etats-Unis est un autre exemple de service mashup. Il intègre le service de Google Maps pour
localiser un bien immobilier. Un autre exemple de mashup est le fameux système
ChicagoCrime [42] qui recense le nombre de crimes commis dans la ville du Chicago aux
États-Unis. Plus particulièrement, le mashup de données est un type de mashup qui permet de
composer des informations de plusieurs sources de données fournies par le biais de services
Web. Ce type de services est connu sous le nom de DaaS data-as-a-Services [1] [2].

Si les mashups de données gagnent du terrain aujourd’hui dans plusieurs domaines (e-
business [4], e-science [3]), ils se limitent encore à une intégration d’informations non
complexes (c’est-à-dire, représentées par types de des données simples). Nombreux sont les
défis qui restent à résoudre aussi bien du coté des concepteurs (ou créateurs) de mashup que
du coté des fournisseurs de données (c’est-à-dire, organisations qui développent les services

	
 2	

Web donnant accès aux données). Comme nous le verrons dans les sections 2.1 et 2.2 les
solutions mises en place se limitent à effectuer manuellement un ensemble de tâches pour
obtenir la composition des données souhaitée. Ces tâches comportent entre autres: la sélection
des services DaaS pertinents pour l’application mashup à réaliser, la cartographie de leurs
entrées et sorties (l’ajout probablement de certains services de médiation lorsque les
entrées/sorties d’un service ne correspondent pas à celles des autres services) et le traitement
des opérations intermédiaires (par exemple, les opérations de jointures, intersection) lors de la
composition. Ces tâches peuvent s’avérer assez fastidieuses pour un concepteur non-expert.
En outre, ces solutions sont généralement développées à l’aide de certains langages de
programmation tels que JavaScript. Du côté service fournisseurs de données, la solution
adoptée pour l’intégration des données soulève de nombreux problèmes notamment, ceux qui
sont liés à la qualité et la confidentialité des données [5].

En effet, si la technologie des services DaaS a considérablement contribué à rendre
l’information plus facilement accessible, répondant ainsi aux besoins des différentes
communautés d’utilisateurs (statisticiens, médecins, chercheurs,…etc.), elle a cependant
engendré en parallèle de nouveaux risques au regard de la confidentialité des données. Pour
s’en persuader, il suffit de considérer la gigantesque base d’informations qu’il est possible de
construire sur les individus en croisant les données historiques accumulées par l’ensemble des
objets constituant une application mashup (état de santé, contenu des tiroirs, heures d’arrivée
à la maison, déplacements, sites web visités, achats effectués par Internet, etc.). L’individu
n’a plus conscience de la façon dont ses données personnelles sont collectées, traitées puis
diffusées et même les informations les plus anodines peuvent être sujettes à interprétation (par
exemple, une mauvaise alimentation est un facteur de risque pour une compagnie
d’assurance). Ce constat est confirmé par une étude de IBM-Harris selon laquelle 94% des
citoyens américains considèrent qu’ils ont perdu tout contrôle sur l’utilisation des
informations les concernant [31]. En parallèle, l’étude menée dans [30] pour analyser les
comportements des individus envers les services Web montre que seulement 27% des
individus acceptent de divulguer leurs données personnelles à des services n’offrant aucune
protection.

Le véritable verrou serait alors la standardisation de cette solution de mashup de données
par les fournisseurs et les industriels avec la garantie que l’utilisation d’une telle technologie
n’enfreigne pas la vie privée des individus concernés. Pour cela, il s’agit de tenter d’éliminer
le risque (a défaut le minimiser au maximum) qu’un fournisseur n’ait plus le contrôle sur
l’usage de sa donnée et/ou sur les actions qu’un tiers pourrait appliquer sur ses données.

1.1 Exemple de motivation

Considérons dans ce qui suit le scénario suivant pris dans le domaine médical. Considérons
que le médecin Alice souhaite étudier les effets d’un médicament donné sur le taux de
cholestérol des patients. Alice dispose des droits d’accès à un ensemble de services (cf. la
table I). Ces services permettent d’accéder aux dossiers médicaux électroniques (DME) des
patients. Ces services sont fournis par les différents établissements de santé dans le cadre d’un
environnement collaboratif privé. Nous supposons aussi que les données de l’individu Cathy
sont accessibles via les services de la table I. Cathy a été invitée (par chaque établissement de
santé concerné) à exprimer ses contraintes sur l’utilisation de ses données en termes de
confidentialité. Ainsi Cathy accepte de partager uniquement les résultats de ses tests
médicaux et les données sur ses maladies (i.e., elle refuse de divulguer toute information liée
à son nom et son adresse. Mike, un autre patient, accepte quant à lui de divulguer toutes ses
informations personnelles et médicales avec des organismes scientifiques à des fins de
recherche. Pour réaliser son étude, Alice utilise les services de la table I comme suit: elle
invoque S1 et S2 avec un médicament donné, et avec les patients retournés elle invoque S4

	
 3	

pour récupérer leurs informations personnelles. Puis elle invoque S3 pour récupérer les tests
dont la valeur = cholestérol.

1.2 Challenges

Dans cet exemple, Alice est confrontée à deux défis. Premièrement, elle doit être en mesure
d’assimiler la description et la sémantique des services DaaS afin d’identifier correctement les
services pertinents pour résoudre sa requête. En effet, différents services peuvent avoir la
même description mais ils sont sémantiquement différents. Par exemple, les services S5 et S6
ont les mêmes paramètres en entrée «$a» et en sortie «?b» (c.-à-d., des patients et des
maladies, respectivement), S5 renvoie les maladies d’un patient alors que S6 renvoie la ou les
maladie(s) contre la(les)quelle(s) le patient est vacciné. Deuxièmement, Alice doit construire
l’application mashup de données correspondante. Pour cela, elle doit sélectionner les services
S1, S2, S3 et S4, déterminer leur ordre de composition et construire le plan d’exécution de
mashup, ce qui est loin d’être une tâche prioritaire et encore moins facile pour un utilisateur
non expert comme Alice.

Au-delà de ces problématiques, la conception d’une telle application devrait être soumise
à des contraintes de confidentialité des données personnelles imposées par les fournisseurs de
données. Ces contraintes traduisent les conditions d’usage des données (telles que l’objectif
d’usage, les utilisateurs potentiels, le temps d’utilisation, etc.) et/ou les contraintes des
patients en termes de confidentialité par rapport aux données les concernant. Les modèles de
contrôle d’accès classiques [29] [28] ne peuvent pas conserver la confidentialité des données
personnelles. En effet, si ces modèles sont plus au moins capables d’empêcher les utilisateurs
non autorisés d’accéder à des données, ils ne peuvent contrôler les actions menées par les
utilisateurs autorisés sur ces données. En d’autres termes, la sécurité ou le contrôle d’accès
aux données traite les autorisations autour des données, tandis que la protection de vie privée
s’intéresse aux problèmes de l’usage des données personnelles relatives aux individus. Par
ailleurs, dans certains cadres d’application mashup, la divulgation des données personnelles
devient nécessaire afin d’accomplir certaines tâches (le principe du the need to know). Par
exemple, dans le cas des recherches épidémiologiques, toute approche de confidentialité
devrait tenir compte des objectifs fonctionnels d’une application mashup. Par conséquent la
protection des données personnelles est un problème plus complexe comparé à celui du
contrôle d’accès. La complexité vient, d’une part du fait de l’équilibre qu’il faut trouver entre
l’utilité de divulguer une donnée et le risque engendré par une seconde utilisation malhonnête
de cette donnée et d’autre part de la complexité de l’approche en soi à mettre en place pour
contrôler l’usage de ces données. Cela est d’autant plus complexe lorsque les sources de
données sont de nature hétérogènes et encapsulées dans des services Web.

