
Context-based Semantic Mediation in Web
Service Communities

Michael Mrissa, Stefan Dietze, Philippe Thiran, Chirine Ghedira, Djamal
Benslimane and Zakaria Maamar

Abstract Communities gather Web services that provide a common functionality,
acting as an intermediate layer between end users and Web services. On the one
hand, they provide a single endpoint that handles user requests and transparently
selects and invokes Web services, thus abstracting the selection task and leveraging
the provided quality of service level. On the other hand, they maximize the visibility
and use rate of Web services. However, data exchanges that take place between Web
services and the community endpoint raise several issues, in particular due to seman-
tic heterogeneities of data. Specific mediation mechanisms are required to adapt
data operated by Web services to those of the community. Hence, mediation facil-
ititates interoperability and reduces the level of difficulty for Web services to join
and interact with communities. In this chapter, we propose a mediation approach
that builds on (1) context-based semantic representation for Web services and the
community; and (2) mediation mechanisms to resolve the semantic heterogeneities
occuring during data exchanges. We validate our solution through some experiments
as part of the WSMO framework over a test community and show the limitations of
our approach.

Keywords Context · Community · Mediation · Semantics · Web services · WSMO

1 Introduction

The service-oriented paradigm is gaining momentum as a way to interconnect
applications across distributed organizations. Especially on the World Wide Web,
the advent of Web services provides a framework to interconnect applications.
Web services are remotely accessible software components providing a specific
functionality. They rely on well-defined Web protocols such as HTTP for trans-
port, which are coupled to some XML-based languages for supporting message

M. Mrissa (B)
PReCISE Research Center, University of Namur, Belgium
e-mail: mmrissa@fundp.ac.be

I. King, R. Baeza-Yates (eds.), Weaving Services and People on the World Wide Web,
DOI 10.1007/978-3-642-00570-1 3, C© Springer-Verlag Berlin Heidelberg 2009

49

50 M. Mrissa et al.

exchange (SOAP [7]), functional service description (WSDL [10]), and discovery
(UDDI [27]). The main advantage of Web services is their capacity of being com-
posed. A composition consists of combining several Web services into the same
business process, in order to address complex user’s needs that a single Web service
could not satisfy.

Due to the increasing number of services available on the Web, the discovery and
selection steps are becoming of major importance. They will later determine the rel-
evancy of a composition for fulfilling a specific goal in a specific situation and also
contribute to its successful achievement. As stated in the work of Al-Masri et al. [1],
the common practice nowadays is to manually search for and select Web services
depending on several Quality of Service (QoS) characteristics such as availability,
price, efficiency, reliability, etc.

Gathering Web services into communities facilitates the discovery and selec-
tion tasks by providing a centralized access to several functionally-equivalent Web
services via a unique endpoint. Community-based frameworks thus enhance Web ser-
vices availability and improve the success rate of compositions. They also improve
the confidence level as they select independent Web services according to a set of
criteria (price, availability, speed, response quality, etc.). Several research works
propose to use communities for easing the management and access to Web
services [3, 4, 15, 16, 23, 26].

However, several heterogeneities between Web services and the community ham-
per straightforward integration. At the semantic level, discrepancies between the
data representations of Web services and the data representation of the community
must be resolved in order to allow transparent invocation of services via the commu-
nity. Indeed, when a user request is sent to the community endpoint, the semantics
of this request is organized according to the community semantics. This request
is forwarded to some Web service of the community. However, each Web service
already has its own semantics chosen at design time, prior to subscribing to the
community. A mediation is required between the semantics of the Web services that
answer the request and those of the community endpoint.

In this chapter, we address the interoperability problems raised by semantic
heterogeneities in Web services communities. Our motivation, and what makes the
originality and main contribution of this chapter, is to demonstrate how context-
based mediation is relevant to the domain of Web service communities, and to
illustrate the feasibility of our proposal via a concrete implementation. To do so, we
develop a mechanism for semantic mediation that relies on a context-based model
for data representation proposed in previous work [19]. We show in the following
how to solve semantic discrepancies and enable seamless invocation of Web services
in communities, and we illustrate our work by implementing our proposal within the
WSMO framework.

This chapter is organized as follows: Sect. 2 introduces the notion of commu-
nity for gathering Web services and summarizes the context-based model we rely
on for describing data semantics. Section 3 discusses how the deployment of a
semantic mediation module helps solve semantic inconsistencies of data between
Web services and communities. Further details on the functioning of the mediation

Context-based Semantic Mediation in Web Service Communities 51

module and how it takes advantage of our context-based model are given in this
section. Moreover, an implementation alternative based on the WSMO framework
is proposed in Sect. 4. Section 5 presents related work on semantic mediation in
communities, and Sect. 6 discusses the limitations of our work and presents some
insights for future work.

2 General Architecture

2.1 Communities of Web Services

A community is typically a group of people living together or united by shared
interests, cultural, religious or political reasons. In the domain of Web services,
communities help gather Web services that provide a common functionality, thus
simplifying the access to Web services via a unique communication endpoint, that
is the access point to the community.

