Exchanging Data Agreements in the DaaS Model

Hong-Linh Truong*, Schahram Dustdar®, Joachim GétzeT, Tino FleurenT, Paul MﬁllerT, Salah-Eddine Tbahritii,
Michael Mrissat and Chirine Ghedira?
*Distributed Systems Group, Vienna University of Technology, {truong,dustdar} @infosys.tuwien.ac.at
TDepartment of Computer Science, University of Kaiserslautern, {j_goetze,fleuren,pmueller } @informatik.uni-kl.de
fUniversité de Lyon, CNRS, Université Lyon 1, LIRIS UMR5205, {firstname.surname } @liris.cnrs.fr

Abstract—Rich types of data offered by data as a service
(DaaS) in the cloud are typically associated with different
and complex data concerns that DaaS service providers, data
providers and data consumers must carefully examine and
agree with before passing and utilizing data. Unlike service
agreements, data agreements, reflecting conditions established
on the basis of data concerns, between relevant stakeholders
have got little attention. However, as data concerns are complex
and contextual, given the trend of mixing data sources by
automated techniques, such as data mashup, data agreements
must be associated with data discovery, retrieval and utilization.
Unfortunately, exchanging data agreements so far has not been
automated and incorporated into service and data discovery and
composition. In this paper, we analyze possible steps and propose
interactions among data consumers, DaaS service providers and
data providers in exchanging data agreements. Based on that,
we present a novel service for composing, managing, analyzing
data agreements for DaaS in cloud environments and data
marketplaces.

I. INTRODUCTION

Recent advances in devices and networks have enabled
data sharing on the Internet. Individuals and companies have
collected and analyzed several data sources to provide different
types of data to data customers (e.g., social media data').
Furthermore, regulations have also been changed, introducing
the so-called open data initiatives’. We have observed that
in many cases, data is open, free but licensed (such as in
data.gov) as well as data is not open, free and is bound
to commercial licenses (e.g., some data in Infochimps and
Azure DataMarket®). Moreover, the data as a service (DaaS)
model [1] is increasingly employed for offering data in the
cloud.

Despite these recent developments in the DaaS model, data
sharing in the cloud, and wide data availability, little effort
has been spent on the development of data agreements for
DaaS and cloud-based data marketplaces. As mentioned in
[1], data concerns are diverse, covering, e.g., data licensing,
quality of data, and law enforcement. Based on these concerns,
different conditions on data can be established. We call a set of
such conditions applied to a single or multiple data assets data
agreement. In some senses, data agreements can be considered
data contracts (though there might not exist real, physical

Thttp://gnip.com/
Zhttp://www.data.gov/opendatasites
3 http://www.infochimps.org/ and https:/datamarket.azure.com/

agreement/contract enforcement bodies). To date, several dis-
cussions on data concerns, in particular data licensing, have
been raised in the news, forums and blogs. However, mod-
els and techniques for supporting automatic data agreement
processing and exchanging in open and cloud environments
have not been in the research focus. Interestingly, some DaaS
providers sell data to data consumers via pay-as-you-go or
subscription APIs but to which extent sold data can be used is
not clearly mentioned, specified and associated with the data.
We believe that being able to dynamically and automatically
determine and associate data agreements with data assets at
runtime is a crucial issue. In particular, in the DaaS model, a
single DaaS service provider can interact with multiple data
providers to offer different types of data to different customers,
and data agreements associated with their exchanged data may
be dynamically modified.

Given the lack of understanding on how DaaS service
providers and data providers could work together to serve
data consumers, with respect to models and protocols for
data agreements, in this paper we propose techniques and
services for supporting the creation, management, analysis,
and association of data agreements with data in the cloud.
Instead of working on a particular specification for data
agreements, we focus on models and service components that
can be used by DaaS service and data providers to deal with
data agreements by exploiting different possible interactions
among data services, data providers and consumers. The main
contributions of our paper are:

o We propose novel models for encapsulating data agree-
ments and for exchanging data agreements among DaaS
service providers, data providers and consumers.

o We introduce a novel Data Agreement Exchanging Ser-
vice (DAES) for enabling the composition, analysis and
management of data agreements.

To demonstrate our work, we present several possibilities to
utilize our service with real-world DaaSs.