1.3 Contributions

Dans cet article nous proposons une approche d’intégration de données basée sur la
composition des services Web DaaS. Dans un second temps nous proposons une approche
déclarative pour la protection de données personnelles lors de la composition des services.
Nous résumons ci-dessous nos principales contributions:

- Modélisation sémantique des services DaaS à base des vues RDF. Une vue RDF
permet de représenter la sémantique d’un service en utilisant des concepts et des
relations dont la sémantique est formellement définie dans des ontologies du domaine.
En effet, l’une des caractéristiques des vues RDF est la possibilité de relier les
entrées/sorties d’un service DaaS par une relation sémantique,

- Proposition d’un mécanisme de composition de services DaaS pour répondre aux
requêtes, basé sur la réutilisation d’une technique de réécriture de requête,

	
 4	

- Spécification d’un modèle de confidentialité permettant d’appliquer les contraintes de
confidentialité sur les données personnelles lors de la composition des services.

- Développement d’un outil de composition incorporant le modèle de confidentialité
dans le cadre d’une application médicale.

Le reste de cet article est organisé comme suit. Dans la section II, nous discutons les
principales approches mashup ainsi que les modèles de protection des données personnelles.
Dans la section III, nous présentons une approche sémantique pour la modélisation des
services DaaS et un modèle de politique de confidentialité des données personnelles. Dans la
section IV nous décrivons notre approche de composition. Il s’en suit une évaluation de cette
approche, dans le cadre d’une application médicale qui est proposée en section V. La
conclusion et quelques travaux futurs sont présentés en section VI.	

Service Sémantique opérationnelle du service

S1 ($a, ?b)

S2 ($a, ?b)

Retourne les patients identifiés par «b» qui ont pris le médicament
identifié par «a»

S3 ($a, ?b, ?c)

S4 ($a, ?b, ?c)

Retourne les données personnelles (nom «b» et adresse «c») d’un
patient identifié par «a»

S5 ($a, ?b) Retourne les noms de maladie «b» d’un patient «a»

S6 ($a, ?b) Retourne les noms de maladies «b» contre lesquelles un patient «a» est
vacciné

vacciné
Table. 1 Description des Service Web DaaS

2. État de l’art

2.1 Les mashups

Plusieurs approches mashup ont été proposées dans le domaine académique et industriel [9],
[10], [11] avec l’objectif de faciliter la réutilisation et la composition des services Web pour
créer une valeur ajoutée. Des exemples de mashup sont Yahoo Pipes [6], Google Mashup
Editor [7], Intel Mash Maker [8]. Ils permettent aux concepteurs lambda de créer facilement
des applications mashup sans aucune programmation en dur. En effet, les concepteurs peuvent
simplement faire glisser et déposer les services, les opérateurs, qu’ils veulent avoir dans
l’application mashup. Bien que les avantages des mashups tels que souplesse et simplicité
d’utilisation, rapidité de mise en œuvre soient évidents, les inconvénients sont tout aussi
évidents. En effet, à partir du moment où l’on intègre des modules «ficelés» de fournisseurs
externes de services, on ne maîtrise ni la qualité ni la pérennité. Cela comprend l’implication
de l’humain dans le choix des services adéquats, la cartographie de leurs entrées et sorties et
sans doute l’ajout de certains services de médiation. Ces approches s’intéressent à
l’intégration fonctionnelle et évitent le problème fondamental de l’automatisation des
différentes étapes liées à la fourniture d’un service Web (par exemples, découverte, sélection
et composition) puisqu’elles limitent l’usage des services aux utilisateurs humains plutôt
qu’aux machines. En effet, de nombreuses connaissances, indispensables pour
l’automatisation de la composition de services, sont absentes ou décrites selon une syntaxe
interprétée et exploitée uniquement par des humains. Il en résulte un rôle prédominant pour le

	
 5	

programmeur humain. Il semble donc nécessaire de proposer une approche de composition
automatique des services qui rejoint les préoccupations à l’origine du Web sémantique, à
savoir comment décrire formellement les connaissances de manière à les rendre exploitables
par des machines. La sélection et la composition des services doivent être réalisées de façon
transparente et automatique. L’objectif est alors de permettre à l’utilisateur d’exprimer, de
manière déclarative, seulement les informations qu’il souhaite avoir comme résultat de
l’exécution de l’application mashup, ensuite la composition des services se fera
automatiquement et de manière complètement transparente.

2.2 Composition des services Web

L’objectif de la composition de services est de créer de nouvelles fonctionnalités en
combinant des fonctionnalités offertes par d’autres services existants, en vue d’apporter une
valeur ajoutée. Étant donnée une spécification de haut niveau des objectifs de l’application
mashup à réaliser, la composition de services implique la capacité de sélectionner, composer
et de faire collaborer des services existants. Parmi les travaux proposés, beaucoup adoptent la
notion de processus métier «traditionnels» qui compose des services de type SaaS (Software-
as-a-Service Web services). En effet, les travaux dans [12] [13] [14] définissent la
composition comme un processus exécutable permettant de réaliser un ensemble d’actions.
Un moteur d’exécution, un service Web jouant le rôle de chef d’orchestre, gère
l’enchaînement des services Web par une logique de contrôle. Pour concevoir une
orchestration de services Web, il faut décrire les interactions entre le moteur d’exécution et
les services Web. Ces interactions correspondent aux appels, effectués par le moteur, et aux
actions proposées par les services Web composants. Les algorithmes de composition, utilisés
dans ces approches (largement inspirés des techniques de planification en IA) considèrent les
services comme des actions et supposent ainsi que les fonctionnalités d’un service Web
peuvent être modélisées selon le modèle IOPEs [15]. Cette hypothèse rend ces approches
inapplicable pour les services DaaS car, d’une part le modèle IOPEs ne permet pas une
représentation fidèle des relations sémantiques qui peuvent exister entre les entrées et les
sorties d’un service DaaS et d’autre part les services DaaS ne peuvent être considérés comme
des actions mais plutôt des interfaces offrant uniquement l’accès à des sources de données et
n’exécutent aucune fonction qui change l’état du système. Le modèle à base des vues RDF
nous semble le plus adapté pour représenter les relations sémantiques entre les entrées et
sorties d’un service DaaS. L’approche décrite dans [34] offre un cadre formel pour formuler
des requêtes en langage SQL. Chaque service est modélisé comme une relation WS(a1,.., an),
où les ai (1 ≤ i ≤ n) sont les attributs de la relation qui représentent les entrées et sorties du
service. Les concepteurs peuvent ainsi exprimer leurs requêtes directement en termes de
relations. Cela permettrait de pallier une partie du problème d’optimisation pour la génération
du mashup. Dans le même esprit, l’approche décrite dans [35] et [36] offre aux concepteurs
de mashup la possibilité d’importer et de stocker les fichiers de description des services (par
exemple, les fichiers WSDL) et de définir des vues sur ces fichiers. Les vues peuvent être
définies directement sur les opérations des services ou au-dessus sur d’autres vues, auquel cas
elles sont appelées des vues multi-niveau. Les concepteurs peuvent alors interroger les
données accessibles par les services importés par la formulation de leurs requêtes (le langage
SQL) sur les vues définies. Les concepteurs peuvent également améliorer les vues définies
avec des contraintes de clé primaire qui sont exploitées pour optimiser le plan d'exécution du
mashup. Néanmoins, les concepteurs de mashup sont supposés avoir assimilé la sémantique
de la description de chaque service. En outre, ils sont censés capables d’importer les services
adéquats pour construire le mashup; puis définir des vues sur ces services ainsi que les index.
En réalité, ces tâches peuvent être réalisées par des concepteurs ayant un certain niveau
d’expertise par rapport aux techniques de description de services. Par ailleurs, la modélisation