In previous work, we proposed an approach that supports the concepts, archi-
tecture, operation and deployment of Web service communities [23]. The notion
of community serves as a means for binding Web services. A community gathers
several slave Web services that provide the same functionality. The community is
accessed via a unique master Web service. Users bind to the master Web service that
transparently calls a slave in the community. On top of forwarding calls back and
forth between users and slave Web services, the master also manages its community
at a higher level. Our previous work details the management tasks a master Web ser-
vice is responsible for. Such tasks include among other things registering new Web
services into the community, tracking bad Web services, and removing ineffective
Web services from the community.

A master Web service represents the community and handles users’ requests with
slave Web services with the help of a specific protocol. In our previous work we rely
on a slightly extended version of the Contract Net protocol (CNProtocol) [25], as
illustrated in Fig. 1:

Fig. 1 Contract-Net protocol interactions

52 M. Mrissa et al.

1. The master Web service sends a call for bids to the slave Web services of the
community.

2. Slave Web services assess their current status and availability to fulfil the request
of the master Web service, and interested Web service reply to the call.

3. The master Web service examines the received proposals and chooses the best
Web services according to its preferences (QoS, availability, cost, fairness. . .).
Then, it notifies the winner slave Web service.

4. Slave Web service that answered the call for bids but were not selected are
notified too.

In this chapter, we provide a context-based semantic mediation architecture
for Web service communities. Indeed, the applicability of our mediation proposi-
tion goes beyond this domain. However, we specifically focus here on its deploy-
ment with communities as defined in [23], where semantic mediation is performed
between the community master and slave Web services.

2.2 Context Representation

The notion of context has for a while been a hot topic in the database field [12],
and has been specifically adapted in previous work to the description and mediation
of data semantics for Web services [19]. In this specific work [19], context-based
representation of data semantics is particularly relevant and specifically designed to
data exchange between Web services engaged in a composition. It distinguishes two
concerns at different levels, where existing knowledge representation approaches
see one concern only.

At the conceptual level, context-based approach encompasses matching the dif-
ferent domain concepts used by the actors involved in the data exchange. While
semantic differences (such as different granularities of the domain concepts) may
hamper straightforward matching between world representations, we assume that
correspondences can be established between the domain concepts used.

At the contextual level, context-based approach encompasses the description and
mediation of the different data interpretations attached to the domain concepts,
which are intrinsically related to the (heterogeneous) local assumptions of the actors
involved. At this level, more complex conversion rules are required to enable accu-
rate data conversion and interpretation.

Thus, while typical approaches on knowledge representation visualize domain
concepts with attached properties, and perform data mediation in an all-in-one fash-
ion, context-based approach distinguishes two concerns and simplifies the mediation
steps by dividing the complex mediation task into two distinct subtasks. The first
subtask is to interconnect domain concepts at the semantic level, and the second
subtask is to mediate data between different contexts using conversion rules.

Context description involves pushing data up to the level of semantic objects.
A semantic object is a data object with an explicit semantics described through
its context. A semantic object S is a tuple S = (c, t, v, C) that holds a concept c

Context-based Semantic Mediation in Web Service Communities 53

described in a domain ontology, a type t that is the XML Schema type of the data, a
value v that is the data itself and a context C that is a set of semantic objects called
modifiers.

Modifiers are semantic objects that participate in a context. Therefore, context is
seen as a tree of modifiers where the leaves are modifiers with a null context. Modi-
fiers can be of type static or dynamic. The main characteristic of dynamic modifiers
is their capacity to have their value inferred from the values of static modifiers. For
instance, as shown in Fig. 2, if a price semantic object is attached to the country
France and to the date May 15, 2005, then it can be inferred that the currency
modifier, which describes the currency of this price, has Euro as a value, making
currency a dynamic modifier. Static modifiers have to be made explicit in order to
describe the meaning of the semantic object.

Fig. 2 Description of the price semantic object

2.3 Domain and Context Ontologies

The use of context comes from a simple assumption: Web services adhere to com-
munities with difficulty. Several reasons such as strategic and economic aspects are
involved, but are out of the scope of this chapter. Another reason is semantic incom-
patibility. In fact, each community follows a specific knowledge representation that
is not always compliant with other communities’ knowledge representations, and
Web services already have, either implicitly or explicitly, their providers’ local
semantics.

Therefore, the adhesion of a Web service to a new community requires either a
hard-coded change in the service implementation or the design of a wrapper that

54 M. Mrissa et al.

acts on behalf of the original Web service, in order to comply with the community’s
knowledge representation. Such tedious requirement applies to each new commu-
nity a Web service wishes to adhere to. Our context-based model has for objective to
ease the task of Web service providers when they decide to adhere to new communi-
ties, by scaling domain ontologies down to the minimum, and providing additional
context ontologies to handle the different local semantics of service providers. To
do so, our context-based model makes the distinction between domain knowledge
and context knowledge.