The rest of this paper is organized as follows: Section II
describes background concepts for the paper and discusses re-
lated work. Data agreement metamodel, annotation techniques
and interaction models for DaaS are presented in Section
III. We present the design of a service for exchanging data
agreements in Section IV. Section V presents our experiments.
Section VI summarizes the paper and outlines our future
work.

II. BACKGROUND AND RELATED WORK

A. DaaS Service Provider and Data Providers

Daas Service Provider

DaaS b' 7
Data Consumer 1 Y.
S
S
N

Data Provider

AN
high quality

Data Consumer

EU privacy

b
« I
‘A.—k conpl i ance
- S
S
Q‘ ‘e
. low quality
‘\
S
S
.
*{ Sensor
US privacy

DaaS

I

conpl i ance

Figure 1. Interactions in the DaaS model

In our work, we focus on relationships among data con-
sumers, DaaS service providers and data providers, shown in
Figure 1. In our model, one DaaS service provider can interact
with multiple data providers. A data provider can pass data to
a DaaS service on-demand, based on requests from the DaaS
service. A data consumer can use a pay-as-you-go model to
request data from a DaaS service, which, in turn, searches
different data providers, if they can provide some types of
data in order to fulfill the request. The data providers can
set different constraints on the data assets they provide. In the
DaaS model, not only the interactions between a DaaS service
provider and a data provider are very dynamic, but the issues
of data right management are complex as well due to the rich
types of data assets to be exchanged.

We see that on-demand data provisioning in the DaaS
model introduces new problems related to data availability
and agreement. In order to satisfy their consumers’ needs,
DaaSs may search for new data which can be provided, but
in many cases these data come with different agreements
and from different providers. Therefore, there is a need to
provide a generic interaction model that enables DaaS and
data providers to negotiate and acquire agreements for data.
There is also a need, at the DaaS level, to make a distinction
between the different agreements, and to be able to sort out
which data assets they apply to. In our work we will focus
on a model/service reflecting how a DaaS provider can work
with a data provider to support data customer requests to
cover both pay-as-you-go and subscription data access and
data agreement models.

B. Data Agreement Specifications

In most cases, data is accompanied with data agreements
which are written for humans, such as described in Open
Data Commons*. One of the most popular forms of data
agreements is data licensing. ODRL [2] is a specification that
can be used to specify data agreements but it is not designed
for data on the Web. ONIX-PL is another effort to develop

“http://www.opendatacommons.org

licenses for digital resources®. Some work incorporate some
data terms in XML but there exists no standard or widely
accepted way to do this. We expect that data agreements
will be specified in machine-readable forms, although we
see the lack of specifications for data agreements. In our
work, instead of developing data agreement specifications, we
focus on managing and exchanging data agreements, including
data licensing, that can be used to integrate different relevant
specifications.

C. Exchange of Data Agreements

License management in Grid and Cloud computing such as
[3] does not support data agreement interactions in the DaaS
model, which is much more flexible. Our previous work dealt
with licensing for data in the Grid [4]. However, as we discuss
later on, data agreements are much more broader and licenses
are just a part or a type of agreements. Due to its difference,
Grid licensing cannot be applied to DaaS data agreements.
Digital right management techniques [5] are also relevant to
data agreements, however, existing techniques [6], [7] are not
designed to work in dynamic DaaS interactions with diverse
types of structured and unstructured data in cloud-based DaaS
and open data marketplaces, such in Infochimps and Azure
DataMarket. Our work focuses on data agreement exchange
to support data discovery and compliance, as a part of digital
right managements in the DaaS model.

Researchers have also focused on data policing. For ex-
ample, Speiser and Studer propose a self-policing policy
language in [8] and use a policy engine to apply policies
during composition. Different from them, we allow different
agreements to be defined and managed so that any interesting
parties can obtain the agreements and perform data policing.

III. INTERACTIONS IN DATA AGREEMENT EXCHANGE
A. Metamodel for Data Agreements

Data agreements can be classified into different categories,
such as, agreements on data licensing, on data privacy compli-
ance, or on quality of data. In our work, we do not concentrate
on specific agreement specifications for specific categories but
encapsulate the category, content and other metadata about
agreements. In doing so we develop a metamodel to capture
information about agreements.

