
P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4

A Context-Based Mediation Approach
to Compose Semantic Web Services

MICHAEL MRISSA, CHIRINE GHEDIRA, and DJAMAL BENSLIMANE

Claude Bernard Lyon 1 University

ZAKARIA MAAMAR

Zayed University

and

FLORIAN ROSENBERG and SCHAHRAM DUSTDAR

Technical University of Vienna

Web services composition is a keystone in the development of interoperable systems. However,

despite the widespread adoption of Web services, several obstacles still hinder their smooth auto-

matic semantic reconciliation when being composed. Consistent understanding of data exchanged

between composed Web services is hampered by various implicit modeling assumptions and rep-

resentations. Our contribution in this article revolves around context and how it enriches data

exchange between Web services. In particular, a context-based mediation approach to solve seman-

tic heterogeneities between composed Web services is presented.

Categories and Subject Descriptors: D.2.12 [Software Engineering]: Interoperability

General Terms: Algorithms, Design, Languages, Standardization

Additional Key Words and Phrases: Web services, composition, mediation, semantics, context

ACM Reference Format:
Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., and Dustdar, S. 2007. A context-

based mediation approach to compose semantic Web services. ACM Trans. Intern. Tech. 8, 1, Article

4 (November 2007), 23 pages. DOI = 10.1145/1294148.1294152 http://10.1145/1294148.1294152

Author’s addresses: M. Mrissa, PReCISE Research Center, University of Namur, rue de Bruxelles

61, B-5000 Namur, Belgium; email: michael.mrissa@fundp.ac.be; C. Ghedira, Claude Bernard Uni-

versity, Lyon 1, Bâtiment Nautibus, 43 Bd. Du 11 novembre 1918, 69622, Villeurbanne, France;

email: chirine.ghedira@liris.cnrs.fr; D. Benslimane, Université Claude Bernard Lyon 1, UFR In-

formatique, Bâtiment Nautibus 8, boulevard Niels Bohr, 69622 Villeurbanne cedex, France; email:

djamal.benslimane@liris.cnrs.fr; Z. Maamar, Zayed University, Academic City, P.O. Box 19282;

Dubai, United Arab Emerates; email: zakaria.maamar@zu.ac.ae; F. Rosenberg, S. Dustdar, Dis-

tributed Systems Group (DSG), Information Systems Institute, Technical University of Vienna,

Argentinierstrasse 8/184-1, A-1040 Vienna, Austria; email: florian@infosys.tuwien.ac.at; Technical

University of Vienna, Vienna, Austria; email: {florian, dustdar}@infosys.tuwien.ac.at.

Permission to make digital or hard copies part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to

redistribute to lists, or to use any component of this work in other works requires prior specific per-

mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1533-5399/2007/11-ART4 $5.00 DOI 10.1145/1294148.1294152 http://doi.acm.org/

10.1145/1294148.1294152

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:2 • M. Mrissa et al.

1. INTRODUCTION

Developed around a platform-independent protocol stack that heavily relies on
standards like SOAP [Box et al. 2000], WSDL [Christensen et al. 2001], and
UDDI [UDDI Working Group 2001], Web services1 are now widely adopted as a
means to interconnect applications over the Internet. Web services reach their
full potential when composed into business processes that provide users with
value-added functionalities. Composition means orchestrating several Web ser-
vices according to a business process which is specified with a composition lan-
guage. Nowadays, WS-BPEL [Andrews et al. 2003] is the de facto standard for
Web services composition. Coming from the domain of workflow management,
WS-BPEL provides several constructs that permit handling complex interac-
tions between business partners, such as concurrent invocation, fault recovery,
and conditional switches.

Despite a wide adoption, WS-BPEL still remains focused on the syntax level
with no emphasis on the semantic aspects of composition. Moreover, the Web
service protocol stack was not initially developed to meet the requirements of a
successful semantic exchange. Semantic exchange makes Web services under-
stand the content of messages they send and receive. For this purpose, recent
work from the semantic Web community aims at explicitly describing the se-
mantics of Web services. Several languages and approaches2 aim at propelling
Web services to the level of semantic Web services. Such approaches use ontolo-
gies (shared descriptions of domain knowledge [Gruber 2000]) as agreements
on a common vocabulary.

However, the aforementioned initiatives do not exploit the potential that
context offers when it comes to describing the different aspects of data. The
use of context representation has been widely explored in the domain of mul-
tidatabase systems [Kashyap and Sheth 1996; Sciore et al. 1994] in order to
clarify the semantic and schematic aspects of data, but remains barely looked
into in the field of Web services. The term “context” relates to the collection
of implicit assumptions that are required to perform a correct interpretation
of data. We advocate that accurate data interpretation not only depends on a
single semantic reference, but also on several properties and characteristics
that form the context of interpretation of data. Context needs to be explicitly
described so that data can be clearly understood according to this context. Par-
ticularly, in the case of Web services composition, overcoming the challenges
of automatic semantic interpretation and data flow handling requires explicit
context description and management.

In this article we aim at investigating the automated semantic reconcilia-
tion of semantic Web services. The rationale of this reconciliation is backed by

1A Web service is a software system designed to support interoperable machine-to-machine inter-

action over a network. It has an interface described in a machine-processable format (specifically

WSDL). Other systems interact with the Web service in a manner prescribed by its description

using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards (source: W3C).
2For example, WSMO [Arroyo and Stollberg 2004], SESMA [Peer 2005], DIANE [Klein et al. 2005],

OWL-S [Martin et al. 2004], and WSDL-S [Miller et al. 2004].

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:3

[Maamar et al. 2006], who argue that a contextual semantic composition of

Au: Is
short
title Ok?

Web services is subject to satisfying two conditions. The first condition is that
Web services must agree on the meaning of the exchanged data, and the sec-
ond is that semantic-data conflicts must be automatically resolved using the
information that context provides.

Our main contribution revolves around a proposal for context-based media-
tion for reconciling semantic Web services engaged in composition as an exten-
sion of our previous work [Mrissa et al. 2006a, 2006b]. This proposal consists
of: (1) a context-based annotation of WSDL messages with data semantics;
(2) a model built on the notion of semantic objects to support explicit descrip-
tion of context; and (3) a semantic-mediation architecture for WS-BPEL pro-
cesses, which handles information heterogeneities using semantic objects and
Web services’ contexts. Our experiments concern travel planning; nevertheless,
our proposal is generic and can be applied to other domains such as online e-
government, banking, and medical services. In fact, all the application domains
that use semantic Web services can benefit from our proposed mediation archi-
tecture, as long as the WSDL documents of composed Web services are properly
annotated with the necessary semantic information.

