Using Context to Enable Semantic Mediation
in Web Service Communities

Michael Mrissa and
Philippe Thiran
PReCISE Research Center
University of Namur
Namur, Belgium
mmrissa@fundp.ac.be
pthiran@fundp.ac.be

ABSTRACT

The use of communities provides a scalable solution for gath-
ering and managing functionally-equivalent Web services. In
order to ensure single access to the community, a commu-
nity uses a common interface that acts as a proxy and se-
lects other Web services in the community. However, Web
services adopt different semantics for representing the data
they receive and send. These semantics must be adapted to
conforming to the community semantics. In this paper, we
present a solution to this problem. Our solution is based on
the use of context in order to explicitly describe semantic
discrepancies within a community. We rely on a semantic
annotation of WSDL descriptions to describe the seman-
tics attached to Web services, and we provide mediation
mechanisms at the community level to handle semantic het-
erogeneities between Web services and the community. We
validate our solution through implementation and experi-
mentation over a test community and show the limitations
of our approach.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability

General Terms

Design, Languages, Standardization

Keywords

Web services, semantics, context, mediation, community

1. INTRODUCTION

Web services are remotely accessible software components
providing a specific functionality. They rely on XML-based
protocols and languages for supporting message exchange
(SOAP [6]), service description (WSDL [8]) and discovery
(UDDI [21]). The main advantage of Web services is their
capacity of being composed. A composition consists in com-
bining several Web services into the same business process,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSSSIA 2008, April 22, Beijing, China.

Copyright 2008 ACM ISBN 978-1-60558-107-1/08/04... $5.00.

Chirine Ghedira and
Djamal Benslimane
LIRIS laboratory
Lyon 1 University
Lyon, France
cghedira@liris.cnrs.fr
dbenslim@liris.cnrs.fr

Zakaria Maamar
College of Information
Technology
Zayed University
Dubai, U. A. E.

zakaria.maamarQzu.ac.ae

in order to address complex user’s needs that a single Web
services could not satisfy.

The common practice is to select Web services depending
on their characteristics, such as availability, price, efficiency,
etc. Gathering Web services into communities facilitates the
selection process by enabling a centralized access to several
functionally-equivalent Web services via a unique endpoint.
Several research works propose to use communities for easing
the management and access to Web services [2, 3, 11, 12, 17,
20].

However, several heterogeneities between Web services and
the community hamper straightforward integration. At the
semantic level, discrepancies between the data representa-
tions of Web services and the data representation of the
community must be resolved in order to allow transparent
invocation of services via the community.

In this paper, we address this problem by proposing a se-
mantic mediation mechanism for Web service communities.
This mechanism relies on a context-based model for data
representation and WSDL annotation proposed in previous
works [14]. It has for purpose to solve semantic discrepan-
cies and enable seamless invocation of Web services in the
community.

This paper is organized as follows: section 2 introduces
the notion of community for gathering Web services and
the context-based model and WSDL annotation we rely on
for describing data semantics. Section 3 discusses how the
deployment of a semantic mediation module helps solving
semantic inconsistencies of data between Web services and
communities. Further details on the functioning of the me-
diation module and how it takes advantage of our context-
based model are given in this section. Section 4 presents
related work on semantic mediation in communities, and
section 5 discusses the limitations of our work and presents
some insights for future work.

2. GENERAL ARCHITECTURE

2.1 Communities of Web services

A community is typically a group of people living together
or united by shared interests, cultural, religious or political
reasons. In the domain of Web services, communities help
gather Web services that provide a common functionality,
thus simplifying the access to several Web services through
a unique communication endpoint, that is the access point
to the community.

In previous work, we proposed an approach that sup-
ports the concepts, architecture, operation and deployment
of Web service communities [17]. The notion of community
serves as a intermediary layer to bind to Web services. A
community gathers several slave Web services that provide
the same functionality. The community is accessed via a
unique master Web service. Users bind to the master Web
service that transparently calls a slave in the community.
Our previous work details the management tasks a master
Web service is responsible for. Such tasks include register-
ing new Web services into the community, tracking bad Web
services, removing ineffective Web services from the commu-
nity, and so on.