Domain knowledge includes main concepts that are assumed to be (or should
be) common to all parties. For instance, the concept of price might be part of a
domain knowledge and included in domain ontologies. We deem appropriate to limit
the application of domain ontologies to the concepts and relationships that can be
devised in a top-down way. Experts in the knowledge domain should specify domain
ontologies and limit to the minimum the extra description of domain concepts. Thus,
domain ontologies should be the most similar and the burden when adhering to a
community should be limited. An ideal situation is the design of a unique domain
ontology that all communities could adopt, although such a situation is not likely to
happen in an open world like the Web.

Context knowledge includes all the knowledge (i.e. properties, features, etc.)
attached to the concept of price, which is useful for a correct interpretation when
one needs to understand an instance of price. This is where context ontologies come
into play. A context ontology is attached to each concept of the domain ontology.
Context ontologies describe all the different properties of domain concepts that are
not described in the domain ontology. In order to populate the context ontology, a
bottom-up approach is adopted. The contexts of domain concepts are updated by
service providers when they adhere to the community, as well as by the community
maintainer. Service providers should make their semantics explicit via the context
ontology. In addition Web service providers and the community maintainer should
describe the links between the different context representations that populate context
ontologies.

Separation of concerns has proven to be an efficient way to solve complex prob-
lems in the field of software engineering, and the separation of concerns we propose
between domain and context ontologies follows such a well-established practice in
order to facilitate semantic interoperability between Web services.

2.4 Context Annotation of WSDL

Propelling input and output data of Web services (described in the WSDL docu-
ments) to the level of semantic objects requires additional information. In WSDL
documents, <message> elements describe data exchanged for an operation. Each
message consists of one or more <part> elements. We also refer to <part>
elements as “parameters” in the rest of this chapter. Each parameter has a <name>
and a <type> attribute, and allows additional attributes.

In [20], we proposed a WSDL annotation that enriches input and output param-
eters contained in WSDL documents with a concept from a domain ontology and

Context-based Semantic Mediation in Web Service Communities 55

static modifiers from the context ontology attached to the concept. Our annotation
takes advantage of the extension proposed in the WSDL specification [10], so that
annotated WSDL documents operate seamlessly with both classical and annotation-
aware clients. <part> elements are annotated with a context attribute that
describes the names and values of static modifiers using a list of qualified names.
The first qualified name of the list specifies the domain ontology concept of the
semantic object (c). Additional elements refer to context ontology concept instances
to describe the names and values of static modifiers. These concept instances
are OWL individuals, thus they allow specifying the name and value of context
attributes at the same time.

With the help of such annotation, a value v and its data type t described in the
WSDL document are enriched with the concept c and the necessary modifiers to
define the context C , thus forming a semantic object (c, v, t, C). To keep this chapter
self-contained, we provide a simplified structure of the annotated WSDL document
in Listing 1.

<? xml version =“1. 0” encoding =“UTF–8”?>
<wsdl : definitions . . .>
. . .
<wsdl:message name=“checkPriceReq”>

<wsdl:part name=“price” type=“xsd:double”
ctxt:context=“dom:Price ctx1:ScaleFactorOne
ctx1:dateValue ctx1:VATIncluded ctx1: France”/>

</wsdl:message>
. . .
</wsdl:definitions>

Listing 1 Annotated WSDL Snippet

A context C is populated at runtime, using logical rules. Logical rules infer the
values of dynamic modifiers from the information provided by static modifiers of
the WSDL annotation. Using rules offers several advantages: rules are easily mod-
ifiable, making this solution more adaptable to changes in the semantics. Often-
changing values of dynamic modifiers could not be statically stored, so using rules
simplifies the annotation of WSDL. Furthermore, rules separate application logic
from the rest of the system, so updating rules does not require rewriting application
code. In this chapter, we rely on our annotation and rule-based mechanisms in order
to provide the semantic information required to perform semantic mediation within
a community.

Our annotation of WSDL is a way to add semantics to the standard descrip-
tion language for Web services. While in our implementation (Sect. 4) we use
another language (OCML) for describing Web services, our WSDL annotation
allows existing Web services to comply with the requirements of context-based
representation with few simple changes in the original WSDL file of the Web
service.

56 M. Mrissa et al.

3 Semantic Mediation for Web Service Communities

Our mediation architecture for Web service communities is built on a master Web
service that contains a mediation module. This mediation module enables the master
Web service to handle incoming requests from outside the community.

Thanks to the mediation module, the master Web service can act as a mediator.
Upon reception of a user’s request, it uses the mediation module to convert the
message into the slave Web service’s semantics. Upon reception of an answer from
a slave Web service, the master Web service uses the mediation module again to
convert the message into the semantics of the community before sending it back to
the user. Our master Web service is also responsible for other tasks, such as selecting
a slave Web service upon reception of a request or managing the community, as
described earlier.

3.1 Accessing the Community

Typically, a user that wishes to interact with a community for fulfilling his/her goals
discovers and selects the WSDL file of the community via a UDDI registry. Then,
the client program uses this WSDL file to build a query and send it to the commu-
nity endpoint, i.e. the master Web service. The latter handles the interactions with
the client in order to hide the community complexity. Then, a community-based
architecture is completely transparent from the user’s point of view.