The rest of this article is organized as follows. Section 2 reviews literature on
semantics and mediation of Web services. Section 3 presents a motivating ex-
ample and summarizes the different discrepancies that can hamper the correct
interpretation of data exchanged between Web services. Section 4 summarizes
our context model and proposes a solution to manage context information.
Section 5 details the functioning of the different elements of our mediation ap-
proach. Section 6 describes the prototype developed as a proof-of-concept of our
approach. Section 7 concludes the article and gives some directions for future
work.

2. RELATED WORK

This section presents different initiatives related to semantic description and
mediation aspects of Web services that helped shape our proposal.

2.1 Semantic Description of Web Services

At the crossing of the semantic Web and Web services domains, research in
the field of semantic Web services is very active. Most approaches intend to
describe the semantics of Web services, either with novel semantic description
languages [Martin et al. 2004; Peer 2005; Arroyo and Stollberg 2004; Klein et al.
2005] or with extensions to syntactic standards [Miller et al. 2004; SAWSDL
Working Group 2006]. These approaches bind to domain ontologies in order
to explicitly describe the intended meaning of data, including data that Web
services exchange.

OWL-S [Martin et al. 2004] is a subset of the OWL [Schreiber and Dean
2004] ontology language. It is a general ontology for building semantic Web
services, and was designed to be coupled with syntactic description formats
like WSDL. Specifically, OWL-S consists of three elements: the service profile,
process model, and service grounding, that describe what the service does, how

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:4 • M. Mrissa et al.

the service works, and how to access the service, respectively. OWL-S advo-
cates to separate the grounding and abstract views when describing the data
that Web services exchange. Abstract view binds the data to an OWL concep-
tual description. Grounding view describes the low-level representation of data,
which generally follows XML Schema [W3C 2004]. This separation allows dif-
ferent physical representations of the same concept, and strengthens as well
the role of ontologies in the abstract representation of data semantics.

WSMF [Fensel and Bussler 2002], from the DERI laboratory, supports the
development and description of semantic Web services with a conceptual model.
This model recommends maximal decoupling between Web services, and was
designed with the idea to enable mediation as a service. WSMO [Arroyo and
Stollberg 2004] is a formal language and ontology based on the WSMF concep-
tual model that describes multiple aspects of semantic Web services.

Medjahed and Bouguettaya [2005] propose a foundational architecture for
semantic Web services. Their work is based on the concept of community, which
gathers services from the same domain of interest and publishes the function-
alities offered by Web services as generic operations. The authors provide a gen-
eral template referred to as community ontology for describing semantic Web
services and communities. Their work follows a realistic community-centric
point-of-view, and adopts a peer-to-peer solution to manage communities, which
addresses the problems of centralized approaches.

DIANE elements (DE) and DIANE service description (DSD) are object-
oriented languages built on a critical analysis of the requirements of seman-
tic Web service description, and on the difficulties of OWL-S and WSMO to
fulfill these requirements [Klein et al. 2005]. DE and DSD use configurable
sets and fuzzy logic to support semantic discovery of Web services. DE is a
general ontology language with specific features to enhance semantic Web
service description. DSD describes services with the constructs provided by
DE. Moreover, DSD revolves around the notions of service request and offer
descriptions.

SESMA [Peer 2005] is another description format for semantic Web services
that was designed to provide a language with a compact syntax. SESMA sup-
ports nondeterministic service description, and is compatible with standards
such as WSDL and WS-BPEL. Its main advantage is being a lightweight lan-
guage for semantic description of Web services. It remains close to WSDL and
WS-BPEL descriptions, and its semantics is not built on top of OWL.

With WSDL-S, [Miller et al. 2004] annotate WSDL with several extensions
related to operations and messages. These extensions refer to concepts of do-
main models in order to specify not only the semantics of messages, but also
the preconditions and effects of operations. WSDL-S is also described as a
lightweight approach for semantic annotation of Web services.

SAWSDL is a W3C working draft that defines a set of extension attributes to
WSDL 2.0 (with WSDL 1.1 support) in order to describe the semantics of WSDL
elements [SAWSDL Working Group 2006]. The objective of SAWSDL is to define
how semantic annotation of WSDL is accomplished, but it is not intended to
specify which language has to be used for the semantic description. It only
provides the mechanisms to bind ontology concepts to WSDL annotations.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:5

To wrap up this section, it should be noted that none of the existing ap-
proaches uses context to describe the semantics of data. Hence, the approach
presented in this article is one step towards enriching descriptions of Web ser-
vices with context information. Therefore, it should be possible to combine or
extend the aforementioned works with the context-based approach we present
in this article.

2.2 Mediation Between Web Services

Mediation between Web services has received a lot of attention from the re-
search community. Many mediation approaches rely on the concept of medi-
ators for solving data heterogeneities between participants in a composition.
Mediators were first introduced in the domain of databases [Wiederhold 1992],
and later adapted to the domain of Web services.

[Mocan et al. 2004] propose WSMX, an implementation of the Web service
modeling ontology project (WSMO). WSMX is a mediation architecture for the
integration of Web services. The mediator component is a key part of their ar-
chitecture and is designed as a service. It mediates between concepts of the dif-
ferent ontologies to which business partners bind. The mediation solution that
Mocan et al. propose relies on a semiautomated graphical interface that allows
users to define conversion rules between ontologies. End-users are helped by
suggestions from the system, based on the structure of concepts and already
established relations between concepts.

Cabral and Domingue [2005] provide a broker-based mediation approach to
compose semantic Web services. Their approach follows the WSMF conceptual
framework. The mediator component is a key part of their architecture and
mediates the concepts between ontologies to which business partners refer.
Williams et al. [2005] use agents to perform semantic mediation between input
and output parameters of Web services. They encapsulate the composition into
an agent that controls the operation progress.

Spencer and Liu [2004] present a rule-based approach to semantically match
Web services’ outputs and inputs. A description-logic reasoning system ana-
lyzes OWL-S descriptions and generates multiple data transformation rules.
This approach focuses on the conversion between different representations of
matching OWL-S classes.

While mediation and semantic description of the Web services in a com-
position are very active research fields, to the best of our knowledge, none of
these works actually considers context to solve semantic heterogeneities of
data in Web services composition. In the following, we present a context-based
mediation approach while arguing the benefits of context in the domain of Web
services.

3. LIMITATIONS OF SEMANTIC APPROACHES

In this section, we demonstrate using the classical travel example the need for
additional metainformation to accurately interpret the data exchanged between
Web services. We stress as well the limitations of current semantic approaches
relative to the concern of semantic interpretation of data.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:6 • M. Mrissa et al.

Fig. 1. Flight-booking and car rental Web services.