Figure 2 shows our simplified metamodel that can
be used among data consumers, DaaS service providers,
and data providers in order to exchange agreements.
The metamodel consists of a common part (indicated by
identificationType) and an extension part (identi-
fied by extensionType). The common part contains
all managing information for identifying the data asset to
which the agreement applies (element dataAsset), possi-
ble original data source (element dataSource), the data
asset provider (element dataAssetProvider) which pro-
vides the data®, and the data asset consumer (element

Shttp://www.editeur.org/21/ONIX-PL/
SIn this case, it can be a DaaS service provider or a data provider

dataAgreementType

+ extension

identification Type

+agreementld : anyURI
+datafsset: anyURI
+dataSource : anyUR|
+datafssatProvider : anyURI
+datafssetConsumer : anyURI
+creationDate : dateTime
+datafgreementExchangeService - anyUR
+agreementStatus : string

extensionTypéq

4 agresment + agreementReference
o.* o.*

agreementReferenceType

+content : anyURI
+eattributesr agreementSchema : anyUR||
+eattributes category : string [0..1]

agresmentType

+«attribute» agreementSchema anyURI
+«attributes category : string [0..1]

r* content
1.1

Y
scomplexTypes
anyType

+zany, elements wildcard [0..%]
+aany, attributes wildcard

Figure 2. Structure of the meta model for encapsulating data agreements

dataAssetConsumer). The common part also stores the
service used to support the agreement exchange among data
asset consumers and providers. This service, specified by
dataAgreementExchangeService, plays the role of a
mediator that stores and manages data agreements as well
as and performs various features atop agreements. Further-
more, the common part stores information about the status
of the agreement, e.g., CREATED or AGREED. Note that the
common part does not contain any specific description of a
data agreement. Numerous forms of such descriptions may
be imaginable, thus we believe it is better to integrate a
specific description in the extension part, which can contain
descriptions of several data agreement constraints. In addition,
the extension part may hold similar data agreement terms
described by several description languages. For example, on
the case of licensed content, the same license may be described
in different languages, so that different data consumers may
pick the most suitable language. This approach allows for a
more generic model, which can be easily extended.

The extension part stores a list of data agreement constraints
and capabilities (via embedded content specified by the el-
ement agreementType or via reference content specified
by agreementReferenceType), which specialize to dif-
ferent types like data quality, privacy, or license (indicated
by category). Any suitable description language can be
used in a data agreement section, e.g., Open Digital Rights
Language (ODRL) [2]. Typical information stored in such a
section could be, for example, licenser, licensee, user roles,
license expiration date, and references to law enforcement.
This extension can exist multiple times, containing different
agreement categories. Multiple agreement sections can be
considered as a means of convenience as well as allowing

extensibility in the future should new description languages
or requirements on data agreements come up. Nonetheless,
each data agreement section has to be complete and valid so
that it can be exchanged and associated with data assets to
which the agreement applies.

B. Enriching and Associating Data Assets With Agreement
Terms

Agreement information can be tightly or loosely coupled to
data as a means to make agreement terms that apply explicitly
to data usage. Tight coupling implies exploiting the existing
structure of data assets, e.g., by devising new data structures
that contain agreement information. On the contrary, loose
coupling implies implementing agreements as entities that are
physically distinct from data assets. On the technical level,
different possibilities are available for attaching data agree-
ments to data assets. We have identified four solutions and we
discuss their advantages and drawbacks in the following:

(a) directly inserting agreement information into data assets,
(b) providing two-step access to data assets,

(c) linking data agreement to the description of DaaS, and
(d) linking data agreements to the messages sent by DaaS.

Solution (a), which involves tight coupling, is particularly
attractive with unstructured data, where agreement information
can be added, for example into a zip file.Tight coupling
presents a general drawback: injecting and extracting agree-
ment information into and from data assets is a costly task.
However, such a solution is quite interesting when the goal
of the DaaS service provider is to tightly attach agreement to
data and to condition data usage to agreement acceptation in
any situation. Furthermore, this solution is not scalable, as the
multiplication of concerns would generate a complex interface.

With solution (b), the consumer is first given a link to
agreement information, which must be accepted before data
access is granted. This solution can be implemented using a
similar mechanism described in OAuth’ in which DaaS$ service
providers can ask data providers to grant access token to data
consumers when the consumers interact with the DaaS service.
However, this solution might require manual interaction. This
solution is easy to implement and can be reused over different
data assets after deployment.