However, the master Web service does not implement the community function-
ality itself. Its role is to select one of the slave Web services that belong to the
community according to the user’s preferences, and to forward the client’s request
to this slave Web service. Then, it must forward back the answer from the slave Web
service to the client. We detail the functioning of the master Web service hereafter.

3.2 Details on Context-Based Mediation

When it comes to the mediation aspect, our master Web service behaves as a proxy
for the community. It handles and transfers incoming requests from users and outgo-
ing answers from slave Web services. On reception of an incoming request, it uses
the mediation module to perform the following actions in order to solve semantic
heterogeneities using our context-based approach. The mediation module contains
several components:

• an interface to communicate with the master Web service,
• a core component called mediator that orchestrates the different steps of the

mediation process described below,
• a component called WSDL context reader to read WSDL annotations,
• repositories for domain and context ontologies for the community,
• a rule engine and a knowledge repository to store rules for data conversion and

context building.

Context-based Semantic Mediation in Web Service Communities 57

Fig. 3 Overview of the mediation process

All these components participate in the semantic mediation process in the fol-
lowing way, as illustrated in Fig. 3:

1. Reading WSDL annotation

a. It selects a slave Web service and fetches its WSDL description.
b. Then, it parses the input and output parameters of the selected WSDL opera-

tion of this slave Web service.
c. For each parameter, it extracts the domain concept and static modifiers con-

tained in the WSDL annotation. We assume our semantic mediation module
is configured for a specific community and already has in-memory represen-
tations of the input/output parameters of the community as semantic objects,
so there is no need to fetch the WSDL file proposed by the community.

2. Identifying domain vocabulary

a. It communicates with the domain ontology to identify the domain concepts
contained in the annotation.

b. If the terms are not found, an exception is raised, otherwise the next step is
confirmed.

3. Identifying context

a. It communicates with the context ontology to identify the modifiers contained
in the annotation.

58 M. Mrissa et al.

b. If the terms are not found, an exception is raised, otherwise the next step is
confirmed.

4. Building semantic objects

a. Using the information contained in the WSDL annotation, our mediation
module converts the annotated WSDL parameters into semantic objects.

b. It interacts with a rule engine in order to infer the values of dynamic modifiers
available in the context. Sometimes not all dynamic modifiers can be popu-
lated. In such a case, data semantic conversion is still possible over a limited
context.

5. Performing data conversion

a. At this stage, our mediation module possesses two in-memory semantic
objects that have different contexts, and needs now to convert data from the
context of the community to the context of the slave Web service. To do so, it
interacts with a knowledge repository that stores conversion rules and enables
data conversion from the community semantics to the slave Web service’s
semantics.

b. If the conversion is not possible, an exception is raised, otherwise data is
forwarded to the slave Web service.

On reception of an outgoing answer, the task of our mediation module is reversed:

1. It reads the WSDL description of the slave service it interacts with, identifies the
domain and context information contained in the annotation, and builds semantic
objects.

2. It interacts with the rule engine that converts data from the slave Web service’s
semantics back to the community semantics.

3. It raises an exception if the conversion does not succeed or forwards the con-
verted data back to the client of the community.

4 Interoperability with Semantic Web Services Frameworks:
The Case of WSMO

In order to demonstrate the applicability of our approach, we consider the imple-
mentation of the conceptual approach proposed in this chapter through established
Semantic Web Service (SWS) frameworks. Particularly, we discuss in the follow-
ing its implementation through the established Web Service Modelling Ontology
(WSMO) framework.

4.1 Semantic Web Services and WSMO

SWS frameworks aim at the automatic discovery, orchestration and invocation of
distributed services for a given user goal on the basis of comprehensive semantic

Context-based Semantic Mediation in Web Service Communities 59

descriptions. SWS are supported through representation standards such as WSMO
[2] and OWL-S [14]. In this chapter, we refer to the Web Service Modelling Ontol-
ogy (WSMO), a well established SWS reference ontology and framework. The con-
ceptual model of WSMO defines the following four main entities:

• Domain Ontologies provide the foundation for describing domains semantically.
They are used by the three other WSMO elements. WSMO domain ontologies
not only support Web services related knowledge representation but semantic
knowledge representation in general.

• Goals define the tasks that a service requester expects a Web service to fulfill. In
this sense they express the requester’s intent.

• Web service descriptions represent the functional behavior of an existing deployed
Web service. The description also outlines how Web services communicate
(choreography) and how they are composed (orchestration).

• Mediators handle data and process interoperability issues that arise when han-
dling heterogeneous systems.