3.1 Motivating Example

We consider a user who plans a trip to Japan, and wishes to rent a car dur-
ing her stay. The WSDL files of flight-booking and car rental companies are
composed with the help of a graphical composition editor3 in order to consti-
tute the workflow presented in Figure 1. A basic addition Web service is used
to deliver the sum of flight-booking and car rental prices. This Web service is
deemed appropriate because of the inherent limitations of XPath, which only
supports integer arithmetic and is not intended to perform arbitrary computa-
tions [Andrews et al. 2003]. In addition, we assume that the data flows between
Web services verify low-level data compatibility. By low-level compatibility, we
mean that data objects are described with the same data types (generally with
the XML schema type system). This verification is easily performed by the com-
position editor program.

In Figure 1 the flight-booking Web service computes prices in euros and with
a scale factor4 of 1 because the WSDL file was provided by the European branch
of the company. However, the car rental Web service uses local currency, namely
Japanese yens, and a scale factor of 1000, so there is a need to multiply the value
exchanged by 1000 to obtain the actual price. Prices need to be converted into
the same currency and scale factor before they can be added and presented to
the user.

Moreover, date and time representations differ. The flight-booking Web ser-
vice uses a European notation (dd.mm.yyyy and 12:00 AM/PM), whereas the
car rental Web service uses a Japanese notation (yy.mm.dd and 24:00). This
example, albeit simple, shows the extent to which low-level compatibility is
insufficient to meet the requirements of semantic exchange. Indeed, the inter-
pretation of data will be inaccurate because data binds to different contexts
and should be interpreted differently.

The WS-BPEL community currently solves semantic heterogeneities by
manually describing the conversion of data between different semantic rep-
resentations. However, this solution is tedious and not scalable. In addition,
it needs to be performed up front (i.e., at design time) by domain experts, and
relies on XSLT stylesheets and XPath expressions to convert data. It requires
experts to have technical knowledge about both XPath and XSLT, and about

3Examples include Oracle BPEL Designer, IBM BPWS4J Editor, Vergil VCAB Composer, or Active

Endpoints ActiveWebflow Designer.
4A number used as a multiplier in scaling (WordNet at http://wordnet.princeton.edu/).

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:7

the semantics of the domain concerned. Last but not least, it cannot deal with
on-the-fly associations between Web services.

In the following, we discuss the main types of heterogeneities related to im-
plicit assumptions that can hamper a correct interpretation of domain ontology
concepts.

3.2 Heterogeneous Implicit Assumptions

The role of domain ontologies is to provide users with an agreement on the in-
terpretation of described concepts. Therefore, the different semantic properties
related to domain concepts remain implicit in domain ontologies. With semantic
properties, we refer to the different aspects and characteristics that permit to
establish the context of the current interpretation of a concept. These assump-
tions on the interpretation of concepts remain implicit in the ontology because
the initial purpose of ontologies is to describe domain knowledge, which includes
the concepts and relations between them, together with relevant properties of
concepts, but not their different possible contexts of interpretation.

From a provider’s point-of-view, reaching semantic interoperability with on-
tologies is often tedious because Web services usually make different interpre-
tations of the same concept. Hence, providers need to adapt their own implicit
assumptions on the interpretation of concepts to the assumptions of ontologies.
Solving data interpretation discrepancies remains at the charge of Web service
providers. This task is still performed manually and at design time. Discrepan-
cies between semantic properties are due to different implicit assumptions on
data interpretation. These discrepancies are summarized as follows.

3.2.1 Value Heterogeneities. Domain ontologies often make implicit as-
sumptions about the values of semantic properties. As shown in Section 3.1,
prices are generally assumed to have a scale factor of 1. However, some orga-
nizations usually handle prices with a scale factor of 1000. In this case, we
say that the values of the scale factor semantic property differ. Resolving such
heterogeneities requires explicit description of the semantic property and its
associated value.

3.2.2 Structural Heterogeneities. Domain ontologies implicitly follow a
static structural representation of semantic properties that are relevant to
the described application domain. However, it appears that even in the same
domain, different semantic properties and structural organizations could be
relevant to Web service providers.

For example, the concept of price could have different relevant semantic
properties depending on the needs of travel agencies. Some agencies could use
different scale factors and ignore the currency aspect because their partners
all use the same currency, whereas some other agencies could make the op-
posite assumption. These structural heterogeneities between semantic proper-
ties need to be explicitly described, so that it becomes possible to determine
whether one specific structure of interpretation of a concept is compatible with
another.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:8 • M. Mrissa et al.

3.2.3 Semantic Heterogeneities. Semantic heterogeneities relate to the se-
mantics used for describing semantic properties. They are not visible as long
as the context of interpretation remains implicit, but appear when the con-
text is explicitly described. For example, an English provider could use the
word “VATIncluded”, whereas a French one would use the word “TVAIn-
cluse” to describe the same semantic property, which specifies whether value-
added taxes are included in a price (synonymy conflict). In order to solve
such semantic conflicts, explicit vocabulary is required to describe semantic
properties.

It appears from the preceding that different types of heterogeneities affect
semantic properties. In the following section, we show how the notions of con-
text and semantic object can be used in order to explicitly describe semantic
properties. We then present a context-based approach to handle the aforemen-
tioned limitations.

4. A CONTEXT MODEL FOR WEB SERVICES

In order to overcome the limitations we report in Section 3, we proposed
in Mrissa et al. [2006a] a context model that is built around the notion of se-
mantic object and context. This model gives providers the means to explicitly
describe the implicit assumptions they make on data. In this section, we present
the arguments that back this model, and provide insights on the description
of context information, before discussing its integration into the Web services
protocol stack.

4.1 Context Model: Main Concepts

The context model revolves around the notion of semantic object, which extends
a data object with additional metadata so that the context of interpretation of
the data object is made explicit. Basically, a semantic object contains: (1) a
data part that has a value v of type t described in a type system language,
and (2) a semantic part that has a concept c of the application domain, and
a context C represented as a tree of metaattributes referred to as modifiers.
Modifiers make explicit the semantic properties of semantic objects. They are
also semantic objects, so they have a value, a type, a domain concept they
refer to, and possibly a context. Web service providers need to make these
modifiers available for a correct interpretation of a semantic object. Seman-
tic objects with different contexts may be converted into a common context,
which allows to compare them and even to enable data exchange between Web
services.

For the needs of our model, we defined two categories of modifiers: static and
dynamic. It is mandatory to provide static modifiers in order to make clear the
semantics of a semantic object. On the other hand, dynamic modifiers can be
inferred from other modifiers belonging to the same semantic object. More de-
tails about the properties of modifiers and the possibilities of conversion raised
by this model are given in Mrissa et al. [2006a].

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:9

Listing 3. Sample semantic object.

In order to illustrate the proposed context, let us consider the example pre-
sented in Listing 3.

