
A Multi-Layer and Multi-Perspective Approach to Compose We b Services

Djamal Benslimane1, Zakaria Maamar2, Yehia Taher1,
Mohammed Lahkim3, Marie Christine Fauvet4, and Michael Mrissa1

1Claude Bernard Lyon 1 University, Lyon, France
2Zayed University, Dubai, United Arab Emirates

3King Saud University, Riyadh, Kingdom of Saudi Arabia
4Joseph Fourier University, Grenoble, France

Abstract

This paper presents a Web services composition approach
that is built upon three layers known as component, commu-
nity, and composite. The contribution of each layer towards
this approach is assessed from two perspectives known as
organization and management. Furthermore this paper dis-
cusses how Web services in a community are specialized
into abstract and concrete. Interactions between abstract/-
concrete Web services and composite Web services happen
through a driver known as Open Service Connectivity. This
driver permits first, binding any abstract Web service to any
composite Web service and second, triggering any concrete
Web service from any composite Web service.
Keywords. Community, Composition, OSC, Web service.

1. Introduction

Web services are now established as the technology of
choice that makes applications interoperate. In addition
businesses that deploy Web services can take advantage of
their benefits in terms of flexibility, scalability, and open-
ness. Flexibility means the ability of a business to adapt its
core processes by selecting the appropriate operations that
accommodate partners’ requirements. Scalability means
the capacity of a business to interact with a number of
partners without having its core processes disrupted. Fi-
nally openness means the capacity of a business to privi-
lege loosely-coupled solutions/open standards over tightly-
coupled solutions/in-house standards.

Web services composition addresses the situation of
users’ requests that cannot be satisfied by any single, avail-
able Web service, whereas a composite Web service ob-
tained by combining available Web services might be used.
In an open environment like the Internet, a given func-
tionality such as BookOrdering can be offered by sev-

eral, independent Web services. Obviously, a client appli-
cation should be able to change Web services with minor
impact on the ongoing performance of the composite Web
service that uses these Web services. Motives of changes
include Web service’s non-responsiveness to client requests
or better arrangement with another, competitor Web service.
However, changing Web services is tedious as the common
practice is to make Web services bind to composite Web
services in a hard-coded way. This is reported in various
projects [2, 7, 10, 13]. In this paper we take Web services
composition one step further by shedding the light on a
new element that impacts the way Web services get bound
during composition. We denote this new element by com-
munity and define it as a means to provide a common de-
scription of a desired functionality like FlightBooking
without explicitly referring to any specific Web service like
EKFlightBooking that implements this functionality.

In this paper we present a multi-layer and multi-
perspective approach to compose Web services (Fig. 1). In
this approach, composition spreads over three different lay-
ers, which we denote by component, community, and com-
posite. In addition to these layers, composition is handled
from two different perspectives, which we denote by orga-
nization and management. On one hand, organizing Web
services means building a community that consists first, of
an abstract Web service that identifies the common func-
tionality of this community and second, of a dynamic set
of concrete Web services that implement this functional-
ity in different ways. On another hand, managing Web
services means working out the computation modules that
guide composition in terms of how Web services engage in
community, how to monitor Web services’activities within
a community, etc.

The research discussed in this paper strengthens the role
of the community layer in developing adaptable composite
Web services. This research also raises some questions that
are tackled throughout this paper:

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

Composite WS
1
 Composite WS
k

WS-Community
1
 WS-Community
j
Community layer

Composite layer

Consultation

Engagement
 Announcement

Management

Consultation
 Composition

Management

Component layer
 WS
1
 WS
2
 WS
i
 Announcement
Engagement

Organization perspective
 Management perspective

Legend

Membership
 Module execution requiring direct-higher layer
Module self-execution
 Module execution requiring direct-lower layer

Figure 1. The proposed approach for Web services composition

1. How to characterize the component, community, and
composite layers? And what types of interactions cross
these layers according to the management and organi-
zation perspectives?

2. What are the factors that trigger the development/dis-
mantlement of a community of Web services? And
how much does this development/dismantlement af-
fect the way composite Web services are structured and
carried out?