Solution (c) raises a new problem: it is not possible to
distinguish which data, from which data source, is concerned
with which agreement, if there are several agreements attached
to the same service description. Solution (c) is then to be
avoided. Solution (d) presents the same drawbacks as solution
(a) but is restricted to adding a URL to the service message,
e.g., in XML, which is not a big change. Another possibility is
to use message headers of underlying protocols (i.e., HTTP)
to incorporate a link to agreement information, for example
using Web linking as described in the RFC 5988 8.

Overall, different possibilities for associating agreement
information with data assets have different advantages and

"http://oauth.org
8http://tools.ietf.org/html/rfc5988

coupling tight-coupling

loose-coupling

(+)ciphering possible
(-)requires specific consumer
(-)costly data agreement injection

technical solu- | (a) (b) () (d)

tion

structured (+)ciphering possible (+)data-independent (-)service-specific data agree- | (+)message-specific

data ment data agreement
(-)requires specific client (-)manual access only (-)no enforcement possible (+)ciphering possible
(-)not scalable
(-)modifies data structure

unstructured (+)data agreement enforcement possible | (+) data-independent (-)service-specific data agree- | (+)message-specific

data ments data agreement

(-)manual access only

(-)no enforcement possible (+)ciphering possible

Table T
SUMMARY OF ATTACHING DATA AGREEMENT INFORMATION TO DATA ASSETS

drawbacks with respect to their applicability to unstructured
and structured data. Table I summarizes the result of our
discussions. Based on that, we recommend that XML-based
services should rely on HTTP Web linking to provide the link
to agreement information to data assets provided. Accordingly,
we deem appropriate for services that provide unstructured
data to inject agreement information into data assets.

C. Interaction Models for Data Agreement Exchange

Based on the meta model for data agreements and tech-
niques to associate data assets with data agreement infor-
mation, we devise interactions for data agreement-enriched
DaaS. We consider two different situations: (i) a DaaS service
provider knows its data sources and the data agreements for
data associated with these sources in advance, and (ii) a DaaS
service provider might or might not know its data sources
in advance, and the data agreements associated with its data
sources are determined at runtime. In both cases, data sources
of a DaaS can be internal data sources (belonging to DaaS)
and external data sources (from data providers).

Figure 3 presents our interaction models for exchanging data
agreements in the DaaS model by utilizing a data agreement
exchange as a service (DAES). When a DaaS receives a data
request from a data consumer, sent in Step (1) data
request, there are different possibilities about possible data
agreements for requested data, with respect to data agreement:

o if the data sources for the request are known (e.g., in
a series of transactions) and the data agreements of the
requested data are known: in this case, a DaaS service
invokes DAES to check existing data agreements and/or
to receive the data agreement content or the reference
to the agreement to be applied to the requested data
(Step 2.1). After that the DaaS service will request
the data from corresponding data providers (Step 2.2).
The data providers can recheck agreements (Step 2. 3)
before sending the data back to the DaaS service.

« if data agreements for data sources are not known, there
are two possibilities. First, a DaaS service asks data
providers about data and corresponding data agreements
(Step 3.1); the data providers offer data agreements
(Step 3.2); the DaaS service checks the offering data
agreements (Step 3. 3) before the DaaS service accepts
and receives the data. Second, a DaaS service may invoke

DAES to create new data agreements (Step 4.1) and
then asks data providers to agree to provide data based on
its proposed agreements (Step 4. 2); the data providers
check the agreements (Step 4.3) before sending the
data to the Daa$S service.’

o a DaaS service can compose new data agreements for the
data that it will offer to the data consumers (Step 5).
After the data providers check the agreements (either by
themselves or using DAES), the data providers return the
requested data to the DaaS service which, in turn, returns
the data and agreements back to the data consumers.
The final delivery of data assets and agreements can be
in different forms, as discussed in Section III-B, e.g.,
agreements are packed with requested data or agreements
are delivered separate from requested data.

As shown above, we see the need to develop DAES’s fea-
tures to support the creation and validation of data agreements
for different DaaS. Furthermore, agreements can be stored and
retrieved before, during and after data requesting. Furthermore,
DAES will place a role for supporting the composition and
compatibility checking of agreements as well as place for
agreement negotiation.