A master Web service represents the community and han-
dles relationships with slave Web services using a specific
protocol. In our previous work we rely on a slightly extended
version of the Contract Net protocol (CNProtocol) [19], as
illustrated in Fig. 1:

1. The master Web services sends a call for bid to the
slave Web services of the community.

2. Slave Web services assess their current status and avail-
ability to fulfil the resquest of the master Web service,
and interested Web service reply to the call.

3. The master Web service examines the received pro-
posals and chooses the best Web services according to
its preferences (QoS, availability, cost, fairness...). It
notifies the winner slave Web service.

4. Slave Web service that answered the call for bid but

were not selected are notified too.
Slave
A~ Web service
Slave
Web service

Figure 1: Contract-Net protocol interactions

Chronology

1. Service request; 2. Call for bid; 3. Expression of interest
4. Contract awarded and peer notification
5. Result submission 6. Service response

In this paper, we provide a context-based semantic medi-
ation architecture for such communities. Indeed, the appli-
cability of our mediation proposition goes beyond the scope
of this paper, however we specifically focus here on its de-
ployment with communities as presented in [17]. Semantic
mediation is performed between the community master and
slave Web services. Our semantic mediation architecture
relies on a context-based data representation and context
annotation to WSDL.

2.2 Context representation

The notion of context for describing the semantics of data
that Web services exchange has been introduced in previous
work [14]. Context involves pushing data up to the level of
semantic objects. A semantic object is a data object with an
explicit semantics described through its context. A semantic
object S is a tuple S = (c,t,v,C) that holds a concept ¢
described in a domain ontology, a type t that is the XML

Schema type of the data, a value v that is the data itself and
a context C' that is a set of semantic objects called modifiers.

Modifiers are semantic objects that participate in a con-
text. Therefore, context is seen as a tree of modifiers where
the leaves are modifiers with a null context. Modifiers can
be of type static or dynamic. The main characteristic of dy-
namic modifiers is their capacity to have their value inferred
from the values of static modifiers. For instance, as shown in
Fig. 2, if a price semantic object is attached to the country
France and to the date 15/05/2005, then it can be inferred
that the currency modifier, which describes the currency of
this price, has FEuro as a value, making currency a dynamic
modifier. Static modifiers have to be made explicit in order
to describe the meaning of the semantic object.

OWL concept
S =

Context\

VAT included = true

‘ Scale factor = 1 |

‘ Date = 15/05/2005 | ‘ Country = FR |

_

Figure 2: Description of the price semantic object

2.3 Domain and context ontologies

A major characteristic that comes with our context-based
model is the attachment of context ontologies to concepts
of domain ontologies. The use of context comes from a sim-
ple assumption: we noticed the difficulty for Web services
to adhere to several communities. In effect, each commu-
nity follows a specific ontology that is not always compliant
with other communities’ ontologies, and Web services al-
ready follow, either implicitly or explicitly, their providers’
local semantics.

Therefore, the adhesion of a Web service to a new com-
munity requires either a hard-coded change in the service
implementation or the design of a wrapper that acts on be-
half of the original Web service, in order to comply with the
community’s ontology. Such tedious requirement applies to
each new community a Web service wishes to adhere to.
Our context-based model has for objective to ease the task
of Web service providers when adhering to new communities,
by reducing the domain ontology to the minimum, and pro-
viding additional context ontologies to handle the different
local semantics of service providers.

We deem appropriate to limit the application of domain
ontologies to the concepts and relationships that can be de-
vised with a top-down approach. Experts in the knowledge
domain should specify domain ontologies and limit to the
minimum the further description of domain concepts. Thus,
domain ontologies should be the most similar and the burden
when adhering to a community should be limited. An ideal

situation is the design of a unique domain ontology that all
the communities could adopt, although such a situation is
not likely to reach in an open world like the Internet.

However, the semantic heterogeneities between providers
and communities still need to be handled. This is where
context ontologies come into play. A context ontology is
attached to each concept of the domain ontology. Context
ontologies have for purpose to describe all the different prop-
erties of domain concepts that are not described in the do-
main ontology. In order to populate the context ontology,
a bottom-up approach is adopted. The contexts of domain
concepts are updated by service providers when they adhere
to the community, as well as by the community maintainer.
Service providers should make explicit the semantics they
adopt via the context ontology. As well, service providers
and the community maintainer should describe the links be-
tween the different context representations that populate
context ontologies.