This example describes price as a semantic object along with its contextual
characteristics. To handle a concrete price one needs to know the following
details: currency, the date related to this price due to currency changes over
time, and the value added taxes (VAT) rate applied to this price. We notice
from this representation that the (ctxt ns:country, xsd : string, “France”, null)
modifier is static, that is, it cannot be inferred from the values of other modifiers.
This static modifier can help infer the “euro” value of the currency modifier,
being given a rule stating that euro is the currency of France. The currency
modifier is then qualified as dynamic. In addition, we notice that the country
modifier helps infer the value of dateformat, which is a dynamic modifier too.
Accurate interpretation of the price semantic object is then possible with the
attached context.

The multiple cases of heterogeneity presented in Section 3.2 can now be
explicitly handled with context, and thus will not be viewed as implicit discrep-
ancies anymore, but rather as well-known heterogeneities between instances
of schemas. Indeed, context information could be directly added to the domain
ontology. However, we explain in the next section why we deem appropriate to
separate context from domain knowledge, and to store context information into
dedicated context ontologies.

4.2 Context Representation and Integration

In this section, we detail our recommendations on how to store the information
required to represent context. To this purpose, we first give an insight on the
different strategies for ontology design. Then, we present the advantages of
context ontologies, and explain how they are separated from domain ontologies,
before presenting our WSDL annotation that achieves the integration of context
into the Web services protocol stack.

4.2.1 Strategies for Ontology Design. The design of a domain ontology can
be seen from different perspectives which are related to top-down, bottom-up,
and middle-out approaches [Noy and Mc Guinness 2000; Noy and Hafner 1997].
A top-down approach consists in first agreeing on the most general concepts of
the ontology in order to provide a shared representation of the world. This
shared representation is then adjusted and specialized for the sake of meeting

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:10 • M. Mrissa et al.

the needs of the local views of the participants. It is a very reliable strategy in a
limited environment in which the number of participants and the discrepancies
between their views of the world are limited. However, it is not efficient in an
open world like the Internet. Indeed, it is not guaranteed that an unknown and
constantly changing number of participants could agree on a single view of the
world. On the contrary, a bottom-up approach starts from the local and very
specific conceptualizations of the participants, and follows a generalization pro-
cess towards a consistent representation of the domain knowledge. Compared
to the top-down approach, this one is more adapted to interactions in an open
world, but appears to be less efficient in a closed environment.

The middle-out approach strengthens the middle concepts of the ontology
into identifiable groups, and follows both specialization and generalization
steps to build the domain knowledge representation. Generally, it is recom-
mended to combine top-down, bottom-up, and middle-out approaches in order
to model the domain knowledge of different participants in an ontology [Noy
and Mc Guinness 2000]. In our case, we identify two of these three approaches
and associate them with context and domain ontologies in order to describe
providers’ semantics.

4.2.2 Context versus Domain Ontologies. Our proposal to make the dis-
tinction between context and domain knowledge comes from the fact that the
heterogeneities presented in Section 3 do not concern the domain knowledge
itself, but rather relate to providers’ local and yet implicit assumptions on the
interpretation of domain concepts. These assumptions, referred to as context,
are related to cultural, geographical, and temporal situations of Web services,
such as, when, where, and how they are designed, deployed, and executed.

In most cases, when several participants intend to agree on a shared domain
ontology, they already have different contexts. Especially in an open world like
the Internet, we have seen that it is very difficult to reach a common agreement
on a shared representation of domain knowledge when adopting a top-down
approach only. This is mainly due to the different, already-existing contexts of
the participants. As a consequence, we set several objectives to facilitate both
ontology design and the reconciliation of Web services, given as follows.

—Focus the role of domain ontologies on describing knowledge that can be
agreed on with a top-down approach;

—adopt a bottom-up approach to reconcile the contexts of Web services, as they
already exist before adhering to a domain ontology; and

—give providers the responsibility of describing the structural and organiza-
tional aspects of their local contexts, and of providing the connections to other
providers’ contexts when they adhere to a domain ontology.

In order to meet these objectives, we define the notion of context ontolo-
gies, which are intended to make context explicit for each concept of a do-
main ontology. The difficulties raised when agreeing on a shared represen-
tation of a domain knowledge remain, but they are now identified and isolated
due to explicit and separate description of context heterogeneities. Thus, con-
text heterogeneities can be handled because the contexts of the participants

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:11

Domain
Ontology

Context
Ontology

Concepts

Modifiers

Ontology elements (OWL axioms)

Relations between elements (OWL relations)

Fig. 2. Context versus domain ontologies.

are made explicit in context ontologies. Rich description languages like OWL
allow specifying complex relations between ontology concepts. The separation
between context and domain ontologies is illustrated in Figure 2 in order to
clarify the terminology used for context description.

As context ontologies provide shared vocabularies to specify structural and
semantic representations of context, there is a need to extensionally specify the
values that modifiers take. We recall that modifiers are either static or dynamic.
Consequently, we develop two different solutions to instantiate modifiers. We
insert a description of static modifiers into WSDL in a way that remains compli-
ant with the Web services protocol stack [Mrissa et al. 2006a]. Descriptions of
static modifiers provide the means to calculate dynamic modifiers at runtime,
using appropriate inference rules.

The use of context ontologies and WSDL annotation helps providers make
explicit the context of data. It provides a scalable solution to integrate context
into the Web services protocol stack. Moreover, it enables semantic mediation of
data during the execution of a composition. In the following, we give an overview
of our solution, detailed in previous work [Mrissa et al. 2006b], for annotating
descriptions of composed Web services.

4.3 Extending WSDL with Context

Using the model of Section 4.1 requires enriching the description of Web ser-
vices with context, by annotating WSDL message parts so that they can be now
considered as semantic objects. In WSDL descriptions, <message> elements de-
scribe data exchanged for an operation. Each message consists of one or more
<part> elements. We also refer to <part> elements as “parameters” in the rest
of this article. Each parameter has a <name> and a <type> attribute, and allows
additional attributes. Our annotation takes advantage of the extension pro-
posed in the WSDL specification [Christensen et al. 2001], so that annotated
WSDL documents operate seamlessly with both classical and annotation-aware
clients. To keep the article self-contained, we overview a simplified structure of
the annotated WSDL metamodel in Figure 3.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:12 • M. Mrissa et al.

Message

+name

Part

+name

+element

+type

+part

0..*

Extensible Element

+ context

 0..* 
ContextAttribute

+context: QName []

Fig. 3. Partial representation of the extended WSDL metamodel.

Listing 1. Car rental annotation snippet.

Specifically, <part> elements are annotated with a context attribute that de-
scribes the names and values of static modifiers using a list of qualified names.
The first qualified name of the list specifies the domain ontology concept of the
value (c). Additional elements refer to instances of static modifiers described
in the context ontology. Listing 1 illustrates the proposed extension with our
car rental Web service of Section 3.1. The annotation provides the values of the
static modifiers for this Web service.