	
 6	

adoptée est sémantiquement pauvre car elle se limite uniquement à représenter les
entrées/sorties d’un service.

2.3 Protection des données personnelles

Partout dans le monde, les gouvernements adoptent des lois spécifiques pour contrôler
l’utilisation de données personnelles comme le ‘Federal Privacy Act’ [26] aux Etats-Unis ou
la directive pour la protection des données personnelles en Europe [27]. Le problème n’est
cependant pas simplement législatif. Encore faut-il être capable de mettre au point les outils
technologiques permettant de traduire et faire respecter les règles édictées. Plusieurs
approches sont proposées visant à traduire ces lois en moyens technologiques convaincants
garantissant leur application. Nous en citons les principales d’entre eux. L’approche proposée
dans [20] est basée sur l’extension d’OWL-S pour, d’une part l’introduction des politiques de
sécurité dans OWL-S et, d’autre part, l’introduction des ontologies afin d’annoter les
paramètres d’entrée/sortie des services Web, relatifs aux contraintes de sécurité. Deux types
de politique sont spécifiés ; une politique d’autorisation qui comprend les règles d’accès à une
donnée, et une politique de contrôle des données personnelles pour spécifier sous quelle(s)
condition(s) les données peuvent être échangées et aussi les usagers légitimes des ces
données. Ces politiques sont intégrées dans les descriptions OWL-S (au niveau des modules
Profil et Process). Dans l’approche [21], les principaux éléments visant à protéger les
données personnelles lors des échanges des données via des services Web gouvernementaux,
sont présentés. L’idée de cette approche est que toute transaction invoque essentiellement
trois entités clés ; l’individu, le service et une base de données. Par conséquent, un modèle de
protection de données privées doit comprendre trois dimensions : 1) user-privacy (l’utilisateur
d’un service peut être un individu et/ou un service Web) : les individus utilisant un service
pourraient exiger des niveaux différents quant à la préservation des leurs données
personnelles en fonction de leur perception de la sensibilité de la donnée fournie à un service.
2) service-privacy : un service Web doit posséder sa propre politique de confidentialité. 3)
data-privacy : différents services Web peuvent solliciter différentes données d’une même
source. Ici les services demandeurs sont les concepteurs. Le service Web fournisseur doit être
capable de fournir plusieurs vues aux différents demandeurs selon leur data-privacy-profile.
D’autres approches comme le standard P3P [19] offre un moyen technique permettant aux
individus d’être informés des politiques de confidentialité avant de confier des
renseignements personnels. Il n’offre cependant aucun mécanisme qui permet de garantir le
comportement des sites conformément à leurs politiques. Le modèle XACML [22] est un
formalisme qui permet de fournir un moyen de standardiser les décisions de contrôle d’accès
(aux ressources en format XML). Il est largement utilisé dans le contexte industriel pour
exprimer des politiques d’autorisation d’accès. Cela peut s’expliquer par le fait que ce langage
permet une interopérabilité syntaxique entre les différents systèmes d’authentification et
d’autorisation. En revanche, il ne permet pas de résoudre des problèmes sémantiques de
coopération entre les différents systèmes. Cette approche peut s’avérer peu performante dans
les cas où le processus de récupération de la valeur d’un attribut est long. Par ailleurs, il serait
important de réfléchir sur comment introduire des nouvelles règles permettant de spécifier
l’usage des données demandées. Le modèle EPAL [23] permet de définir des politiques qui
catégorisent ; les données détenues par l’entreprise, les utilisateurs et les finalités
d’utilisation de données. Une politique est formulée par des règles sur chaque catégorie.
Comme une règle XACML, une règle EPAL comporte un sujet, une action et une ressource
avec une indication de permission ou d’interdiction, et elle comporte en plus une mention de
finalité (c’est-à-dire l’objectif d’usage). Une règle peut aussi contenir des conditions et des
obligations. D’autres approches de protection des données personnelles sont proposées dans le
cadre des bases de données centralisées et fouille de données. Elles s’appuient sur les

	
 7	

techniques d’anonymisation [24] (par exemple, k-anonymat, l-diversity, t-closeness, etc.) ou
encore les méthodes de cryptage [25]. Plusieurs problèmes demeurent encore ouverts et
nécessitent davantage d’efforts d’investigation, notamment la prise en compte et la
modélisation des connaissances de l’adversaire. En effet, une des vulnérabilités importantes
du k-anonymat, par exemple, est sa faiblesse contre les attaques ciblant à utiliser des
connaissances externes sur les attributs quasi-identifiants1.

Dans la section suivante, nous commençons par spécifier comment modéliser les services
DaaS de façon à ce cela permette par la suite de les composer de façon automatique tout en
tenant compte des contraintes de confidentialité des données personnelles. Ce dernier point
représente un vrai défi puisque les approches de composition précédentes accordaient très peu
d’attention à ce problème de confidentialité.

3. Une approche déclarative pour la construction des mashups

L’objectif de notre travail est de proposer un système mashup permettant aux concepteurs
non-experts de composer automatiquement des services sans se préoccuper des étapes de
sélection et d’invocation (l’utilisateur spécifié seulement sa requête de façon déclarative).
Figure-1 présente un aperçu global de l’approche mashup proposée. La première étape vers
cette automatisation consiste à représenter sémantiquement les capacités des services DaaS
(qui constituent une couche virtuelle au-dessus de sources de données hétérogènes). Pour cela,
les services DaaS sont représentés sémantiquement grâce à une modélisation en vues RDF
basée sur des ontologies de domaine. Les vues RDF sont ensuite utilisées pour annoter les
fichiers de description de service (par exemple, les fichiers WSDL, SA-Rest, etc.). Notre
approche exploite les techniques de réécriture de [32]. La requête initiale est modifiée pour
intégrer les contraintes de confidentialité sur les données personnelles. Ces dernières sont
spécifiées selon une politique de confidentialité du mashup. La requête est ensuite réécrite en
termes de services disponibles en utilisant un algorithme de réécriture de requêtes. Cet
algorithme exploite les annotations sémantiques que nous avons ajoutées dans les fichiers de
description de service pour sélectionner les services qui correspondent à la requête. Le serveur
de mashup se chargera de créer un plan d’exécution des services sélectionnés. Dans cette
section, nous détaillons toutes ces étapes.