Separation of concerns has proven to be an efficient way to
solve complex problems in the field of software engineering,
and the separation we propose between domain and context
ontologies follows such well-established practice in order to
facilitate semantic interoperability between Web services.

2.4 Context annotation to WSDL

Propelling input and output data of Web services (de-
scribed in the WSDL documents) to the level of semantic
objects requires additional information. In WSDL docu-
ments, <message> elements describe data exchanged for an
operation. Each message consists of one or more <part> el-
ements. We also refer to <part> elements as “parameters”
in the rest of this paper. Each parameter has a <name> and
a <type> attribute, and allows additional attributes.

In [15], we developed an annotation that enriches input
and output parameters contained in WSDL documents with
a concept from a domain ontology and static modifiers from
the context ontology attached to the concept. Our annota-
tion takes advantage of the extension proposed in the WSDL
specification [8], so that annotated WSDL documents op-
erate seamlessly with both classical and annotation-aware
clients. <part> elements are annotated with a context at-
tribute that describes the names and values of static modi-
fiers using a list of qualified names. The first qualified name
of the list specifies the domain ontology concept of the se-
mantic object (¢). Additional elements refer to context on-
tology concept instances to describe the names and values
of static modifiers. These concept instances are OWL indi-
viduals, thus they allow specifying the name and value of
context attributes at the same time.

With the help of such annotation, a value v and its data
type t described in the WSDL document are enriched with
the concept ¢ and the necessary modifiers to define the con-
text C, thus forming a semantic object (c,v,t,C). To keep
the paper self-contained, we overview a simplified structure
of the annotated WSDL document in Listing 1.

A context C' is populated at runtime, using logical rules.
Logical rules infer the values of dynamic modifiers from the
information provided by static modifiers of the WSDL anno-
tation. Using rules offers several advantages: rules are easily
modifiable, making this solution more adaptable to changes
in the semantics. Often-changing values of dynamic modi-
fiers could not be statically stored, so using rules simplifies
the annotation to WSDL. Furthermore, rules separate ap-

plication logic from the rest of the system, so updating rules
does not require rewriting application code. In this paper,
we rely on our annotation and rule-based mechanisms in or-
der to provide the semantic information required to perform
semantic mediation within a community.

<?xml version=°‘1.0"" encoding=*‘‘UTF-8’’7>
<wsdl:definitions ...>

<wsdl:message name="‘‘checkPriceReq’ >

</wsdl:message>

</wsdl:definitions>

P P

<wsdl:part name=‘‘price type=‘‘xsd:double
ctxt:context=‘‘dom:Price ctxl:ScaleFactorOne
ctxl:dateValue ctx1:VATIncluded ctxl:France’’/>

Listing 1: Annotated WSDL Snippet

3. SEMANTIC MEDIATION FOR WEB SER-
VICE COMMUNITIES

Our mediation architecture for Web service communities
is built on a master Web service that contains a mediation
module. This mediation module enables the master Web
service to handle incoming requests from outside the com-
munity.

Thanks to the mediation module, the master Web service
can act as a mediator. Upon reception of a user’s request,
it uses the mediation module to convert the message into
the slave Web service’s semantics. Upon reception of an
answer from a slave Web service, the master Web service
uses the mediation module again to convert the message into
the semantics of the community before sending it back to the
user. Our master Web service is also responsible for other
tasks, such as selecting a slave Web service upon reception of
a request or managing the community, as described before.

3.1 Accessing the community

Typically, a user that wishes to interact with a community
for fulfilling his/her goals discovers and selects the WSDL
file of the community via a UDDI registry. Then, the client
program uses this WSDL file to build a query and send it to
the community endpoint, i.e. the master Web service. The
latter has for purpose to handle the interactions with the
client in order to hide the community complexity. Then,
a community-based architecture is completely transparent
from the user’s point of view.