Relying on this annotation, a value v and its data type t described in the
WSDL document are enriched with the concept c and the necessary modifiers
to define the context C, thus forming a semantic object < c, v, t, C >. In or-
der to complete the context C, rules help infer the values of dynamic modi-
fiers at runtime. Using rules offers several advantages: Rules are easily mod-
ifiable, making this solution adaptable to changes in the underlying seman-
tics. In addition, the often-changing values of modifiers cannot be statically
stored, so using rules simplifies the annotation to WSDL. Furthermore, rules
separate application logic from the rest of the system, so updating them does
not require rewriting application code. In the following, we detail our context
mediation architecture that integrates mediators into composition as Web ser-
vices, and show its internal functioning, which relies on rule-based mechanisms.
Our mediation architecture aims at reconciling Web services at the semantic
level.

5. A CONTEXT-BASED MEDIATION ARCHITECTURE

In this section, we present a context-based mediation architecture that takes
advantage of the features offered with the aforementioned context model. First,
we discuss the advantages of service-based integration of mediators into the
composition. Second, we give an overview of the proposed architecture with a
WS-BPEL business process based on the example of Section 3.1, before detailing

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:13

Flight Reservation
Web Service

Car Rental
Web Service

Addition
Web Service

Receive
<invoke>

<assign>
date, time

<invoke>

<assign>
price

<invoke>

Reply

flight ticket

car rental ticket

total price
Data flow with potential
semantic heterogeneity

Fig. 4. View of the original business process.

the generation of contextualized business processes that include mediator Web
services.

5.1 Advantages of Service-Based Mediation

The solution proposed in this article follows a service-based approach to imple-
ment mediators, referred to in the following as mediator Web services. Service-
based mediation presents several advantages. First, the standardized access to
Web services through their WSDL descriptions allows better independence from
composition languages and engines. Second, managing the mediation concern
in a service-oriented way is more scalable because it does not require extend-
ing any language nor modifying existing composition architectures, but rather
reusing already-deployed software components. Third, the loosely coupled as-
pect of a service-based architecture allows keeping the mediation concern in-
dependent from the original functionalities of Web services.

However, the main issue is the need to adapt the input and output data of
mediator Web services to the data representation expected by the Web services
with which they communicate. We answer this limitation in the following and
propose a solution that can be applied as a predeployment step during the
deployment of a composition.

5.2 Overview of the Mediation Process

For consistency purposes, we use the example of Section 3.1 in order to illustrate
the mediation process. The WS-BPEL process depicted in Figure 4 implements
the composition logic of the workflow shown in Figure 1. It has been previously
demonstrated that several heterogeneities hamper the correct execution of this
workflow. We assume that the WSDL files used in this article are correctly
annotated with context information [Mrissa et al. 2006b], and that the corre-
sponding domain and context ontologies are available. Our mediation approach
is a three-step process, as shown in Figure 5.

—Contextualization Step. A contextualization algorithm (Section 5.3) analyzes
the WS-BPEL process (i.e., as shown in Figure 4) to locate explicit and

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:14 • M. Mrissa et al.

Flight Reservation
Web Service

Car Rental
Web Service

Addition
Web Service

Receive
<invoke>

<assign>
date, time

<invoke>

<assign>
price

<invoke>

Reply

flight ticket

car rental ticket

total price

Data flow with potential
semantic heterogeneity

Flight Reservation
Web Service

Car Rental
Web Service

Addition
Web Service

Receive
<invoke>

<assign>
date, time

<invoke>

<assign>
price

<invoke>

Reply

flight ticket

car rental ticket

total price

Mediator Web service

Web Service
Generator & Deployer

Step 1
Detect data

heterogeneities

Step 2
Generate mediator

Web services

Step 3
Insert mediator

Web services into
the BPEL code

and execute

Fig. 5. Generation of the mediator Web service.

implicit data flows. Relevant data flows for possible context heterogeneities
are symbolized with stars in the figure. In our running example, the data
flows of interest are: (a) where the price variables are sent to the addition
Web service, and (b) where the date and time variables are sent to the car
rental Web service.

—Automatic Mediator Web Services Generation Step. Here, a mediator Web ser-
vice is automatically generated and deployed for each data flow where the
contextualization algorithm detected possible context heterogeneities. The
generation of mediator Web services is handled by our Web service code gen-
erator (WS-CG), to be described in Section 6.1. Each generated mediator
Web service implements an operation, named mediateX2Y, where X and Y
are replaced with the names of the input and output messages of operations
specified in the WSDL files related to the mediator Web service. Inputs to
the mediation operation are the values that have to be transformed into the
representation specified in context annotations. Outputs of the operation are
the transformed values that have the expected meaning for the target oper-
ation in the composition. Details on the runtime generation and deployment
of mediator Web services are given in Section 6.1.

—Updating Original Composition Process Step. Invocations to the generated
mediator Web services from step 2 are inserted into the original WS-BPEL
code according to Algorithm 1, presented next. The new WS-BPEL code uses
the endpoints of dynamically generated mediator Web services combined with
required <invoke> elements. A general template for mediator Web service in-
vocation is depicted in Listing 2. After replacing all implicit and explicit data

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:15

Listing 2. Mediator invocation in WS-BPEL.

flows, the contextualized WS-BPEL process is ready to be executed by any
usual WS-BPEL execution engine. During the execution of the contextualized
WS-BPEL process, mediator Web services are invoked to handle the seman-
tic heterogeneities of data. The different steps performed by mediator Web
services are summarized in Section 6.2.

5.3 Dynamic Generation of Contextualized Processes

WS-BPEL does not always make the data flows in a composition explicit, since
it is meant to be “programming at large.” Data flows in WS-BPEL are encapsu-
lated in <variable> elements. We distinguish between implicitly shared data
between partners or explicitly shared data copied using <assign> elements.
Our approach consists in locating implicit and explicit data flows and replacing
them with invocations to mediator Web services.

First, let us consider explicit data flows described with <assign> elements.
Such elements contain one or more <copy> elements, themselves containing
a <from> element and a <to> element that, respectively, describe where data
comes from and where it goes. Mediation is concerned with elements that are
assigned from one variable to another variable only. We assume that the se-
mantics of data entered manually by the composition designer (expressions or
literal values) matches the semantic requirements of the business process. To
integrate mediator Web services into WS-BPEL, we replace selected <assign>
statements with an invocation to a generated mediator Web service, with the
sequence depicted in Listing 2.