IV. DATA AGREEMENT EXCHANGE AS A SERVICE

Based on our models in Section III, we develop a data
agreement exchange as a service (DAES) to support the
management and exchange of data agreements. DAES aims at
being a cloud service for data marketplaces in which different
data agreement specifications can be registered, multiple DaaS
providers, data providers and data consumers can use DAES
to exchange their data agreements, and several agreement-
specific operations, such as creation and validation, compo-
sition, and compatibility analysis, can be supported.

Figure 4 presents an overview of our DAES. At the bottom
level, DAES stores different information, including agreement
specifications, templates and agreement instances (concrete
agreements created based on specific specifications), and
DAES consumers (DaaS service providers, data providers,
and data consumers). At the middle level, DAES offers two
types of functionalities. First, DAES offers several agreement-
specific features in which each feature will be supported

9Note that data agreement negotiation can be performed. However, it is a
complex issue and out of the scope of the paper.

requested data

""""" > agreement information
— - — Jp» dataagreement
— data/data agreement request

Data Consumer

(2.1) recheck known agreements
(3.3) check offered agreements

N (4.1) create new agreements
~N . (5) compose agreements

~

~

Figure 3.

Data Provider

high quality |

EU privacy
conpl i ance

low quality |

(4.2) request data with a specific agreement

Sensor

(4.3)check agreement

US privacy
conpl i ance

Possible interaction models for data enriched with data agreements

REST APIs

Data Agreement
Composition

Data Agreement
Compatibility Analysis

Data Agreement
App Management

Data Agreement Management

Consumer
Management

plug-in data agreement-specific features

Agreement Specs &

Templates Store

information storage

Figure 4.

by plug-ins in terms of Data Agreement Apps. Examples of
such features are data agreement creation and validation, data
agreement management, data agreement composition, and data
agreement compatibility analysis (see Table II). Note that by
agreement-specific, we mean that these features are differently
implemented for and applied to different agreement specifi-
cations. The main reason for using plug-in models is that
each agreement specification requires different mechanisms
to handle its agreement instances. For example, there will
be several plugins for verification of agreement compatibility
(e.g., implemented based on existing algorithms). Note that the

Data Agreement

Instances Store

service management features

Data Agreement
App Store

Overview of Data Agreement Exchange as a Service (DAES)

development of Data Agreement Apps, e.g., for compatibility
algorithms, are out of this paper.

Second, DAES offers service management features to
manage agreement-specific applications and consumers.
All DAES features are exposed via a set of REST-
ful APIs. Figure 5 describes the (simplified) information
model inside DAES. We manage agreement specifications
(DataAgreementSpecification), data agreement tem-
plate (DataAgreementTemplate) and data agreement
instances (DataAgreementInstance). Data agreement
instances, templates and specifications are interlinked. The

I:l DataAgreementipp D
- List withCapabilities

- - String withPlugin
A - List worksWithSpecs
- List worksWithTemplates

[E] patasgreementappCapability
- 5tring name
- String value

¢ =

I:l DatafgreementSpecification
- String contentURI
- String language

- Consumerinfo consumerinfo
- List ownslicenses
- List ownsSpecs

DatafgreementTemplate I:|
- DatasgreementSpecification complieswiths

[consumerinfo
- String accessid
- 5tring name

- String wri

DAESConsumer

* *

DataAgreementinstance I:| AgreementContent
- AgreementContent agreementContent

- String agreementReferenceUR|

S— 2
! B= «ava enums»
- _>|:| AbstractDataAgreementinfo DataAgreesmentStatus
“|- Status atStatus CREATED
- List compliesWith AGREED
=] LawEnfarcement - Provenancelnformation provenanceTrack DISCUSSING

- String geographicalRegion - String uri 4),|:| Provenancelnfarmation
- String regulationLink & ——— - DataAgreementStatus withStatus - String createdAt
- String regulationName * - String createdBy
- String lastUpdated
- String lastUpdatedBy
Figure 5. Main information stored in DAES

Features
agreement creation

Description

create an agreement based on DAES consumer
input parameters. The agreement is created
based on a specific specification.

check if an agreement is syntactically correct.
perform agreement merging, nesting, etc.
check if a set of agreements are compatible

agreement validation
agreement composition
agreement compatibil-
ity analysis

agreement
management

store, retrieve, delete, and update agreements
and their specifications and templates.