3. How to classify Web services in a community into ab-
stract and concrete types? What are the mechanisms
that support mapping abstract Web services onto con-
crete Web services and vice-versa? How do abstract
Web services bind to composite Web services? And
how do composite Web services trigger concrete Web
services through abstract Web services?

4. And how to specify the management operations per
type of layer? How to keep track of these manage-
ment operations? And how to embed these operations
into modules of the management perspective?

The rest of this paper is organized as follows. Section 2
provides a macro-discussion on our Web services composi-
tion approach. A micro-discussion of this approach is given
in Section 3 with emphasis on the role of communities of
Web services. Section 4 discusses the way interactions hap-
pen between composite Web services and component Web
services. Section 5 presents the implementation work. Sec-
tion 6 concludes the paper.

2. The multi-layer/perspective approach

We discuss at the macro-level the component, commu-
nity, and composite layers from organization and man-

agement perspectives. This discussion highlights also the
cross-collaboration that occurs between the layers.

2.1. Layer description - organization perspective

The component layer contains Web services. Providers
develop and describe Web services prior to informing them
to potential users through UDDI registries. A Web service
implements a functionality that permits satisfying users’
needs. Some functionalities include BookOrdering,
WeatherForecast, AirfareQuote, etc. A Web ser-
vice’s functionality can come along with non-functional de-
tails that usually revolve around the QoS notion.

The community layer is a means to gather Web services
with the same functionality into groups known as communi-
ties. The component layer feeds the community layer with
Web services. Although Web services belong to different
providers, they can still offer the same functionality, regard-
less of how this functionality is defined, advertised, and per-
formed by each Web service. We note that a community of
Web services has a dynamic content: new Web services may
join, other Web services may leave, some Web services may
resume operation after suspension, etc. Conflicts in a com-
munity could arise, too. For example, a Web service does
no longer reside in a community but its peers still believe it
is in the community. Moreover, Web services do not always
expose a cooperative behavior when they become members
of a community. For example, they can announce mislead-
ing information such as lower execution-cost in order to
enhance their participation opportunities in composite Web
services. In [8], we discuss how a similar case affects the
reputation level of Web services in a community.

The composite layer is motivated by the complex nature
of users’ needs, which sheds the light on the requirement of
composing several Web services. The content of the com-

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

munity layer feeds the composite layer with the necessary
component Web services. The feeding process consists of
two steps. The first step identifies the communities of Web
services that have the functionalities that permit satisfying
a user’s need. The identification is based on the unique
functionality that labels each community. It is noted that
labeling a community occurs through an abstract Web ser-
vice that acts on behalf of this community. The second step
identifies within the selected communities the Web services
that implement the required functionalities. It is noted that
implementing functionalities occurs through concrete Web
services, which are identified upon recommendation of the
abstract Web services of the selected communities.

2.2. Layer description - management perspective

The management perspective shows the different com-
putation modules that intervene in each layer. Though some
modules have similar labels in Fig. 1, their role differs ac-
cording to the layer type. In Fig. 1, a specific representa-
tion formalism is used in the management perspective. A
module is represented with a rectangle. A regular rectan-
gle (i.e., no arrow) means that the execution of the module
happens within the borders of a layer. A rectangle with an
arrow pointing up means that the execution of the module
requires elements from a direct-higher layer as shown by
the organization perspective. Finally, a rectangle with an
arrow pointing down means that the execution of the mod-
ule requires elements from a direct-lower layer as shown by
the organization perspective.

The component layer encompasses two modules: an-
nouncement and engagement. The announcement module
is responsible for signing Web services up with UDDI reg-
istries. This permits informing providers of Web services
about the existence of other Web services, so potential
communities can be formed upon similarity assessment of
Web services’ functionalities [5]. The engagement mod-
ule is responsible for framing the participation of Web ser-
vices in communities. Some actions in the engagement
module concern identifying of the appropriate community,
adding/withdrawing requests of Web services to/from com-
munities, and monitoring of Web services’ activities within
a community when they participate in compositions.