Figure 1. Vue globale de l’approche mashup

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 Un ensemble d’attributs –non clés- permettant d’identifier indirectement un attribut clé d’une relation	

	
 8	

3.1 Les requêtes sur mashup

Dans notre approche, les concepteurs de mashup n’ont pas besoin de sélectionner et composer
les services manuellement. Ils spécifient seulement leurs besoins de données sous forme de
requêtes conjonctives en langage SPARQL en termes d’une ontologie donnée appelée
l’ontologie cible Ω. Formellement, les requêtes conjonctives s’écrivent comme suit :

Définition 1. Une requête mashup est représentée par : où est
appelée l’entête de la requête (qui a la forme d’un prédicat relationnel), est un tuple de
variables distinguées et est un tuple de variables non-distinguées qui sont quantifiées
existentiellement, est le corps de la requête et C est un ensemble de contraintes
appliqué sur la corps des variables exprimées sous la forme x f a où x est une variable, f ∈
{=, >, <, ≤, ≥} et a est une constante. ♦

La partie A de la figure 2 illustre une représentation graphique de la requête initiale de la
section 1.1. Ainsi une requête est représentée par deux types de nœuds: les nœuds-classe et les
nœuds-latéraux. Les nœuds-classe se réfèrent aux classes de l’ontologie Ω (par exemple, M,
P, T sont des nœuds classe) et sont reliés par des propriété d’objet et représentent les variables
existentielles dans la requête. Les nœuds-latéraux représentent les types de données (par
exemple, x, w, z) et sont liés avec les nœuds-classe via les propriétés de type de données. Les
nœuds-latéraux peuvent correspondre aux variables existentielles et distinguées dans une
requête. Les concepts sont représentés par des ovales (par exemple, Médicaments, Patients).
Les variables précédées par le symbole $, respectivement ?, représentent les entrées et les
sorties d’un service DaaS.

3.2 Les services de données DaaS

Contrairement aux services SaaS, la sémantique d’un service DaaS ne peut être fidèlement
représentée à travers le modèle IOPEs (c’est-à-dire, les entrées, sorties, conditions préalables
et effets). En effet, ce modèle ne permet pas de représenter la sémantique de la relation qui
peut exister entre les entrées et sorties d’un service. C’est pour cette raison, que nous
modélisons un service DaaS par une vue RDF paramétrée (notée RPV) en termes des concepts
et relations de l’ontologie Ω. Formellement, un service DaaS est décrit comme suit :

Définition 2. Un service DaaS Si est décrit sur Ω par un prédicat
 où :

- et sont respectivement l’ensemble des variables d’entrée et de sortie (préfixés
respectivement par $ et ?) de Si. Ils sont appelés aussi l’ensemble des variables
distinguées .

- représente la relation sémantique entre les deux ensembles de
variables d’entrée et de sorties. représente l’ensemble des variables existentielles
reliant et . est de la forme d’un ensemble de triplets RDF.
Chaque triplet est une association (sujet, prédicat, objet),

- est un ensemble de contraintes de valeurs sur les ensembles , et . ♦

La partie B de la figure 2 illustre les graphes correspondant aux RPVs des services de la table
1. Chaque RPV nécessite une variable en entrée et retourne une variable en sortie. Ainsi, le

	
 9	

service S1 ne peut pas retourner les SSN des patients qui ont pris un médicament sans préciser
d’abord le nom du médicament en question.

Partie A Partie B

Figure 2. Représentation des services et requête par des vues RDF

3.3 Politique de confidentialité des données personnelles

Toute démarche de sécurité rigoureuse doit être inscrite dans une politique claire et
documentée. Sa conception est donc une étape primordiale, qui consiste à identifier les
objectifs de sécurité et à élaborer un ensemble de règles en fonction d’une analyse des risques.
Ceci permettrait de minimiser le risque de dommages indésirables, le cas échant de pallier
leurs effets et conduirait à garantir la protection de vie privée. Par conséquent, les fournisseurs
de services DaaS devraient être en mesure de fournir une telle politique de confidentialité
pour la protection des données personnelles spécifiant les conditions d’usage des services
DaaS par rapport à ces données. Une politique de confidentialité des données personnelles (en
anglais privacy policy) est définie sur un domaine ontologique par un ensemble de règles
spécifiant l’usage des données personnelles, comme à qui une donnée personnelle peut être
divulguée (recipient) et dans quel objectif d’utilisation (purpose). Une telle politique permet
aussi de spécifier les conditions de divulgation comme le consentement de l’individu concerné
sur la divulgation de sa donnée personnelle ou le principe du besoin de savoir (the need to
know). Formellement, nous définissons une politique de confidentialité est définie comme
suit :

Définition 3. Une politique de confidentialité est un quadruplet <R, P, S, PC> décrit sur une
ontologie de domaine où :

- R est la classe des bénéficiaires (c’est-à-dire, les utilisateurs autorisés),
- P est l’objectif d’usage pour lequel une donnée personnelle sera utilisée,
- S est la classe des données personnelles,
- PC est un ensemble de couple (Pi, Ci), propriété-condition, qui signifie que la

propriété Pi (valeur d’un objet) du concept S ne peut être divulguée que si la condition
Ci est satisfaite. Chaque condition Ci peut être exprimée par rapport aux concepts et
relations de l’ontologie selon le langage SPARQL. ♦

Par exemple, la règle R1 (cf. figure 3-partie A)) spécifie que le nom peut être divulgué à un
chercheur dans le cadre d’un objectif de recherche et à condition que l’individu concerné
(c’est-à-dire le patient) ait donné son consentement pour cette divulgation (le même
raisonnement est appliqué à l’adresse). R1 est définie en utilisant les concepts Patient et
PatientPrivacyPreferences de l’ontologie Ω (le concept PatientPrivacyPreferences permet de

	
 10	

modéliser les préférences d’un individu par rapport à la divulgation de ses données
personnelles). La règle R2 (cf. figure 3-partie B)) indique que la propriété hasValue du
concept Test peut être divulguée à un chercheur dans le cadre d’un objectif de recherche et à
condition que l’individu concerné ait donné son consentement pour cette divulgation. Les
préférences de l’individu par rapport à la divulgation de ses données sur les tests médicaux
sont modélisées par le concept TestPrivacyPreferences, le prédicat hasTest-
PrivacyPreferences permet de lier le concept Patient au concept TestPrivacyPreferences dans
Ω.

Dans la section suivante, nous détaillons notre approche de composition des services DaaS.

	

Partie A Partie B

Figure 3. Règles de politique de confidentialité des données personnelles

4. Approche de composition des données via DaaS

Nous proposons une approche de composition basée sur trois étapes: (i) la réécriture de la
requête mashup afin d’intégrer les contraintes de confidentialité, (ii) la réécriture de la requête
mashup en termes de services DaaS disponibles et (iii) la construction automatique d’un plan
de composition de mashup.