However, the master Web service does not implement the
community functionality itself. Its role is to select one of the
slave Web services that belong to the community according
to the user’s preferences, and to forward the client’s request
to this slave Web service. Then, it must forward back the
answer from the slave Web service to the client. We detail
the functioning of the master Web service hereafter.

3.2 Details of context-based mediation

When it comes to the mediation concern, our master Web
service behaves as a proxy for the community. It handles and
transfers incoming requests from users and outgoing answers
from slave Web services. On reception of an incoming re-
quest, it uses the mediation module to perform the following
actions in order to solve semantic heterogeneities using our
context-based approach. The mediation module contains
several components:

e an interface to communicate with the master Web ser-
vice,

e a core component called mediator that orchestrates
the different steps of the mediation process described
below,

e a component called WS D Leontextreader to read WSDL
annotations,

e repositories for domain and context ontologies for the
community,

e a rule engine and a knowledge repository to store rules
for data conversion and context building.

All these components participate to the semantic media-

tion process in the following way, as illustrated in Fig. 3:

1. Reading WSDL annotation

(a) It selects a slave service and fetches its WSDL
description.

(b) Then, it parses the input and output parameters
of the selected WSDL operation of this slave Web
service.

(c) For each parameter, it extracts the domain con-
cept and static modifiers contained in the WSDL
annotation. We assume our semantic mediation
module is configured for a specific community and
already has in-memory representations of the in-
put/output parameters of the community as se-
mantic objects, so there is no need to fetch the
WSDL file proposed by the community.

2. Identifying domain vocabulary

(a) It communicates with the domain ontology to iden-
tify the domain concepts contained in the anno-
tation.

(b) If the terms are not found, an exception is raised,
otherwise the next step is confirmed.

3. Identifying context

(a) It communicates with the context ontology to iden-
tify the modifiers contained in the annotation.

(b) If the terms are not found, an exception is raised,
otherwise the next step is confirmed.

4. Building semantic objects

(a) Using the information contained in the WSDL an-
notation, our mediation module converts the an-
notated WSDL parameters into semantic objects.

(b) It interacts with a rule engine in order to infer the
values of dynamic modifiers available in the con-
text. Sometimes not all dynamic modifiers can
be populated. In such case, data semantic con-
version is still possible over a limited context.

5. Performing data conversion

(a) At this stage, our mediation module possesses two
in-memory semantic objects that have different
contexts, and it needs to convert data from the
context of the community to the context of the
slave Web service. To do so, it interacts with a
knowledge repository that stores conversion rules
and enables data conversion from the community
semantics to the slave Web service’s semantics.

(b) If the conversion is not possible, an exception is
raised, otherwise data is forwarded to the slave
Web service.

On reception of outcoming answer, the task of our medi-
ation module is reversed:

1. It reads the WSDL description of the slave service it
interacts with, identifies the domain and context in-
formation contained in the annotation, and builds se-
mantic objects.

2. It interacts with the rule engine that converts data
from the slave Web service’s semantics back to the
community semantics.

3. It raises an exception if the conversion does not suc-
ceeds or forwards the converted data back to the client
of the community.

<
8 I

User request z

Web service
community

WSDL
+etxt
" [l
7

4 \

Mediation Module Interface I

1 4/5

Figure 3: Overview of the mediation process

3.3 Implementation & case study

A proof-of-concept prototype has been developed under
the JavaTJDK 1.5 platform and Netbeans 6™ development
environment. Our master Web service currently handles the
semantic mediation and forwarding of user calls and answers
from slave Web services. The mediation module has been
implemented using the Jena 2 API for querying domain and
context ontologies. Thanks to the Jena API, in-memory
representations of ontologies are built, and queries on these
representations allow identifying the terms used in the an-
notation. Concerning the mediation process, a Drools rule
engine is used to store conversion rules and rules that help
infer the values of dynamic modifiers of context.

We illustrated the developpement of semantic mediation
with the price example presented in section 2.2. We consider
the following case study: a European community provides

Context of slave Web service

Context of the community

oy = rnce 1|
_

Figure 4: Converting between contexts

a FlightBooking functionality. As input data, users send in-
formation about the trip: departure city and country, arrival
city and country, outward journey date and return date. In
return, they receive a trip proposal that includes the price
of the trip corresponding to the demand.