Table IT
POSSIBLE AGREEMENT-SPECIFIC APPLICATIONS

AgreementContent will be used to store concrete data
agreement contents. All instances, templates and specifica-
tions will have certain information in common, specified
via AbstractDataAgreement Info, such as unique URI,
status, provenance information, and compliant law enforce-
ments. Given agreement instances, templates and specifi-
cations, we manage possible data agreement applications
(DataAgreementApp) and consumers (DAESConsumer)
that are associated with them.

Note that certain information in the above-mentioned enti-
ties can also be available in the metadata mentioned in Section
III-A, such as specification language, law enforcement, or
consumer identifiers. Here we must distinguish two different
ways of utilizing metadata about data agreements. First, within
DAES, metadata is used to support the search, management,
and retrieval of data agreements as well as to create data
agreement instances. Second, a data agreement content, stored
in AgreementContent, is a self-contained information that
must specify enough information for any consumer to interpret

it and it can be shifted with data assets out of the scope of
DAES, e.g., without using references to data agreements.

Our prototype of DAES is based on Jersey — and im-
plementation of JAX-RS for RESTful Web Services — and
JDeveloper. We have tested our prototype with Weblogic 10.3.
In our implementation, we have intensively used URIs to iden-
tify data agreement applications, consumers, data agreement
specifications, data agreement templates, and data agreement
instances. Therefore, consumers can straightforwardly obtain
many types of information by simply using URISs.

V. EXPERIMENTS

In this section, we illustrate examples of how to use our
DAES to support data agreements in the DaaS'°.

A. Publishing and Annotating Data Agreements

Currently, as discussed in II, existing DaaS has not pub-
lished data agreements that support automatic discovery data
assets by using data concern terms. One popular way in
current DaasS is to provide pay-as-you-go APIs in which users
pay the money and get the data. However, the data is not
associated with data agreements. In this example, we consider
that the data returned by pay-as-you-go APIs from DaaS can
be annotated with data agreements. To this end, DaaS can build
data agreements based on its consumer’s subscription models
and store the agreements into DAES. When an API is invoked,
before returning the data to its consumer, DaaS annotates a
metadata about corresponding data agreements into the data.

"Dye to space limit, we provide some supplement materials at
http://www.infosys.tuwien.ac.at/prototype/SOD1/daes

Listing 1 shows an example of agreement-enriched people data
returned from the Infochimps People Search APIs'!.

{"results":[
dataagreement:{

extension: {
agreementReference: {
category:’’ licensing’’,
agreementSchema :’’urn:at:act:tuwien:infosys:
license : twitter’’ ,
content:’’ http://.../DAES/da/references/
retrieve/peoplesearch—license ’’
}
}
}
{"description":"Student: spatial planning, music. Location:
Vienna. Interests: Everything
nerdy.","location":"Vienna,
Austria","time_zone":"Vienna" ,"user_id" :REMOVED, "
utc_offset":"3600","name": "REMOVED" ,"scraped_at"
:1259592694000,"screen_name" : "REMOVED" } s

1}

Listing 1. Metadata about an data agreement instance

To utilize our DAES for describing agreements associated
with data to be provided by DaaS, a similar way can be applied
for metadata about DaaS. For example, in case a DaaS uses
OData'? to specify and publish its data resources using URI
and HTTP-based protocols, data agreements can be annotated
into the service metadata document part of OData.

B. Agreements for Geospatial Data

Let us consider an example of noise emission simulation in
urban environments using geospatial data, which can only be
used in compliance with specific data agreements. Typically,
for such a simulation several different kinds of geospatial data
are retrieved from data sources via Web services that comply
with the Open Geospatial Consortium (OGC'3) standard. Our
example used two types of geospatial data:

1) Vector data from the data supplier via Web-Feature-
Services (WES): Geographical features are user defined
geographic pieces of interest including, for example,
streets, sewer lines and accidents, represented in shape-
file format [9].

2) Terrain elevation data via Web-Coverage-Services
(WCS): 2.5D raster data/ digital elevation models
(DEM) coverages are objects inside a geographical area;
examples of formats supported by a WCS are DTED,
GeoTIFF, or NITF [10].