4.1 Intégration de contraintes de confidentialité dans la requête

Les requêtes sont formulées en langage SPARQL. Les conditions associées à chaque
propriété datatype dans les règles de confidentialité sont formulées en requêtes RDF (requêtes
SPARQL). Cela permet de les intégrer aisément à la requête initiale. Les conditions de
confidentialités doivent être renforcées à un niveau de granularité très fin, c.à.d, le masquage
d’une propriété ne doit pas impacter la divulgation des autres propriétés demandées par la
requête. Ce niveau de granularité peut être réalisé en utilisant les clauses OPTIONAL du
SPARQL [33]. La sémantique de cette clause est traduite comme suit: dans une requête RDF
conjonctive, toutes les variables de la requête doivent être liées à des valeurs dans le graphe
RDF de données correspondant afin que la requête n’échoue pas. Si une variable est définie
comme OPTIONAL et s’il n’existe pas de valeurs avec lesquelles cette variable peut être liée
(c’est-à-dire, il n’existe pas de triplets RDF dans le graph de données correspondant) alors
cette variable est non-liée et aura la valeur «Null» dans les tuples retournées. En d’autres
termes la requête retourne des valeurs pour les autres propriétés indépendamment de la
propriété manquante qui va avoir la valeur «Null». La protection des données personnelles est
appliquée au niveau de la propriété datatype (de chaque concept de Ω) en associant dans la

	
 11	

clause OPTIONAL chaque propriété datatype concernée avec les conditions de divulgation.
Si ces conditions sont satisfaites la valeur de la propriété est alors divulguée. Par ailleurs, si
l’une des conditions n’est pas satisfaite la valeur de la propriété concernée ne sera pas
divulguée. Prenons l’exemple de la requête Q1 décrite dans la figure 4-partie A. La partie B
de la figure 4 illustre la réécriture de Q1 pour intégrer les règles de confidentialité précédentes
R1 et R2 comme suit :

Figure 4. Les étapes de réécriture d’une requête

(i) la propriété «hasSSN» est une propriété datatype. Cette propriété ne doit pas être divulguée
aux chercheurs, par conséquent la variable distingué ?y est supprimée de la clause SELECT
lors de la réécriture, (ii) la propriété «hasName» est une propriété datatype aussi et peut être
divulguée pour les chercheurs si l’objectif d’utilisation est recherche scientifique (Scienfic
Research comme décrit dans la requête). L’utilisateur de «hasName» doit avoir le
consentement de l’individu concerné qui est décrit par «?PP hasPrivacyPreName ‘‘Yes’’»
dans la clause OPTIONAL. Autrement dit, si la propriété «?PP hasPrivacyPreName » est
affectée la valeur ‘‘No’’ la variable ?w sera égale à «Null». Le même traitement est appliqué
pour les propriétés «hasAddress» et «hasValue» (cette dernière représente la valeur du test
médical). Dans les applications mashups, les requêtes ne sont pas évaluées directement sur
les données du mashup mais plutôt sur les services qui encapsulent les sources de données.
Ainsi, chaque requête est réécrite en termes de services DaaS disponibles. Dans la section
suivante, nous présentons notre approche de réécriture à base de vues RDF. Nous considérons
les requêtes conjonctives (c’est-à-dire, tous les triplets RDF dans la requête sont implicitement
reliés par l’opérateur conjonctif ET).

La présence de la clause OPTIONAL rend la requête non-conjonctive (puisque des parties de
la requête sont obligatoires et des autres parties sont facultatives). L’algorithme de réécriture
que nous utilisons est destiné pour traiter seulement des requêtes conjonctives. Pour pallier à
ça, nous transformons la requête que nous avons obtenue dans l’étape précédant (la requête
dans la figure-4, B) en une requête conjonctive. Les conditions de la clause OPTIONAL
seront alors mises dans la requête mais ne seront pas évaluées. Considérons par exemple la
condition associée à la propriété hasName dans la première clause OPTIONAL. La condition
exige que le patient soit d’accord pour divulguer sa donnée (c’est-à-dire donne
« hasPrivacyPrefName = Yes »). Cette condition est alors insérée dans la requête mais sans ne

	
 12	

sera pas évaluée; Ainsi, nous ajoutons le triplet suivant à la requête ?PP
hasPrivacyPrefName ?w1 et nous ajoutons la nouvelle variable ?w1 dans la clause SELECT.
Par conséquent, la requête contient à la fois les variables demandées par la requête initiale
(c’est-à-dire, les variables w, z et v) et la nouvelle variable w1 (le même raisonnement est
appliqué pour toutes les variables dans la clause OPTIONAL). A la fin de cette étape nous
obtenons la requête illustrée dans la figure 4-partie C.

4.2 Réécriture de requêtes mashup

Dans [17] nous avons proposé un algorithme de réécriture à base de vues RDF. Étant donné
une requête Q et un ensemble V de services DaaS (l’ensemble des services candidats)
représentés par des vues RPVs V = v1, v2, vi, cet algorithme permet de réécrire
automatiquement Q en termes de V, chaque réécriture corresponde à une composition de
services DaaS. L’objectif de cet algorithme est de calculer l’union des graphes RDF
représentant ces services (notée par GV) qui couvre au maximum le graphe représentant Q
(noté par GQ). Deux phases sont nécessaires pour cet algorithme:

- Phase-I: Mapping de GQ et V:
Dans la première phase, le graphe de la requête GQ est comparé à chaque RPV vi dans V pour
identifier les nœuds-classe et les propriétés de GQ couverts (partiellement) par vi. Une table
de mapping est construite au fur et à mesure contenant les différents graphes où chaque
graphe couvre partiellement GQ.

Exemple 1. Considérons les services candidats suivants:
- Les services S1 et S2 : Le service S1 couvre la propriété «takes». Les nœuds-classe S1.P

et S1.M liés par cette propriété correspondent ainsi aux nœuds-class de Q1 (de la figure
3.A). C’est-à-dire, S1.P correspond à Q1.P et S1.M correspond à Q1.M). Les propriétés
fonctionnelles de type de données des concepts «Patient» et «Medication» sont
projetées par S1 (c’est à dire elles correspondent à des variables distinguées de S1). La
propriété «takes(Q1.M, Q1.P)» est ainsi insérée dans la table de mapping (cf. table 2).
Le même raisonnement est appliqué pour S2.

- Le service S3 : Ce service possède un nœud-classe S3.P qui peut correspondre à nœud-
classe Q1.P. Toutes les propriétés de type de données de Q1.P qui sont liées à des
variables distinguées dans Q1 sont également liées à des variables distinguées dans S3.
En outre, le service S3 a la propriété «hasSSN» qui est liée à une variable distinguée
dans sa vue RDF. Par conséquent, S3 peut être utilisé pour couvrir Q1.P.

- Le service S4. La propriété «hasTest» du S4 correspond à celle dans Q1. Les nœuds-
classe reliés par S4.P et S1.T correspondent aux nœuds-classe dans Q1: Q1.P à Q1.T. S4
permet de lier les propriétés fonctionnelles des patients (c’est-à-dire, «hasSSN») aux
variables distinguées. Le service S4 couvre la propriété «hasTest» et le classe nœud
Q1.T.