WSMO is currently supported through several software tools and runtime envi-
ronments, such as the Internet Reasoning Service IRS-III [9] and WSMX [28]. IRS-
III is a Semantic Execution Environment (SEE) that also provides a development
and broker environment for SWS following WSMO. IRS-III mediates between a
service requester and one or more service providers. Based on a client request cap-
turing a desired outcome, the goal, IRS-III proceeds through the following steps
utilizing the set of SWS capability descriptions:

1. Discovery of potentially relevant Web services.
2. Selection of a set of Web services which best fit the incoming request.
3. Invocation of selected Web services whilst adhering to any data, control flow and

Web service invocation constraints defined in the SWS capabilities.
4. Mediation of mismatches at the data or process level.

In particular, IRS-III incorporates and extends WSMO as core epistemological
framework of the IRS-III service ontology which provides semantic links between
the knowledge level components describing the capabilities of a service and the
restrictions applied to its use. IRS-III utilizes OCML [18] as knowledge modelling
language to represent WSMO-based service models.

4.2 Implementing Context-Based Mediation Through WSMO
and IRS-III

Particularly with respect to mediation, the use of WSMO and IRS-III provides
several advantages, since mediation is an implicit notion of WSMO with explicit
support through dedicated mediators [8]. Mediators are often classified as OO-,
GG-, WG- and WW-mediators [22]. Whereas OO-mediators resolve mismatches
between distinct WSMO ontologies, GG-mediators refine a WSMO goal. WG-
mediators mediate between heterogeneous goals and SWS specifications whereas

60 M. Mrissa et al.

WW mediators resolve heterogeneities between distinct Web service implementa-
tions. Whereas OO-, GG-, and WG-mediators primarily support SWS discovery,
WW mediators are related to orchestration and invocation. However, mediation
usually involves a set of multiple different mediators. For instance, a WG-mediator
usually requires OO-mediation as well in order to align distinct vocabulary for-
malizations. Therefore, we use the generic term mediator throughout the remaining
sections instead of explicitly separating between different sorts of mediators.

The conceptual model of WSMO is well-suited to support the conceptual
approach proposed in this chapter, since the representation of distinct service
provider perspectives, i.e., their contexts, is an implicit element of WSMO. More-
over, distinct contexts are addressed through the notion of mediation, which aims
at resolving heterogeneities which will definitely occur between distinctive Web
service implementations and representations. Particularly, regarding the conceptual
approach proposed in this chapter, we propose an implementation of the mediation
scenario (Sect. 3) utilizing WSMO and IRS-III as follows:

1. Representation of slave Web services as SWS following WSMO.
2. Representation of context ontologies utilized by each provider as WSMO ontolo-

gies associated with each SWS.
3. Aligning the WSMO ontologies to a common upper-level domain ontology.
4. Representation of a common WSMO goal expressing the community request.
5. Description of WSMO mediators linking WSMO SWS to the WSMO goal by

defining appropriate mediation rules.

Given these semantic representations, IRS-III is able to select appropriate ser-
vices, which are orchestrated and invoked, whereas the mediator resolves hetero-
geneities at runtime. In that, by referring to the description of the functionalities
of the master Web service (Sect. 3.2), it can be stated, that the built-in reasoning
of IRS-III facilitates steps 1–4 as proposed in Sect. 3.2, while the implemented
WSMO mediator (Med.1 in Fig. 4) aims at resolving data heterogeneities (step 5 of
Sect. 3.2). Figure 4 depicts the created WSMO goal, mediator and SWS descriptions
which implement the use case described in Sect. 3.

Please note, that the context ontologies, representing the context of each Web
service provider are now explicit parts of the WSMO SWS descriptions, i.e., WS.1
and WS.2, whereas the domain ontology is implemented as an independent upper-
level WSMO ontology, which is derived for certain contexts through the WSMO
SWS descriptions, respectively the context ontologies. Indeed, the context and
domain ontologies as mentioned in Sect. 2.2 are not physically separated, but the
context-based approach still holds as the two levels (domain concept matching
and data interpretation/conversion) remain clearly distinct via WSMO ontologies
and SWS descriptions. Apart from that, we would like to point out that follow-
ing the proposed WSMO-based approach, the previously introduced slave services
are now supported through WSMO-compliant SWS, whereas the functionality

Context-based Semantic Mediation in Web Service Communities 61

User

(7)
(1)

(6)
(2)

(5)

(3)

(4)Chronology
(1) Goal invocation request.
(2) Invocation of appropriate mediator.
(3) Selection of appropriate SWS.
(4) Invocation of actual Web service with mediated inputs.
(5) Response message.
(6) Mediated response message.
(7) Response is returned to user.

wsmo:Goal
G.1:Booking Request

wsmo:Web Service
WS.1: France Booking

wsmo:Web Service
WS.2: UK Booking

wsmo:Mediator
Med.1

Fig. 4 WSMO goal linked to Semantic Web Services through common mediator

of the master Web service is provided by the WSMO reasoning mechanisms of
IRS-III together with the mediation rules defined in the corresponding WSMO
mediator.