The two services WCS and WFS can be considered a
domain-specific DaaS providing geospatial data. One of the
main service operations of WCS is getCoverage. To
demonstrate how WCS (or the WFS respectively) can utilize
our DAES, we selected ODRL as a data agreement specifica-
tion for WCS. Let us assume the DaaS service daas-test1l
as a consumer of the data provider WCS. WCS creates
a data agreement license_wcs, in advance, and stored

http://www.infochimps.com/datasets/twitter- people-search
2http://www.odata.org
Bhttp://www.opengeospatial.org

it into DAES. In our test, 1icense_wcs contains data
license agreement terms. It describes three ODRL assets,
ASSET1,ASSET2, ASSET3. ASSET1 and ASSETS3
can be displayed and printed as often as desired, and ASSET?2
can be displayed, but printed only 50 times. By extracting
license_wcs and utilizing information provided by WCS
when storing license_wcs, DAES will store common
information about the data source and the data asset provider.

When a data asset consumer retrieves the data agreement
from DAES, DAES will return all relevant agreement infor-
mation and present to the data asset consumer the agreement
either in complete form (all data is in the agreement) or in
reference form (only metadata is returned). An example of
metadata is given in Listing 2. In this case, the real agreement
content will be stored in DAES and can be retrieved using the
agreement content URI.

C. Data Agreement App for Policy Compliance

Let us consider a mashup service that delivers Twitter posts
is combined with a map service. It is required that the mashup
service must enforce compatibility of data privacy policies
before executing mashups. To this end, DAES can be utilized
to validate policies and to check their compatibility. Let us
consider a simple privacy policy described as a RDF node in
which a privacy policy should be interpreted as follows: the
recipient r can access the target resource dr for a purpose p
in the scope of s provided that the conditions cond are met
and the data rights dr will be respected; the mashup service
will apply one of the operations in op on the data item dr
before releasing it. In order to make the compatibility check-
ing available as a DataAgreementApp in our DAES, the
compatibility analysis code is wrapped into a plug-in using a
generic interface for DataAgreementApp, shown in Listing
3. The interface mainly requires the development of functions
setDataAgreements, setDescription, execute
and getResult. Using reflection mechanisms, DAES will
load corresponding DataAgreementApp, pass parameters
to the app using setDataAgreements, before executing
the app and receiving the result. Furthermore, information
about this application will be available for searching, such
as in Listing 4.

public class TwitterCompatibilityApp implements
DataAgreementApplInterface {
/7.
public String getResult() {
return output;

public void setDataAgreements(List dataAgreements ,
boolean reference) {
this . dataAgreements = dataAgreements;
/o

public void execute () {
ModelManager mm = new ModelManager () ;

String agreementReferencel = (String)dataAgreements
-get(0);
String agreementReference2 = (String)dataAgreements

Cget(1);

OntModel ml = mm. loadFromAgreementContent (
agreementReferencel) ;

OntModel m2 = mm. loadFromAgreementContent (
agreementReference2);

boolean validl= mm.validateModel (ml);

<?xml version="1.0" encoding="UTF-8"7>
<nsO:dataAgreement xmlns:nsO="urn:de:icsy:dataagreement"
<identification>
<agreementld>urn:de:icsyagreement:1</agreementld>
<dataAsset>urn:de:icsy:asset:wcs:1</dataAsset>

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<dataSource>http: // gdi—arcl.gridlab.uni—kl.de/arcgisO1/services/Hamburg_ WFS/MapServer/ WCSServer?service=WCS/

<dataAssetProvider>http://gdi—arcl.gridlab.uni—kl.de/arcgisOl/services/Hamburg_WFS/MapServer/WCSServer?service=WC/

dataSource>

dataAssetProvider>
<dataAssetConsumer>daas—testl</dataAssetConsumer>
<creationDate>2011—07—04T20:11:15.029Z</creationDate>

<dataAgreementExchangeService> http://sod.infosys.tuwien.ac.at:7101/services/jersey /DAES</

dataAgreementExchangeService>
<agreementStatus>AGREED</agreementStatus>
</identification>
<extension>

<agreementReference agreementSchema="urn:de:icsy:license:wcs"

category="licensing">

<content>http://sod.infosys.tuwien.ac.at:7101/services/jersey /DAES/da/references/retrieve/license_wcs</content>

</agreementReference>
</extension>
</ns0O:dataAgreement>

Listing 2. Metadata about an data agreement instance

boolean valid2= mm. validateModel (m2);
boolean compatible=mm.isCompatible (ml, m2);
output="<?xml version=\"1.0\" encoding=\"UTF-8\"