Considérons maintenant les services S8 et S9 (cf. figure 5). Les nœuds-classe du S8 reliés par
la propriété «hasPatientPreferences» correspondent aux nœuds-classe dans Q1. S8 ne reliant
pas les propriétés fonctionnelles du concept «PatientPrivacyPreference» aux variables
distinguées, il doit couvrir aussi le nœud-classe Q1.PP, ce qui est possible. Le même
raisonnement est appliqué pour le cas du S9 en remplaçant le nœud-classe Q1.PP par Q1.TP et
la propriété «hasPatientPrivacyPreferences» par «hasTestPrivacyPreferences».

	
 13	

	

Figure 5. Services S8 et S9

Service Les nœuds-classe et propriétés couverts

S1 ($x, ?y) takes(P, M)

S2 ($x, ?y) takes(P, M)

S3 ($y, ?w, ?z) P(y, w, z)

S4 ($y, ‘cholesterol’, ?v) hasTest(P, T)T(‘cholesterol’, v)

S8 ($y, ‘researcher’, ‘research’, ?w1 , ?z1) hasPatientPrivacyPreferences(P, PP)PP(‘researcher’, ‘research’, w1, z1)

S9 ($y, ‘researcher’, ‘research’, ?v1) hasTestPrivacyPreferences(P, TP)TP(‘researcher’, ‘research’, v1)

Table 2. Table de mapping

- Phase-II: Génération de la composition: Après la construction de la table de mapping,
notre approche de réécriture explore les différentes compositions possibles des services dans
cette table telle que une composition, notée par C = {S1, S2,…, Si}, est considérée comme une
réécriture valide de Q si et seulement si: (1) C couvre l’ensemble des nœuds-classe et des
propriétés dans Q, et (2) C est exécutable. Une composition est dite exécutable si tous les
paramètres d’entrée nécessaires à l’invocation de ses services sont fournis ou peuvent être
fournis par l’invocation de services primitifs dont leurs paramètres d’entrée sont fournis.

Exemple 2. Continuons sur notre précédent exemple 1, à partir de la table 2 deux
compositions sont possibles C1 = {S1, S3, S4, S8, S9} et C2 = {S2, S3, S4, S8, S9}. Pour la
composition C1, uniquement le service S1 ($x, ?y) est invocable au départ (ses paramètres sont
liés). Une fois invoquée, la variable ?y devient alors disponible et les services S3, S4, S8 et S9
deviennent invocables. C1 est alors exécutable est considérée comme une composition valide.
Le même raisonnement est vérifié pour C2 qui est donc valide.

4.3 Construction du mashup

A) L’ordonnancement des services dans le mashup

Les services d’une composition C valide sont reliés intuitivement selon un ordre particulier en
fonction de leurs paramètres fonctionnels (c’est-à-dire, les paramètres d’entrées et sorties).
Ainsi, si un service Sj a comme paramètre d’entrée ?x obtenu à partir d’un paramètre de
sortie ?y d’un service Si, alors le service Sj dépend fonctionnellement du service Si. En
d’autres termes, Si est le prédécesseur de Sj dans C. Pour représenter l’ordonnancement des
services dans C, nous définissons un graphe de dépendances, noté GD, (c’est-à-dire, un
graphe orienté acyclique) dans lequel chaque nœud correspond à un service de la composition
C et chaque arc entre deux nœuds correspond à une (ou plusieurs) paramètres de dépendance

	
 14	

entre les deux services. Ainsi le plan du mashup correspondra au graphe GD. La figure 6
présente le plan du mashup pour C1 et C2. Dans C1,(cf. figure 6- partie A) S1 fournit en sortie
le paramètre y qui est le paramètre d’entrée pour les services S3, S8, S4 et S9, par conséquent,
ces services doivent précéder S1 dans le plan (pour C2 -figure 6-partie B, le même
ordonnancement est considéré avec comme différence S2 à la place de S1).

 Partie A Partie B

Figure 6. Graphe de dépendance pour C1 et C2

B) L’application de la politique de confidentialité

Dans les étapes précédentes, les propriétés datatype qui sont nécessaires à l’évaluation des
contraintes de la confidentialité ont été ajoutées à la clause SELECT; (la clause
SELECT contient désormais les variables demandées par la requête initiale et les variables
nécessaires à l’évaluation des contraintes de confidentialité placées aussi comme variables
dans la requête initiale). Pour évaluer ces contraintes de confidentialité, nous augmentons le
plan de mashup avec des operateurs de filtrage (appelés Filter) (ces opérateurs sont invokés
lors de l’exécution du mashup). Pour chaque propriété sensible pi (c’est-à-dire, une variable)
contenu dans la requête initiale, les filtres utilisent les valeurs des propriétés ajoutés P pour
évaluer les contraintes de confidentialité placées sur pi. Des valeurs «Null » sont retournées
quand la contrainte est évaluée à faux. Les operateurs de filtrages sont insérés à la sortie de
chaque service retournant une donnée sensible. Nous définissons la sémantique de l’operateur
Filter comme suit.

 Définition 4. Soient T et Tp deux tables représentants respectivement les résultats de
l’invocation d’un service avant et après l’application des contraintes de confidentialité. Soit t
(respectivement tp) un n-uplet dans la table de sortie T (respectivement Tp). Soit t[i] (aussi
tp[i]) une colonne représentant une propriété associée à des contraintes de confidentialité, et
constraint(t[i]) une fonctionne booléenne permettant d’évaluer les contraintes associées à t[i].
Un n-uplet tp est inséré à Tp comme suit :

Pour chaque n-uplet t ∈ T
 Pour i = 1 à n /* n est le nombre de colonnes de T */
 Si const(t[i]) = true Alors tp [i] = t[i]
 Sinon tp [i] = null
Eliminer tous les n-uplets dans Tp qui contiennent que des valeurs nulles
dans leurs colonnes

	
 15	

Pour notre exemple de motivation, comme la figure 4 le montre, deux filtres F1 et F2 ont été
insérés aux sorties des services S3 et S4 respectivement. Le filtre F1 calcule les valeurs de w et
z comme suit :

w = w Si w1 = ‘yes’, Sinon w = null
z = z Si z1 = ‘yes’, Sinon z = null

Le filtre F2 calcule les valeurs de v comme suit :

v = v Si v1 = ‘yes’, Sinon v = null

Le plan de mashup obtenu après l’ajout des filtres de confidentialité représente le mashup qui
sera retourné à l’utilisateur.

5. Prototype et évaluation

5.1 Mise en œuvre du système de composition

Nous avons mis en œuvre un système d’interrogation et de composition des services DaaS.
L’architecture, illustrée en figure 7, est divisée en quatre couches. La première couche
contient un ensemble de bases de données Oracle/MySQL qui stockent des données
médicales. La deuxième couche est composée d’un ensemble de fonctions développées en
Java. Chaque fonction a pour rôle d’exécuter des requêtes pour accéder à une base de données
de la première couche et récupérer le résultat de ces requêtes. Ces fonctions sont exportées
sous forme de services Web qui constituent la troisième couche de l’architecture. Nous avons
utilisé le kit de déploiement fourni avec le serveur Web GlassFish pour créer et déployer ces
services.