The community has adopted the following context for data
representation: dates are in the dd/mm/yyyy format where
dd is the day, mm is the month and yyyy is the year of the
date, and city and country are sent as a city; country string,
and prices are described in Euro, VAT included, and with a
scale factor of 1.

However, an English Web service joins the community.
This Web service was developed before joining the com-
munity, therefore it adopted the local semantic of use in
its country: dates are under the mm/dd/yyyy format and
prices are in Pounds, VAT included and with a scale factor
of 1.

On reception of the user request, the master Web ser-
vice selects our English slave Web service. It downloads its
WSDL file that contains the annotation. When comparing
the input/output parameters of the community and of the
slave Web service, the mediation module identifies the Date
and Price concepts in the domain ontology, and the corre-
sponding names and values of static modifiers as OWL indi-
viduals: U Kdate format from the context ontology attached
to the Date concept, and U K, dateV alue and V AT Included
from the context ontology attached to the Price concept.
These ontologies are referenced in the WSDL namespace.

Then, it sends the static modifiers to the rule engine that
returns additional information: dateformat modifier of the
Date concept gets the mm/dd/yyyy value, and for the Price
concept, the currency modifier gets the Pound value. Fi-
nally, the mediation module is able to convert data from
one semantic context to another using again the rule engine
and conversion rules stored in the knowledge repository, as
shown in Fig. 4.

4. RELATED WORK

To the best of our knowledge, there are no existing works
on semantic mediation within the context of Web service
communities. However, our work is inspired by several pa-
pers on semantic mediation for Web services and communi-
ties of Web services, that we detail hereafter.

4.1 Semantics and mediation for Web services

Semantic description and mediation for Web services is
a very active research topic, as prove the many works on
the subject [1, 4, 5, 7, 9, 10, 13, 16]. In the following, we
describe the most important works that inspired us for this
paper.

In [16], Nagarajan et al. classify the different semantic
interoperability concerns that apply to Web services. They
distinguish several aspects that are particularly useful for
the purpose of semantic mediation.

OWL-S [10] is a language for semantic description of Web
services, relying on the OWL language [18], OWL-S enables
explicit semantic description of Web services input an out-
put parameters via references to concepts described in OWL
domain ontologies. With [13], Miller et al. propose an anno-
tation to the standard description language WSDL in order
to facilitate the semantic description of Web services. How-
ever, OWL-S is a full language and does not offer the benefits
of WSDL annotation, and the WSDL-S annotation typically
relies on domain ontologies and does not support additional
context attributes nor the use of context ontologies.

Two important works rely on the WSMO framework for
semantic Web services [1]. With IRS-IIT [7], Cabral and
Domingue propose a WSMO-based architecture to estab-
lish correspondences between service descriptions thanks to
a mediator Web service. With WSMX [9], Haller et al. pro-
pose a similar solution that is a part of the WSMO frame-
work (WSMX is the reference implementation of WSMO).
In these works, the semantics of the terms used are encoded
into the WSMO description files of the services. Semantic
heterogeneities between Web services are solved by reason-
ing on the content of a common domain ontology that has
for purpose to explicitly describe reference vocabulary. The
mediation process is not about converting data but more
about matching the semantic description stored in the on-
tologies.

In [4], Dogac et al. propose an interoperability framework
for the healthcare domain. This framework relies on the no-
tion of archetype to describe data semantics. An archetype
is a formal way to describe domain concepts via constraints
on data. Data instances are constrained instances of a ref-
erence domain model. This work is similar to our context-
based approach in the sense that a common agreement is
made on a domain concept, and the different views of Web
services are represented under the form of constraints over
the instances of these domain concepts. However, the work
of Dogac et al. requires the domain concept to encompass
all the different views of Web services, which is feasible in
the healthcare domain where predefined models are agreed
on, but not in a more general context as presented in this
paper.