A <sequence> element allows consecutive execution of the contained ele-
ments by first building the input message for the mediator invocation by using
an <assign> activity. Secondly, the mediator is invoked using an <invoke> el-
ement followed by an <assign> activity to extract the mediated data from the
output message to the destination variable. By replacing the original <assign>
element with the WS-BPEL code presented in Listing 2, the mediator Web ser-
vice is inserted into the WS-BPEL composition to intercept and adapt the data
flow. The generation of mediator Web services from the WSDL descriptions of
the source and target Web services is described in detail in Section 6.1.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:16 • M. Mrissa et al.

Algorithm 1. BPEL Contextualization Algorithm

1: for all assign ∈ findElements(“assign”)

2: in ← getFromElement(assign)

3: out ← getToElement(assign)

4: if in ∈ “variable” ∧ out ∈ “variable”

5: newAssign ← createMediationSeq(in, out)
6: replace(assign, newAssign)

7: end if
8: end for

9: for all seq ∈ findElements(“sequence”)

10: for all (a, b) ∈ (getInvokeChildren(seq)2)

11: if getOutputVar(a) = getInputVar(b) ∧ isBefore(a, b)

12: mediationCode ← createMediationSeq(getOutputVar(a), getInputVar(b))

13: insertBefore(b, mediationCode)

14: end if
15: end for
16: end for
17: for all flow ∈ findElements(“flow”)

18: for all (a, b) ∈ (getInvokeChildren(flow)2

19: if getOutputVar(a) = getInputVar(b)

20: if a.hasChild(“source”) ∧ b.hasChild(“target”)
21: src ← a.getChild(“source”)

22: target ← b.getChild(“target”)
23: if getLinkName(src) = getLinkName(target)
24: mediationCode ← createMediationSeq(getOutputVar(a), getInputVar(b))

25: mediationCode.getChild(“sequence”).append(b)

26: replace(b, mediationCode)

27: end if
28: end if
29: end if
30: end if
31: end if

To handle implicit data flows, we need to locate shared variables, namely,
variables that are first used as output of an <invoke> element, and then di-
rectly used as input of another consecutively executed <invoke> element. In
WS-BPEL this situation happens in the following cases: (1) A <sequence> ele-
ment contains several <invoke> child elements, and (2) a <flow> element contains
several <invoke> child elements that are bound together through a <link> ele-
ment. Algorithm 1 shows the detection in WS-BPEL of the explicit and implicit
data flows described previously, and the modifications performed to insert the
mediation code described in Listing 2.

The first part of the algorithm (lines 1 to 8) detects explicit data flows de-
scribed with <assign> elements. The findElements function is used to locate all
the assign elements. Then, <from> and <to> child elements are extracted from
each <assign> element (lines 2 and 3) and if both are variables (line 4), they
are used by the createMediationSeq function to create the mediation code (line 5)
that replaces the former <assign> element (line 6).

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:17

Lines 9 to 16 show the detection of consecutive <invoke> elements in a se-
quence. Function getInvokeChildren(sequence) gets the <invoke> child elements
that belong to the same sequence. The getInputVar(invoke) and getOutputVar(invoke)
functions extract the information contained in the inputVariable and output-
Variable attributes of the selected <invoke> element. Function isBefore(a, b) ver-
ifies that element a is executed before element b in the WS-BPEL code. So,
if two <invoke> elements of a sequence (line 9 and 10) have matching output
and input variables and are in the right execution order (line 11), the media-
tion code (line 12) is inserted just before the second <invoke> operation with the
insertBefore function (line 13), so that mediation is only performed if necessary.
In effect, it should be noted that other elements such as <switch> may change
the execution of the workflow.

Lines 17 to 31 show the detection of related <invoke> elements in a flow.
The algorithm identifies <invoke> elements that have identical inputVariable
and outputVariable attributes, which possibly characterizes an implicit data flow
(lines 17 to 19). These elements have to be related to each other by containing a
<source> and <target> children that have the same linkName attribute (lines 20
to 23). In this case, the generated mediation code (line 24) includes the second
<invoke> element (line 25) that is added with the append function. So, it replaces
the original <invoke> element with a sequence including both the mediation code
and the original invocation.

The aforesaid algorithm is essential to generate the contextualized WS-
BPEL, which weaves the mediation concern into the original business process
by including calls to mediator Web services generated on-the-fly.

6. IMPLEMENTATION WORK

A prototype has been developed as a proof-of-concept of the feasibility of this
architecture under the JavaTM environment. It includes several components. A
graphical user interface enables providers to annotate WSDL files with context.
A model-driven Web service generator deploys mediator Web services in Axis2
runtime. A mediator Web service has been implemented which reads-in context
annotation from WSDL files and converts data from a source context to a target
context. The contextualization algorithm for WS-BPEL processes has also been
implemented.

6.1 Model-Driven Web Service Generation

During the contextualization step of the original WS-BPEL process, one or
several mediator Web services need to be generated. Therefore, we imple-
mented a flexible and lightweight model-driven code generator based on a
platform-independent object model (IOM). Based on the IOM, we implemented
a platform-specific model (PSM) for the Java platform.

The main elements of the code generator are shown in Figure 6. A model
description specified in XML acts as an input to the code generator. The input
file is parsed by an XMLImporter component, which builds the IOM correspond-
ing to the XML description of the model. The IOM is then transformed into
PSM-oriented Java. The JavaExporter component operates directly on the PSM

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:18 • M. Mrissa et al.

XML
Importer

Internal Object Model 
(IOM)

Platform Specific Model 
(PSM)

Java
Exporter

Velocity
template

Model
Java
Code

Fig. 6. Model-driven Web service generator.

and iterates through every class and interface to generate the Java code. The
actual code generation is supported by the Apache Velocity template engine
[Apache Software Foundation 2006b]. Based on this model-driven code gener-
ator, we implemented a special Axis2CodeGenerator component for generating a
Web service for the new Axis2 [Apache Software Foundation 2006a] runtime,
which executes the following steps as next described.

(1) Dynamic Code Generation and Compilation. The aforementioned code generator
is used to dynamically generate and compile a Java class which will be
deployed as Web service. All libraries for compiling the code are dynamically
added to the classpath.

(2) Deployment Descriptor Generation. Axis2 requires a special deployment de-
scriptor called services.xml which specifies the main class implementing
the service logic. Additionally, each operation of the class that should be
exposed as a Web service operation has to be specified. Axis2 implements
purely document-style Web services by leveraging a top-down (or “WSDL-
first”) approach. Due to the fact that we generate the implementation of the
Web service directly, we use a bottom-up approach, which is typically used
for RPC-style Web services. Therefore, we use a special message handler,
called RPCMessageReceiver, which is specified in the deployment descriptor. It
is responsible for converting the document-style nature of a Web service as
required by Axis2 to the RPC structure that we use internally (by exposing
a Java class as a Web service).