Figure 7. L’architecture du système de composition

Les fichiers de description WSDL-S des services Web situés en troisième couche sont annotés
par les vues RDF. La sémantique de ces vues est interprétée selon les ontologies de domaine
(décrites en RDFS). Les fichiers WSDL annotés sont publiés dans les registres de service
Web. La couche supérieure est composée d’une interface graphique pour l’utilisateur du

	
 16	

système (appelé GUI) et d’un système gestion de Service (appelé WSMS). Cette interface est
implantée en Java-Swing et permet aux concepteurs de formuler leurs requêtes qui sont
exécutées par le système WSMS. Ce dernier est lui même composé de plusieurs modules :

- Interactive Query Formulator: permet d’aider les concepteurs à préciser leurs
requêtes RDF (écrite en langage SPARQL) conformément à l’ontologie,

- Service Locator: permet de récupérer les fichiers des descriptions WSDL-S des
services adéquats à partir des registres UDDI.

- RDF Query Rewriter: permet de mettre en œuvre l’algorithme de réécriture des
requêtes RDF. Il détermine si les services proposés par le module Service Locator
peuvent être utilisés pour répondre à la requête posée et retourne ainsi les
compositions possibles.

- Composition Plan Generator: génère les plans d’exécution pour les compositions
obtenues. Les plans générés sont envoyés pour exécution immédiate.

- Execution Engine: met en œuvre les différents opérateurs utilisés dans les plans
d’exécution

- UP-Cast/Down-Cast Messages Transformer: transforme les messages échangés avec
les services invoqués en cas de besoin.

La figure 8.1 montre l’interface utilisateur. Sur le côté gauche, le menu ontologie présente une
vue arborescente de l’ontologie de domaine, le menu services présente les services stockés
dans les registres de service.

Figure 8.1. L’interface principale

	
 17	

Figure 8.2. Les interactions lors de la formulation d’une requête

Lorsqu’un utilisateur veut formuler sa requête, il sélectionne les concepts qu’il souhaite ainsi
que leurs propriétés en cliquant sur le bouton Select Datatype properties (cf. figure 8.2). Il
peut alors cocher les propriétés souhaitées et la requête sera alors générée.

5.2 Expérimentations

Pour mesurer le paramètre passage à l’échelle de l’approche de composition et l’impact de
l’application de politique de confidentialité sur le temps de réponse global, nous avons
appliqué cette approche au domaine de la santé. Pour cela, un nombre de 411 services Web
est généré sur 23 bases de données médicales différentes (bases de données Oracle) contenant
des informations médicales (par exemple, des dossiers médicaux, allergies, etc.) relatives à
plus de 30.000 patients. Ces services ont été déployés sur un serveur Web GlassFish.
L’utilisation de ces services de données est conditionnée par une politique de confidentialité
qui est composée d’un ensemble de 47 règles de confidentialité relatives à la protection des
données personnelles. Pour chaque patient, nous avons généré aléatoirement les préférences
sur la divulgation de données personnelles par rapport à 10 acteurs médicaux (par exemple,
chercheur, médecin, infirmière, etc.) et à des objectifs d’usage différents (par exemple, la
recherche scientifique). Ces préférences sont stockées dans une base de données Oracle
indépendante et accessible via 10 services Web, chacun donne un accès à des fichiers de
préférences par rapport à un type particulier de données médicales (par exemple, les
traitements en cours). L’algorithme de composition est implanté en Java et exécuté sur un
processeur Intel Core Duo 2,53 Ghz avec 4 Go de Ram sous le système Windows 7. Nous
avons mené une série d’expérimentations pour mesurer les coûts engendrés par l’application
de la politique de confidentialité sur l’approche de composition. Nous avons examiné deux
séries de requêtes mashup. La première série, Set-1, contenait des requêtes sur un patient
donné, chacune avec une taille différente: Q1: « retourner les informations personnelles de la
patiente Alice » (1 nœud-classe dans le graphe requête), Q2: « retourner les informations
personnelles, allergies et les traitements en cours pour la patiente Alice (3 nœuds-classe), et

	
 18	

Q3: « retourner les informations personnelles, allergies, les traitements en cours, l’état
cardiaque, et le résultat des tests biologiques du patient Alice » (5 nœuds-classe). La
deuxième série, Set-2, utilise les mêmes requêtes Q1, Q2 et Q3, mais pour tous les patients
vivant à Lyon. Ces trois requêtes sont formulées par un même acteur (chercheur) et pour le
même objectif d’usage (recherche médicale). Les résultats obtenus sont illustrés dans la figure
9. Le temps indiqué comprend le temps de construction du mashup et le temps de d’exécution
effectif. Dans Set-1, le temps d’exécution du mashup est négligeable (car le mashup est
exécuté pour 1 seul patient) et l’application de la politique de confidentialité induit une légère
augmentation impactée sur le temps de réécriture de la requête. Cela est dû au fait que le
nombre de services utilisés pour récupérer les préférences de confidentialité (10 services) est
largement faible par rapport au nombre de services utilisés pour récupérer des données (411
services). Dans le Set-2, le temps d’exécution s’accroit par un facteur égal au nombre de
patients retourné. En revanche, l’application de la politique de confidentialité a un impact
relativement faible sur le temps d’exécution.

Set-1 Set-2

Figure 9. Résultats d’expérimentation

6. Conclusion

Dans cet article, nous avons présenté une approche déclarative de construction de mashup
dans le cadre des services Daas qui prend en compte la protection des données personnelles
lors de la composition des services pour le mashup. Ces services de données sont modélisés à
l’aide des vues RDF paramétrées sur des ontologies de domaine; les vues définies sont ensuite
utilisées pour annoter les fichiers de description WSDL (cette solution peut être appliquée aux
services Web SaaS). L’approche de composition est basée sur une technique de réécriture des
vues RDF. Ainsi, la requête utilisateur est réécrite en termes de services. La protection des
données personnelles est prise en compte ensuite lors de la construction du mashup par
l’application des contraintes de confidentialité comme des filtres lors de l’exécution de la
composition. Ces contraintes désignent les règles d’usage concernant les données
personnelles et sont spécifiées via une politique de confidentialité. Nous avons également
présenté un prototype de composition et quelques résultats d’expérimentation.

Une des perspectives de notre travail consiste à améliorer l’approche de composition
selon plusieurs dimensions: la première vise à étudier les problèmes d’optimisation de
l’approche de composition en s’appuyant sur les travaux dans [43]. Nous analyserons ensuite
la validité de notre modèle de protection de données personnelles selon un modèle
d’estimation d’attaques d’adversaires [40] [41]. La seconde sera consacrée pour étendre
l’annotation des services DaaS pour intégrer les contraintes de confidentialité. Ainsi chaque

	
 19	

service DaaS sera doté lui-même par un mécanisme de protection des données personnelles.
Nous avons déjà proposé une première approche [18] qui permet d’identifier les différents
points d’extension au niveau du fichier WSDL pour intégrer les contraintes de confidentialité.
L’autre perspective concernera l’extension de l’approche de composition avec des services
DaaS annotés.