Referring to the previously given definition of a semantic object S = (c, ν, t, C),
c is defined as part of the upper-level WSMO domain ontology, while t is defined as
part of the WSMO SWS, describing on the one hand the XML binding of the actual
input message of the Web service and its expression following the used modelling
language (OCML) on the other hand. The value v represents the actual value of an
input parameter chosen to invoke the WSMO goal while the context C is represented
as part of the WSMO SWS descriptions. Moreover, please take into account, that the
WSMO descriptions proposed above not only enable the mediation between distinct
data formats, i.e., currencies and date formats, but also the selection of the most
appropriate Web service, either WS.1 or WS.2, based on the input values used to
invoke the goal G.1. Particularly, the requested departure country is utilized with
this respect, i.e., WS.1 is selected in case the requested booking departs from any
European country other than UK, while in the case of UK, WS.2 is automatically
invoked. The Web service selection is based on the semantic capability descrip-
tions provided through WSMO. Listing 2 shows a simple SWS capability of WS.2
enabling the selection proposed above:

62 M. Mrissa et al.

wsmo:WebService WS.2

(DEF–CLASS Get–UK–BOOKING–REQUEST–WS–CAPABILITY
(CAPABILITY)
?CAPABILITY
((USED–MEDIATOR :VALUE GET-BOOKING–REQUEST–MED)

(HAS–ASSUMPTION
:VALUE
(KAPPA

(?WEB–SERVICE)
(= (WSMO–ROLE–VALUE ?WEB–SERVICE HAS–DEPARTURE–COUNTRY) ”Uk”)))

(HAS–NON–FUNCTIONAL–PROPERTIES
:VALUE
Get–UK–BOOKING–REQUEST–WS–CAPABILITY–NON–FUNCTIONAL–PROPERTIES)))

Listing 2 SWS capability description of WS.2

It can be summarized, that basing the conceptual approach proposed in this
chapter on a common SWS framework, i.e., WSMO, and an established execu-
tion environment and reasoning engines, namely IRS-III, provides the opportunity
of reusing predefined functionalities related to SWS representation, discovery and
orchestration. Particularly, it could be shown, that the WSMO-based implementa-
tion enabled the reuse of IRS-III in order to deal with the master service functional-
ities 1-4 (Sect. 3.2). Moreover, the approach of aligning distinct context representa-
tions, being implicit part of SWS descriptions, to a common upper-level ontology is
well-suited to facilitate interoperability between distinct SWS representations [11].

5 Related Work

To the best of our knowledge, there are no existing works on semantic mediation
within the context of Web service communities as defined in [23]. However, our
approach is inspired by several works on semantic mediation for Web services and
communities of Web services, that we detail hereafter.

5.1 Semantics and Mediation for Web Services

Semantic description and mediation for Web services is a very active research topic,
as the many works on the subject [2, 5, 6, 8, 13, 14, 17, 21] prove. In the following,
we describe the most important works that inspired us for this chapter.

In [21], Nagarajan et al. classify the different semantic interoperability concerns
that apply to Web services. They distinguish several aspects that are particularly
useful for the purpose of semantic mediation.

OWL-S [14] is a language for semantic description of Web services, relying
on the OWL language [24], OWL-S enables explicit semantic description of Web
services input an output parameters via references to concepts described in OWL
domain ontologies. With [17], Miller et al. propose an annotation to the stan-

Context-based Semantic Mediation in Web Service Communities 63

dard description language WSDL in order to facilitate the semantic description of
Web services. However, OWL-S is a full language and does not offer the bene-
fits of WSDL annotation, and the WSDL-S annotation typically relies on domain
ontologies and does not support additional context attributes nor the use of context
ontologies.

With WSMX [13], Haller et al. propose a solution that is a part of the WSMO
framework (WSMX is the reference implementation of WSMO). In this work, the
semantics of the terms used are encoded into the WSMO description files of the
services. Semantic heterogeneities between Web services are solved by reasoning
on the content of a common domain ontology that has for purpose to explicitly
describe reference vocabulary. The mediation process is not about converting data
but more about matching the semantic description stored in the ontologies.

In [5], Dogac et al. propose an interoperability framework for the healthcare
domain. This framework relies on the notion of archetype to describe data seman-
tics. An archetype is a formal way to describe domain concepts via constraints on
data. Data instances are constrained instances of a reference domain model. This
work is similar to our context-based approach in the sense that a common agreement
is made on a domain concept, and the different views of Web services are repre-
sented under the form of constraints over the instances of these domain concepts.
However, the work of Dogac et al. requires the domain concept to encompass all the
different views of Web services, which is feasible in the healthcare domain where
predefined models are agreed on, but not in a more general context as presented in
this chapter.

In [6], Bowers and Ludäscher propose a semantic mediation framework for scien-
tific workflows. Their work relies on the notion of semantic type and structural type,
defined on a global ontology shared by all the users. The semantic type corresponds
to the abstract concept that characterizes data, and the structural type is the schema
that describes data structure. For a single semantic type, the objective is to adapt the
different structural data representations of Web services. This paper relies on typical
semantic matching methods before performing structural-level data mediation. In
the present work, we propose context-based, semantic-level data mediation for Web
services.