(3) Code Packaging and Deployment. The compiled code together with the deploy-
ment descriptor and the required libraries are packaged together into an
.aar file (Axis2 archive). The new deployment model of Axis2 allows a very
simple deployment step. The archive file created in the previous step is
simply copied to the Axis2 deployment directory (specified via properties in
our system). The deployment itself is then handled by the Axis2 runtime.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:19

Composition process

Car Rental
Web Service

"price"
double

Addition
Web Service

Output Input

Context Context1 2

"price"
double

Domain
ontologies

Context
ontologies

Rules
Repository

Mediator
Web service

Web Service interface

Context reader
from WSDL

Mediation core
component

Rule-based
engine

1

2 3

4

Fig. 7. Detailed view of the mediator Web service.

On the basis of the Axis2CodeGenerator, we developed a component named
MediationServiceBuilder that currently builds the mediator Web service based
on the WSDL files and the operation names it gets as an input. This input data
defines the services and data types for which a mediator has to be generated.
Based on this input data, it dynamically builds a model for the Web service, con-
sisting of a Java class and one operation. The implementation of the mediator
operation is presented in detail in the next section.

One important aspect about the lifecycle of the mediator Web service
is the fact that it automatically gets undeployed if the corresponding WS-
BPEL process is undeployed. At a technical level this is achieved by reg-
istering a deployment listener to the WS-BPEL engine to receive notifica-
tions about the deployment or undeployment of various processes. If the
MediationServiceBuilder receives such a notification, it has to determine
the corresponding mediator Web service and undeploy it from the Axis2
runtime.

6.2 Operation of Mediator Web Services

In this section, we detail the internal operation of mediator Web services. The
latter are inserted into composition processes between original Web services
that may have context heterogeneities. We discuss the mediation steps per-
formed by mediator Web services with the example of this article. We consider
the data flow from the car rental Web service to the addition Web service, pass-
ing through the mediator Web service. This one takes as input a price message
part sent by our car rental Web service, and then performs the steps described
in Figure 7 before sending the result of the computation, in a price message
part, to the addition Web service.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:20 • M. Mrissa et al.

In step one, the WSDL files of the car rental and addition Web services are
fetched by the mediator Web service. Then, these files are parsed in order to
extract the required elements. In particular, we are interested in the annota-
tions of the message parts that the mediator receives and sends. In our running
example, these are the output and input price message parts of the car rental
and addition Web services the respectively. Extracted annotations refer to the
domain concept and the semantic properties necessary to obtain a correct data
interpretation. An example of such an annotation of the car rental Web service
was depicted in Listing 1.

In step two, the mediator Web service identifies the exchanged concepts in do-
main ontologies. The annotation is a list of attributes, and the first annotated
attribute always refers to the domain concept. Here, the annotated message
part refers to the price concept of the domain ontology identified with the names-
pace dom1 in the WSDL file. The mediator Web service checks that the concepts
of both the car rental and addition Web services match, namely, that they verify
a subsumption or equivalence relation. This is a simple approach to semantic
matching, but additional capacities can be integrated into the mediator. For a
good survey on semantic integration techniques, see Noy’s work [2004].

In step three, an in-memory tree is built from the context ontology to repre-
sent the context related to the price concept. The annotated context attributes
corresponding to the price concept are identified and their values added to the
tree. Annotated context attributes refer to OWL individuals (instances), so they
describe not only modifiers, but also the values they take in the context of this
Web service. In Listing 1, the ctxt1:France attribute is an instance of the country
concept in the context ontology. Moreover, the ctxt1:ScaleFactorOne attribute is
an instance of the scaleFactor concept in the context ontology. We assume that
providers of Web services correctly add this information to the context ontology
before annotating WSDL files.

In step four, the mediator Web service communicates with a rule engine to
perform several tasks. The first task consists in inferring the values of dynamic
modifiers that are part of the context, using rules stored in the knowledge base.
For example, being given (country = France) as a fact, the rule engine infers
(currency = euro) by querying the knowledge base. Thus, the currency modifier is
being affected by the value euro.

The second task consists in converting received data into the required context
representation. From the previous steps, we obtained two in-memory context
representation trees that have valued or not-valued elements. Next, the me-
diator compares each element of the context and queries the rule engine to
see if the contained values are convertible. If a value is missing, the mediator
queries the knowledge base for a rule that specifies a default value. If no such
rule exists, the conversion is canceled and an error is thrown.

The knowledge base also contains conversion rules that allow dynamic
conversion between context values. For instance, the price in our example is
converted into the required currency by calling a remote component that pro-
vides an up-to-date currency conversion rate. Such conversion needs to be dy-
namic so that it can answer the requirements of the temporal perspective of
context.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:21

6.3 Test Case and Evaluation

A test experiment has been conducted on the basis of the example developed
in this work. Our current composition example is hosted by an Apache Tomcat
container, and our mediator Web service implementation uses Jena 2 API and
Drools rule engine to access and manipulate OWL ontologies and perform data
conversion.5 The prototype includes illustrative domain and context ontologies
for describing the required concepts and contexts.6

The implementation performs at-runtime context mediation, enabling mean-
ingful execution of composition. In the example of this article, not only do
the price concepts match, but data is transformed at runtime to comply with
the different scale factors, heterogeneous date formats (that allow getting
up-to-date conversion rates between currencies), and VAT rates (that also are
not always included in the price) described in the context ontology.

As future work, we envision further practical tests and performance evalu-
ation. However, such experiments require additional domain and context on-
tologies that must be validated by domain experts, as well as additional sets of
conversion rules and functions. Therefore, and for the purpose of this article,
we limited our experiments to the test case developed previously as a proof-of-
concept of the feasibility of our architecture. Ongoing work also concerns in-
tegration of the contextualization algorithm with WS-BPEL implementations
such as ActiveBPELTM or Apache OdeTM.

7. CONCLUSION

In this article, we presented a context-based approach for semantic Web services
composition. The approach revolves around the following aspects: annotating
WSDL descriptions so that Web services are now described with contextual
details, deploying a context-based mediation architecture so that implicit as-
sumptions on data flow are made explicit, and automatically generating and
invoking Web service mediators so that the data heterogeneities between Web
services are handled during the composition.

Future work aims at looking into the following issues. First, unexpected
changes in some Web services’ nonfunctional properties could lead to substitut-
ing some Web services with others offering the same functionality. The chal-
lenge is to make this substitution automatic, dynamic, and transparent. Second,
Web service discovery and selection steps could ease semantic mediation dur-
ing the composition step. The challenge is to ensure that semantic mediation
is taken into account during discovery and selection stages.

REFERENCES

ANDREWS, T., CURBERA, F., DHOLAKIA, H., GOLAND, Y., KLEIN, J., LEYMANN, F., LIU, K., ROLLER, D., SMITH,

D., THATTE, S., TRICKOVIC, I., AND WEERAWARANA, S. 2003. Business process execution language

for web services (BPEL4WS), version 1.1.