In [5], Bowers and Ludéscher propose a semantic medi-
ation framework for scientific workflows. Their work relies
on the notion of semantic type and structural type, defined
on a global ontology shared by all the users. The semantic
type corresponds to the abstract concept that characterizes
data, and the structural type is the schema that describes
data structure. For a single semantic type, the objective
is to adapt the different structural data representations of
Web services. This paper relies on semantic matching before
performing structural-level data mediation. In the present
paper, we propose context-based, semantic-level data medi-
ation for Web services.

4.2 Communities of Web services

Several works gather functionally-similar Web services into
communities that are accessed via a common interface. Be-
natallah et al. propose such a solution with SELF-SERV [2].
In this work, several mediators establish correspondences
between the community interface and Web services that im-
plement the functionality of the community.

Benslimane et al. [3], also group Web service into com-
munities. The community is accessed via an interface im-
plemented as an abstract Web service that describes the
provided functionality in an abstract fashion and a set a
concrete Web services that implement the functionality. A
generic driver called Open Software Connectivity (OSC) han-
dles the interactions between clients and the community.

Building upon this work, Taher et al. [20] address the
problem of Web service substitution in communities. Web
service substitution consists in replacing a disfunctioning or
non-responding Web service with a functionally equivalent
one, in order to find an alternative way to enable a com-
position in case of exception. Substituting a service with
another requires the mediation of communications between
the replacing service and the original client. Mediator Web
services communicate with the concrete Web services that
implement the functionality, each mediator connects to a
specific service.

In Taher et al.’s work, Web service selection is performed
according to a set of QoS criteria (speed, reliability, reputa-
tion, etc.). The community also takes in charge of adminis-
trative tasks such as addition and suppression of services to
and from the community.

Medjahed proposes a community-based architecture for
semantic Web services in [12]. In this work, communities
gather services from the same domain of interest and pub-
lish the functionalities offered by Web services as generic
operations. A community ontology is used as a general tem-
plate for describing semantic Web services and communities.
A major advantage of this work that relates to our proposal
is the peer-to-peer community management solution that
addresses the problems of centralized approaches.

S. CONCLUSION

Most works on communities either impose a unique on-
tology that Web services must bind to, or require users to
adapt to the semantic requirements of each Web service uti-
lized in the community. In this work, we present a com-
promise between these approaches by using a context-based
approach that separates the shared knowledge from the lo-
cal contexts of the Web service providers. We provide the
appropriate mechanisms to handle semantic data discrep-
ancies between Web services and communities and enable
seamless interoperation at the semantic level. Short-term
future work includes studying other aspects related to me-
diation in Web service communities such as transaction level
or security aspects.

However, we noticed from our experimentation that the
weakest part of our solution resides in updating the con-
text ontologies. Indeed, it is required that providers cor-
rectly update the context ontologies, by explicitly describing
their own context representation, but also the relationships
between their context and the contexts of other providers.
Having such knowledge is a hard constraint on providers,
and on a large scale it is an assumption that is difficult to

defend. Therefore, long-term future work includes studying
how to reduce this difficulty by proposing advanced reason-
ing mechanisms that could (semi-)automatically intercon-
nect the different contexts of providers.

6. REFERENCES

[1] S. Arroyo and M. Stollberg. WSMO Primer. WSMO
Deliverable D3.1, DERI Working Draft. Technical
report, WSMO, 2004.
http://www.wsmo.org/2004/d3/43.1/.

[2] B. Benatallah, Q. Z. Sheng, and M. Dumas. The
self-serv environment for web services composition.
IEEE Internet Computing, 7(1):40-48, 2003.

[3] D. Benslimane, Z. Maamar, Y. Taher, M. Lahkim,
M.-C. Fauvet, and M. Mrissa. A multi-layer and
multi-perspective approach to compose web services.
In AINA, pages 31-37. IEEE Computer Society, 2007.

[4] V. Bicer, O. Kilic, A. Dogac, and G. B. Laleci.
Archetype-based semantic interoperability of web
service messages in the health care domain.
International Journal of Semantic Web and
Information Systems (IJSWIS), 1(4):1-23, October
2005.

[5] S. Bowers and B. Ludéscher. An ontology-driven
framework for data transformation in scientific
workflows. In E. Rahm, editor, DILS, volume 2994 of
Lecture Notes in Computer Science, pages 1-16.
Springer, 2004.