5.2 Communities of Web Services

Several works gather functionally-similar Web services into communities that are
accessed via a common interface. Benatallah et al. propose such a solution with
SELF-SERV [3]. In this work, several mediators establish correspondences between
the community interface and Web services that implement the functionality of the
community.

Benslimane et al. [4], also group Web services into communities. The community
is accessed via an interface implemented as an abstract Web service that describes
the provided functionality in an abstract fashion and a set a concrete Web services
that implement the functionality. A generic driver called Open Software Connectiv-
ity (OSC) handles the interactions between clients and the community.

64 M. Mrissa et al.

Building upon this work, Taher et al. [26] address the problem of Web service
substitution in communities. Web service substitution consists of replacing a non-
functioning or non-responding Web service with a functionally equivalent one, in
order to find an alternative way to enable a composition in case of exception. Substi-
tuting a service with another requires the mediation of communications between the
replacing service and the original client. Mediator Web services communicate with
the concrete Web services that implement the functionality, each mediator connects
to a specific service.

In Taher et al.’s work, Web service selection is performed according to a set of
QoS criteria (speed, reliability, reputation, etc.). The community is also in charge
of administrative tasks such as addition and suppression of services to and from the
community.

Medjahed and Bouguettaya proposes a community-based architecture for seman-
tic Web services in [16]. In this work, communities gather services from the same
domain of interest and publish the functionalities offered by Web services as generic
operations. A community ontology is used as a general template for describing
semantic Web services and communities. A major advantage of this work that relates
to our proposal is the peer-to-peer community management solution that addresses
the problems of centralized approaches.

6 Conclusion

Communities facilitate the discovery and selection of several functionally-equivalent
Web services. Nevertheless, researches on communities usually impose a unique
ontology that Web services must bind to, or require users to adapt to the seman-
tic requirements of Web services belonging to the community. In this work, we
present a trade-off between these approaches by using a context-based approach that
separates shared knowledge from the local contexts of Web service providers. We
demonstrate the significance of our proposal and develop mediation mechanisms
that handle semantic data discrepancies between Web services and communities,
thus enabling seamless interoperation at the semantic level. Short-term future work
includes studying other aspects related to mediation in Web service communities
such as transactional or security aspects.

However, we noticed from our experimentation that creating and using several
ontologies is a difficult task, the hardest task being the update of context ontologies.
Indeed, it is required that providers correctly update their context ontologies with
their own context representations, but also they must provide the correspondences
between their context and the contexts of other providers. Making such knowledge
explicit is a hard task for providers, particularly on a large scale.

In that way, it would be interesting to find suitable solutions to avoid such con-
straints on providers. Therefore, long-term future work includes studying how to
reduce this task by proposing advanced reasoning mechanisms that could help inter-
connect the different contexts of providers.

Context-based Semantic Mediation in Web Service Communities 65

References

1. E. Al-Masri and Q. H. Mahmoud. Investigating web services on the world wide web. In
J. Huai, R. Chen, H.-W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins, and X. Zhang, editors, WWW,
pages 795–804. ACM, 2008.

2. S. Arroyo and M. Stollberg. WSMO Primer. WSMO Deliverable D3.1, DERI Working Draft.
Technical report, WSMO, 2004. http://www.wsmo.org/2004/d3/d3.1/.

3. B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv environment for web services
composition. IEEE Internet Computing, 7(1):40–48, 2003.

4. D. Benslimane, Z. Maamar, Y. Taher, M. Lahkim, M.-C. Fauvet, and M. Mrissa. A multi-
layer and multi-perspective approach to compose web services. In AINA, pages 31–37. IEEE
Computer Society, Washington, DC 2007.

5. V. Bicer, O. Kilic, A. Dogac, and G. B. Laleci. Archetype-based semantic interoperability of
web service messages in the health care domain. International Journal of Semantic Web and
Information Systems (IJSWIS), 1(4):1–23, October 2005.

6. S. Bowers and B. Ludäscher. An ontology-driven framework for data transformation in sci-
entific workflows. In E. Rahm, editor, DILS, volume 2994 of Lecture Notes in Computer
Science, pages 1–16. Springer, 2004.

7. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,
and D. Winer. Simple object access protocol (SOAP) 1.1. Technical report, The World Wide
Web Consortium (W3C), 2000. http://www.w3.org/TR/SOAP/.

8. L. Cabral and J. Domingue. Mediation of semantic web services in IRS-III. In First Interna-
tional Workshop on Mediation in Semantic Web Services (MEDIATE 2005) held in Conjunc-
tion with the 3rd International Conference on Service Oriented Computing (ICSOC 2005),
Amsterdam, The Netherlands, December 12th 2005.

9. L. Cabral, J. B. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and C. Pedri-
naci. IRS-III: A broker for semantic web services based applications. In Proceeding of the
5th International Semantic Web Conference (ISWC2006), Athens, GA, USA, 2006.

10. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. W3c note, The World Wide Web Consortium (W3C), March 2001.
http://www.w3.org/TR/wsdl.