?2>\n" +
/7.
public void setDescription(DataAgreementApp description
) A
Y7
Listing 3. Example of writing a DataAgreementApp
<dataAgreementApp>
<withPlugin>RDF-Policy —Twitter -Mashup—CompApp</ withPlugin
>
<withCapabilities>
<dataAgreementAppCapability name="compatibility" value=
"true"/>
<dataAgreementAppCapability name="validation" value="
true"/>
<worksWithSpects>

<dataAgreementSpecification>
<contentURI>http: //sod.infosys.tuwien.ac.at:7101/
services/jersey /DAES/daspecs/retrieve/
twitterpolicy</contentURI>
<language>RDK/language>
</dataAgreementSpecification>
</worksWithSpects>
</withCapabilities>
</dataAgreementApp>

Listing 4. Example of DataAgreementApp description

VI. CONCLUSIONS AND FUTURE WORK

There are dynamic interactions among data consumers,
DaaS service providers and data providers in providing and
consuming data assets in data marketplaces in the cloud. In
such interactions, supporting the exchange and management of
data agreements associated with data assets is paramount of
importance. In this paper, we analyze different solutions and
develop a novel service for exchanging data agreements in the
DaaS model. Our service provides fundamental funtionalities
that can be used for further advanced solutions in cloud-based
data marketplaces, such as data agreement enforcement and
negotiation. To our best knowledge this is the first work that
aims at proposing a service for exchanging data agreements
in the DaaS model.

In our future work, we will enhance our prototype and
integrate different data agreement applications, in particular,
for agreement evaluation and composition. Furthermore, we
consider to integrate our service into data markets.

ACKNOWLEDGMENT

This work is partially supported by the Vienna Science and
Technology Fund (WWTF), project ICT08-032.

REFERENCES

[1] H. L. Truong and S. Dustdar, “On analyzing and specifying concerns for
data as a service,” in APSCC, M. Kirchberg, P. C. K. Hung, B. Carminati,
C.-H. Chi, R. Kanagasabai, E. D. Valle, K.-C. Lan, and L.-J. Chen, Eds.
IEEE, 2009, pp. 87-94.

[2] R. Iannella, “Open digital rights language (odrl) version 1.1,”
World Wide Web Consortium (W3C), 2002. [Online]. Available:
http://www.w3.org/TR/odrl/

[3] Y. Raekow, C. Simmendinger, P. Grabowski, and D. Jenz, “License
management in grid and cloud computing,” in 3PGCIC, F. Xhafa,
L. Barolli, H. Nishino, and M. Aleksy, Eds. IEEE Computer Society,
2010, pp. 9-15.

[4] J. Goetze, T. Fleuren, P. Mueller, and S. Schwantzer, “License4grid:
Adopting drm for licensed content in grid environments,” European
Conference on Web Services, vol. 0, pp. 19-26, 2010.

[5] Q. Liu, R. Safavi-Naini, and N. P. Sheppard, “Digital rights management
for content distribution,” in Proceedings of the Australasian information
security workshop conference on ACSW frontiers 2003 - Volume 21, ser.
ACSW Frontiers '03. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2003, pp. 49-58. [Online]. Available:
http://portal.acm.org/citation.cfm?id=827987.827994

[6] W. Jonker and J.-P. Linnartz, “Digital rights management in consumer
electronics products,” Signal Processing Magazine, IEEE, vol. 21, no. 2,
pp. 82 — 91, mar 2004.

[71 B.-N. Park, J.-W. Kim, and W. Lee, “Precept: a privacy-enhancing
license management protocol for digital rights management,” in Ad-
vanced Information Networking and Applications, 2004. AINA 2004.
18th International Conference on, vol. 1, 2004, pp. 574 — 579 Vol.1.

[8] S. Speiser and R. Studer, “A self-policing policy language,” in Inter-
national Semantic Web Conference (1), ser. Lecture Notes in Computer
Science, P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Z. 0007,
J. Z. Pan, 1. Horrocks, and B. Glimm, Eds., vol. 6496. Springer, 2010,
pp. 730-746.

[91 P. A. Vretanos, “Web feature service implementation specifi-

cation.” Open Geospatial Consortium, 2005. [Online]. Available:

http://portal.opengeospatial.org/files/?artifact_id=8339

A. Whiteside and J. Evans, “Web coverage service (wcs) implementation

specification.” Open Geospatial Consortium, 2006. [Online]. Available:

https://portal.opengeospatial.org/files/?artifact_id=18153

[10]