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,

N. Mendelsohn, H. F. Nielsen, S. Thatte, and
D. Winer. Simple object access protocol (SOAP) 1.1.
Technical report, The World Wide Web Consortium
(W3C), 2000. http://www.w3.org/TR/S0AP/.

[7] L. Cabral and J. Domingue. Mediation of semantic
web services in irs-iii. In First International Workshop
on Mediation in Semantic Web Services (MEDIATE
2005) held in conjunction with the 3rd International
Conference on Service Oriented Computing (ICSOC
2005), Amsterdam, The Netherlands., December 12th
2005.

[8] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL) 1.1. W3c note, The World Wide Web
Consortium (W3C), March 2001.
http://wuw.w3.org/TR/wsdl.

[9] A. Haller, E. Cimpian, A. Mocan, E. Oren, and
C. Bussler. Wsmx - a semantic service-oriented
architecture. In I. C. Society, editor, ICWS, pages
321-328. IEEE Computer Society, 2005.

[10] D. L. Martin, M. Paolucci, S. A. Mcllraith, M. H.
Burstein, D. V. McDermott, D. L. McGuinness,

B. Parsia, T. R. Payne, M. Sabou, M. Solanki,

N. Srinivasan, and K. P. Sycara. Bringing Semantics
to Web Services: The OWL-S Approach. In

J. Cardoso and A. P. Sheth, editors, SWSWPC,
volume 3387 of Lecture Notes in Computer Science,
pages 26—42. Springer, 2004.

[11] B. Medjahed and Y. Atif. Context-based matching for
web service composition. Distrib. Parallel Databases,
21(1):5-37, 2007.

[12] B. Medjahed and A. Bouguettaya. A dynamic
foundational architecture for semantic web services.

[13]

[14]

[15]

Distributed and Parallel Databases, 17(2):179-206,
2005.

J. Miller, K. Verma, P. Rajasekaran, A. Sheth,

R. Aggarwal, and K. Sivashanmugam. WSDL-S:
Adding Semantics to WSDL - White Paper. Technical
report, Large Scale Distributed Information Systems,
2004. http:
//1lsdis.cs.uga.edu/library/download/wsdl-s.pdf.
M. Mrissa, C. Ghedira, D. Benslimane, and

Z. Maamar. A context model for semantic mediation
in web services composition. In D. W. Embley,

A. Olivé, and S. Ram, editors, ER, volume 4215 of
Lecture Notes in Computer Science, pages 12-25.
Springer, 2006.

M. Mrissa, C. Ghedira, D. Benslimane, and

Z. Maamar. Towards Context-based Mediation for
Semantic Web Services Composition. In Proceedings of
the Eighteenth International Conference on Software
Engineering and Knowledge Engineering
(SEKE’2006), San Francisco, California, July 2006.
M. Nagarajan, K. Verma, A. P. Sheth, J. Miller, and
J. Lathem. Semantic interoperability of web services -
challenges and experiences. In ICWS, pages 373-382.
IEEE Computer Society, 2006.

(17]

(18]

(19]

(20]

(21]

S. Sattanathan, P. Thiran, Z. Maamar, and

D. Benslimane. Engineering communities of web
services. In G. Kotsis, D. Taniar, E. Pardede, and I. K.
Ibrahim, editors, % WAS, volume 229 of books@ocyg.at,
pages 57—66. Austrian Computer Society, 2007.

G. Schreiber and M. Dean. Owl web ontology
language reference. http:
//www.w3.org/TR/2004/REC-owl-ref-20040210/,
February 2004.

R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Trans. Computers, 29(12):1104-1113,
1980.

Y. Taher, D. Benslimane, M.-C. Fauvet, and

7. Maamar. Towards an approach for web services
substitution. In P. Ghodous, R. Dieng-Kuntz, and
G. Loureiro, editors, IDEAS, pages 166—-173. IOS
Press, 2006.

UDDI Specification Technical Commitee. Universal
Description, Discovery, and Integration of Business for
the Web. Technical report, October 2001.
http://www.uddi.org.