7. Références

[1] H. L. Truong and S. Dustdar, “On analyzing and specifying concerns for data as a service,” in APSCC,

2009, pp. 87–94.
[2] M. J. Carey, “Declarative data services: This is your data on soa,” in IEEE International Conference on

Service-Oriented Computing and Applications, SOCA 2007, 2007, p. 4.
[3] D. Butler, “Mashups mix data into global service,” in Nature, January 2006.
[4] A. Jhingran, “Enterprise information mashups: Integrating in- formation, simply,” in VLDB, 2006, pp.

3–4.
[5] S. S. Bhowmick, L. Gruenwald, M. Iwaihara, and S. Chatvichienchai, “Private-iye: A framework for

privacy preserving data integration,” in ICDE Workshops, 2006, p. 91.
[6] Yahoo inc. yahoo pipes. [Online]. Available: http://pipes.yahoo.com/pipes/
[7] Google inc. google mashup editor. [Online]. Available: http://code.google.com/gme/
[8] Intel. intel mash maker. [Online]. Available: http://mashmaker.intel.com/web/
[9] J. Tatemura, S. Chen, F. Liao, O. Po, and D. Agrawal, “Uqbe: uncertain query by example for web

service mashup,” in SIGMOD Conference, 2008, pp. 175–180.
[10] J. Tatemura, A. Sawires, O. Po, S. Chen, D. Agrawal, and M. Goveas, “Mashup feeds: : continuous

queries over web services,” in SIGMOD Conference, 2007, pp. 128–130.
[11] A.H.H.Ngu,M.P.Carlson,Q.Z.Sheng,andH.youngPaik, “Semantic-based mashup of composite

applications,” IEEE T. Services Computing, vol. 3, no. 1, pp. 2–15, 2010.
[12] T. Weise, S. Bleul, D. E. Comes, and K. Geihs, “Different approaches to semantic web service

composition,” in Third International Conference on Internet and Web Applications and Services, ICIW
2008, 2008, pp. 90–96.

[13] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and managing web services: issues,
solutions, and directions,” VLDB J., vol. 17, no. 3, pp. 537–572, 2008.

[14] M. A. Eid, A. Alamri, and A. El-Saddik, “A reference model for dynamic web service composition
systems,” IJWGS, vol. 4, no. 2, pp. 149–168, 2008.

[15] D. Martin, M. Paolucci, and M. Wagner, “Bringing semantic annotations to web services: Owl-s from
the sawsdl perspec- tive,” in ISWC/ASWC, 2007, pp. 340–352.

[16] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized optimization for the join
ordering problem,” VLDB J., vol. 6, no. 3, pp. 191–208, 1997.

[17] M. Barhamgi, D. Benslimane, and B. Medjahed, “A query rewriting approach for web service
composition,” In IEEE T. Services Computing, vol. 3, no. 3, pp. 206–222, 2010.

[18] M. Mrissa, S-E. Tbahriti and H.L. Truong, “Privacy model and annotation for DaaS,” In Proc. of
European Conference on Web Services (ECOWS), Antonio Brogi, Cesare Pautasso, George Angelos
Papadopoulos ed. Ayia Napa, Cyprus. pp. 3-10. 2010.

[19] http://www.w3.org/TR/P3P/
[20] Massimo Paoucci, Naveen Srinivasan, Grit Denker, Tim Finin and Katia Sycara Lalana Kagal,

“Authorization and Privacy for Semantic Web Services,” In IEEE Intelligent Systems (Special Issue on
Semantic Web Services), vol. 19, no. 4, pp. 50-56. 2004.

[21] M. Ouzzani, A. Bouguettaya, B. Medjahed, and A. Rezgui, “Preserving Privacy in Web Services,”
Proceedings of the fourth international Workshop On Web Information And Data Management, 2002.

[22] OASIS 2005. (2005, February) OASIS “eXtensible Access Control Markup Language (XACML),”
version 2.0. [Online]. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.

[23] http://www.zurich.ibm.com/security/enterprise-privacy/epal/Specification/index.html
[24] N. Li, T. Li, and S. Venkatasubramanian “t-Closeness: Privacy Beyond k-Anonymity and l-Diversity,”

Proc. of the International conférence of Data engineering (ICDE), 2007.
[25] K. Nissim, and C. Dwork, “Privacy-preserving data-mining on vertically partitioned databases,” In

CRYPTO, Lecture Notes in Computer Science, Ed. Santa Barbara, California, USA: Springer, August
2004, vol. 3152, pp. 528-544.

[26] U.S. Department of Health and Human Services Office for Civil Rights, “HIPAA administrative
simplification regulation text,” 2006.

	
 20	

[27] European Commission, “Directive 95/46/ec of the european parliament and of the council of 24 october
1995 on the protection of individuals with regard to the processing of personal data and on the free
movement of such data,” 2005.

[28] S. De Capitani di Vimercat, S. Foresti, S. Jajodia, and P. Samarati, “Access Control Policies and
Languages in Open Environments,” in Secure Data Management in Decentralized Systems, Springer
US, Ed., 2007, vol. 33, pp. 21-58.

[29] R. S. Sandhu and P. Samarati, “Authentication, Access Controls, and Intrusion Detection,” IEEE
Communications, pp. 1928-1948, 1997.

[30] L.F. Cranor, “Special Issue on Internet Privacy,” In Journal of Comm. ACM, vol. 42, no. 2, pp. 28-38,
1999.

[31] Harris IBM, “The IBM-Harris Multi-National Consumer Privacy Survey,” Privacy & American
Business, vol. 7, no. 6, 2000.

[32] A. Y. Halevy, “Answering queries using views: A survey”. 10, pp. 270-294, 2001.
[33] http://www.w3.org/TR/rdf-sparql-query/
[34] U. Srivastava, K. Munagala, J. Widom, & R. Motwani, “Query Optimization over Web Services, ”

VLDB, pp. 355-366, Seoul, Korea. 2006.
[35] M. Sabesan, & T. Risch, “Adaptive Parallelization of Queries over Dependent Web Service Calls,” 1st

IEEE Workshop on Information & Software as Services, WISS 2009. Shanghai, China.
[36] M. Sabesan, & T. Risch, “Querying Mediated Web Services,”. 8th International Information

Technology Conference, IITC 2006. Colombo, Sri Lanka.
[37] M. Carey, “Declarative data services: This is your data on SOA,”. In Proceeding of the IEEE

International Conference on Service-Oriented Computing and Applications, Washington, DC, USA,
2007.

[38] R.D. Hof, “Mix, match, and mutate,” Business Week, July 2005.
[39] A. H. H. Ngu, M. P. Carlson, Q. Z. Sheng, and H.-y. Paik. “Semantic-based mashup of composite

applications,”. IEEE Trans. Serv. Comput., 3:2–15, January 2010.
[40] D. Kifer, “Attacks on privacy and de finites theorem,” Proc. of the SIGMOD, 2009.
[41] A. Machanavajjhala, J. Gehrke, and M. Götz, “Data Publishing against Realistic Adversaries,” Proc. of

the VLDB, 2009.
[42] http://chicago.everyblock.com/crime/
[43] Q. Yu, and A. Bouguettaya, “Framework for Web service query algebra and optimization,”

 TWEB, 2, 1, 2008.
	

	