APACHE SOFTWARE FOUNDATION. 2006a. Axis2. http://ws.apache.org/axis2/ (last accessed:

May 29, 2006).

5http://tomcat.apache.org/, http://jena.sourceforge.net/and http://www.drools.org/.
6http://www710.univ-lyon1.fr/∼mmrissa/

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

4:22 • M. Mrissa et al.

APACHE SOFTWARE FOUNDATION. 2006b. Velocity — Java-Based template engine. http://jakarta.

apache.org/velocity/ (last accessed: May 29, 2006).

ARROYO, S. AND STOLLBERG, M. 2004. WSMO primer. WSMO deliverable D3.1, DERI working draft.

Tech. Rep., WSMO. http://www.wsmo.org/2004/d3/d3.1/.

BOX, D., EHNEBUSKE, D., KAKIVAYA, G., LAYMAN, A., MENDELSOHN, N., NIELSEN, H. F., THATTE, S., AND

WINER, D. 2000. Simple object access protocol (SOAP) 1.1. Tech. Rep., W3C.

CABRAL, L. AND DOMINGUE, J. 2005. Mediation of semantic web services in IRS-III. In Proceedings
of the Joint 1st International Workshop on Mediation in Semantic Web Services (MEDIATE)
and 3rd International Conference on Service Oriented Computing (ICSOC), Amsterdam, The

Netherlands.

CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEERAWARANA, S. 2001. Web services description

language (WSDL) 1.1, W3C note. Tech. Rep., W3C. March.

FENSEL, D. AND BUSSLER, C. 2002. The web service modeling framework WSMF. Tech. Rep., Vrije

Universiteit Amsterdam, The Netherlands.

GRUBER, T. 2000. What is an ontology? http://www-ksl.stanford.edu/kst/what-is-an-
ontology. html.

KASHYAP, V. AND SHETH, A. P. 1996. Semantic and schematic similarities between database objects:

A context-based approach. VLDB J. 5, 4, 276–304.

KLEIN, M., KÖNIG-RIES, B., AND MÜSSIG, M. 2005. What is needed for semantic service de-

scriptions - A proposal for suitable language constructs. Int. J. Web Grid Serv 1, 3-4, 328–

364.

MAAMAR, Z., BENSLIMANE, D., AND NARENDRA, N. C. 2006. What can context do for web services?

Commun. ACM 49, 12, 98–103.

MARTIN, D. L., PAOLUCCI, M., MCILRAITH, S. A., BURSTEIN, M. H., MCDERMOTT, D. V., MCGUINNESS, D. L.,

PARSIA, B., PAYNE, T. R., SABOU, M., SOLANKI, M., SRINIVASAN, N., AND SYCARA, K. P. 2004. Bringing

semantics to web services: The OWL-S approach. In Proceedings of the 1st International Workshop
on Semantic Web Services and Web Process Composition (SWSWPC), J. Cardoso and A. P. Sheth,

eds. Lecture Notes in Computer Science, vol. 3387. Springer, 26–42.

MEDJAHED, B. AND BOUGUETTAYA, A. 2005. A dynamic foundational architecture for semantic web

services. Distrib. Parallel Databases 17, 2, 179–206.

MILLER, J., VERMA, K., RAJASEKARAN, P., SHETH, A., AGGARWAL, R., AND SIVASHANMUGAM, K. 2004.

WSDL-S: Adding semantics to WSDL (white paper). Tech. Rep., Large Scale Distributed In-

formation Systems. http://lsdis.cs.uga.edu/library/download/wsdl-s.pdf.

MOCAN, A., CIMPIAN, E., ZAREMBA, M., AND BUSSLER, C. 2004. Mediation in web service modeling

execution environment (WSMX). In Information Integration on the Web (IIWeb), Toronto, Canada.

MRISSA, M., GHEDIRA, C., BENSLIMANE, D., AND MAAMAR, Z. 2006a. A context model for semantic

mediation in web services composition. In Proceedings of the 25th International Conference on
Conceptual Modeling, D. W. Embley et al. eds. Lecture Notes in Computer Science, vol. 4215.

Springer, 12–25.

MRISSA, M., GHEDIRA, C., BENSLIMANE, D., AND MAAMAR, Z. 2006b. Towards context-based mediation

for semantic web services composition. In Proceedings of the 18th International Conference on
Software Engineering and Knowledge Engineering (SEKE), San Francisco, CA.

NOY, N. F. 2004. Semantic integration: A survey of ontology-based approaches. SIGMOD Rec. 33,

4, 65–70.

NOY, N. F. AND HAFNER, C. D. 1997. The state of the art in ontology design: A survey and compar-

ative review. AI Mag. 18, 53–74.

NOY, N. F. AND MC GUINNESS, D. 2000. Ontology development 101: A guide to creating your first

ontology. Tech. Rep. KSL-01-05, Stanford University, California.

PEER, J. 2005. Semantic service markup with SESMA. In Web Service Semantics Workshop (WSS)
at the 14th International World Wide Web Conference (WWW).

SAWSDL WORKING GROUP. 2006. Semantic annotations for WSDL, W3C working draft. Tech.

Rep., W3C. September.

SCHREIBER, G. AND DEAN, M. 2004. OWL web ontology language reference. http://www.w3.

org/TR/2004/REC-owl-ref-20040210/.

SCIORE, E., SIEGEL, M., AND ROSENTHAL, A. 1994. Using semantic values to facilitate interoperabil-

ity among heterogeneous information systems. ACM Trans. Database Syst. 19, 2, 254–290.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.



P1: OJL

ACMJ343-04 ACM-TRANSACTION November 7, 2007 3:53

A Context-Based Mediation Approach • 4:23

SPENCER, B. AND LIU, S. 2004. Inferring data transformation rules to integrate semantic web ser-

vices. In Proceedings of the International Semantic Web Conference, S. A. McIlraith et al. eds.

Lecture Notes in Computer Science, vol. 3298. Springer, 456–470.

UDDI WORKING GROUP. 2001. Universal description, discovery, and integration of business for the

web. http://www.uddi.org.

W3C. 2004. XML schema part 2: Datatypes second edition. Tech. Rep., W3C. October.

http://www.w3.org/TR/xmlschema-2/.

WIEDERHOLD, G. 1992. Mediators in the architecture of future information systems. IEEE Com-
put. 25, 3, 38–49.

WILLIAMS, A. B., PADMANABHAN, A., AND BLAKE, M. B. 2005. Experimentation with local consen-

sus ontologies with implications for automated service composition. IEEE Trans. Knowl. Data
Eng. 17, 7, 969–981.

Received June 2006; revised January 2007; accepted April 2007

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 4, Publication date: November 2007.