11. S. Dietze, A. Gugliotta, and J. Domingue. A semantic web service oriented framework for
adaptive learning environments. In E. Franconi, M. Kifer, and W. May, editors, ESWC, vol-
ume 4519 of Lecture Notes in Computer Science, pages 701–715. Springer, 2007.

12. C. H. Goh, S. Bressan, S. Madnick, and M. Siegel. Context interchange: new features and
formalisms for the intelligent integration of information. ACM Transactions on Information
and Systems, 17(3):270–293, 1999.

13. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. Wsmx – a semantic service-
oriented architecture. In I. C. Society, editor, ICWS, pages 321–328. IEEE Computer Society
Washington, DC, 2005.

14. D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. V. McDermott, D. L. McGuin-
ness, B. Parsia, T. R. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. P. Sycara. Bringing
semantics to web services: the OWL-S approach. In J. Cardoso and A. P. Sheth, editors,
SWSWPC, volume 3387 of Lecture Notes in Computer Science, pages 26–42. Springer Berlin,
2004.

15. B. Medjahed and Y. Atif. Context-based matching for web service composition. Distrib.
Parallel Databases, 21(1):5–37, 2007.

16. B. Medjahed and A. Bouguettaya. A dynamic foundational architecture for semantic web
services. Distributed and Parallel Databases, 17(2):179–206, 2005.

17. J. Miller, K. Verma, P. Rajasekaran, A. Sheth, R. Aggarwal, and K. Sivashanmugam.
WSDL-S: Adding Semantics to WSDL - White Paper. Technical report, Large Scale
Distributed Information Systems, 2004. http://lsdis.cs.uga.edu/library/
download/wsdl-s.pdf.

http://www.wsmo.org/2004/d3/d3.1/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://lsdis.cs.uga.edu/library/
download/wsdl-s.pdf

66 M. Mrissa et al.

18. E. Motta. An overview of the ocml modelling language. In Proceedings KEML98: 8th Work-
shop on Knowledge Engineering Methods & Languages, pages 21–22. Karlsruhe, Germany,
1998.

19. M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar. A context model for semantic medi-
ation in web services composition. In D. W. Embley, A. Olivé, and S. Ram, editors, ER,
volume 4215 of Lecture Notes in Computer Science, pages 12–25. Springer, Berlin, 2006.

20. M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar. Towards context-based mediation
for semantic web services composition. In Proceedings of the Eighteenth International Con-
ference on Software Engineering and Knowledge Engineering (SEKE’2006), San Francisco,
California, July 2006.

21. M. Nagarajan, K. Verma, A. P. Sheth, J. Miller, and J. Lathem. Semantic interoperability of
web services – challenges and experiences. In ICWS, pages 373–382. IEEE Computer Society
Washington, DC, 2006.

22. M. Paolucci, N. Srinivasan, and K. Sycara. Expressing WSMO mediators in owl-s. In Pro-
ceeding of the Semantic Web Services Workshop (SWS) at the 3rd International Semantic Web
Conference (ISWC), Hiroshima, Japan, 2004.

23. S. Sattanathan, P. Thiran, Z. Maamar, and D. Benslimane. Engineering communities of web
services. In G. Kotsis, D. Taniar, E. Pardede, and I. K. Ibrahim, editors, iiWAS, volume 229
of books@ocg.at, pages 57–66. Austrian Computer Society, Wien, 2007.

24. G. Schreiber and M. Dean. Owl web ontology language reference. http://www.w3.org/
TR/2004/REC-owl-ref-20040210/, February 2004.

25. R. G. Smith. The contract net protocol: high-level communication and control in a distributed
problem solver. IEEE Trans. Computers, 29(12):1104–1113, 1980.

26. Y. Taher, D. Benslimane, M.-C. Fauvet, and Z. Maamar. Towards an approach for web ser-
vices substitution. In P. Ghodous, R. Dieng-Kuntz, and G. Loureiro, editors, IDEAS, pages
166–173. IOS Press, Amsterdam, 2006.

27. UDDI Specification Technical Commitee. Universal Description, Discovery, and Integration
of Business for the Web. Technical report, October 2001. http://www.uddi.org.

28. WSMX Working Group. The web service modelling execution environment, 2007.
http://www.wsmx.org/.

http://www.w3.org/
TR/2004/REC-owl-ref-20040210/
http://www.uddi.org
http://www.wsmx.org/

	Context-based Semantic Mediation in Web Service Communities
	Michael Mrissa, Stefan Dietze, Philippe Thiran, Chirine Ghedira, Djamal Benslimane and Zakaria Maamar
	 Introduction
	 General Architecture
	 Communities of Web Services
	 Context Representation
	 Domain and Context Ontologies
	 Context Annotation of WSDL

	 Semantic Mediation for Web Service Communities
	 Accessing the Community
	 Details on Context-Based Mediation

	 Interoperability with Semantic Web Services Frameworks: The Case of WSMO
	 Semantic Web Services and WSMO
	 Implementing Context-Based Mediation Through WSMO and IRS-III

	 Related Work
	 Semantics and Mediation for Web Services
	 Communities of Web Services

	 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