The community layer encompasses four modules: an-
nouncement, engagement, consultation, and management.
The announcement module is responsible as described
above. This permits to inform composite Web services
about the existence of communities and their respective
functionalities. The management module is responsible for
updating the content of a community when it comes to
adding/withdrawing new/existing Web services and check-
ing Web services’ credentials for security reasons. The
consultation module supports browsing the UDDI registries

where Web services are announced, so that these latter are
invited to join in communities. Finally, the engagement
module is responsible for framing the participation of com-
munities (through Web services) in composite Web ser-
vices. Some actions in the engagement module concern
identifying Web services, adding/withdrawing requests of
Web services to/from composite Web services, and moni-
toring the interactions with composite Web services during
Web services selection, binding, and triggering.

The composite layer encompasses three modules: con-
sultation, composition, and management. The management
module is responsible for updating the content of a com-
posite Web service when it comes to adding/withdrawing
new/existing component Web services. We recall that a
component Web service is selected out of a community.
The consultation module supports browsing the UDDI reg-
istries where communities of Web services are announced,
so that these latter are invited to be part of composite Web
services. Finally, the composition module implements the
specification of a composite Web service. This specification
dictates at design-time multiple elements like execution or-
der of component Web services, data dependencies between
component Web services, and corrective strategies in case
component Web services raise exceptions. At runtime, the
composition specification is executed to identify and trigger
component Web services, to oversee their execution, to co-
ordinate their actions to avoid conflicts, just to cite a few.
Different specification languages for Web services compo-
sition exist, e.g., the Web Services Choreography Descrip-
tion Language [6] and the Web Services Business Process
Execution Language [1].

3. Community of Web services

The following is a micro-description of the community
layer. The other two layers are to a certain extent commonly
used in Web services projects.

3.1. Definitions

In Longman Dictionary, community is “a group of peo-
ple living together and/or united by shared interests, reli-
gion, nationality, etc”. In the field of Web services, Bena-
tallah et al. define community as a collection of Web ser-
vices with a common functionality, although these Web ser-
vices have different non-functional properties like different
providers and different QoS parameters [2]. Medjahed and
Bouguettaya use community to cater for an ontological or-
ganization of Web services sharing the same domain of in-
terest [9].

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

Binding

A-WS
1

C-WS
1i
C-WS
11

Community
1
 of Web services

Mapping layer

A
bs

tr
ac

t

le

ve
l

C
on

cr
et

e

le

ve
l

UDDI

Consultation/Announcement
 Providers of

(C-) Web services

Announcement

A-/C- Web

services

Composite

Web services

Legend

A-WS: Abstract Web service; C-WS: Concrete Web service

Triggering

Open service

connectivity

Figure 2. Operations in a Web services community

3.2. Role and management of a community

The development of a community is a designer initia-
tive. The designer develops a Web service by defining its
functionality, describing it with WSDL, and posting it on an
UDDI registry. We qualify this Web service as abstract for
three reasons: it leads a community, it does not implement
the functionality it offers, and it does not participate in any
composition. The engagement of an abstract Web service in
composition occurs through other Web services, which we
qualify as concrete. Providers of concrete Web services join
the community that hosts the abstract Web service subject
in order to offer the functionality of this abstract Web ser-
vice. Assessing functionality similarity is discussed in our
previous research [12]. Contrarily to an abstract Web ser-
vice, a concrete Web service implements its functionality
by defining and deploying the necessary code operations.

Fig. 2 illustrates the operations in a community of Web
services. Our definition of community goes beyond gath-
ering similar Web services in a community and considers a
community as a means for providing a common descrip-
tion of a desired functionality (e.g., FlightBooking)
without explicitly referring to any concrete Web service
(e.g., EKFlightBooking) that implements this function-
ality. In a community, a mapping layer exists between
the abstract and concrete levels. The role of this layer is
to establish correspondences, according to specific ontolo-
gies [4], between (i) input and output arguments of and
(ii) operations of the abstract Web service and all the con-
crete Web services that reside in the community. In ad-
dition, the mapping layer establishes how a concrete Web
service implements the functionality of the abstract Web
service. This implementation varies from one concrete
Web service to another according to the identified argu-
ment and operation correspondences (Section 4.2). In-
deed, a concrete Web service could rely on other con-
crete Web services that are located in other communi-
ties to complete the functionality. This might not be
the case with another concrete Web service that imple-
ments the functionality itself (i.e., self-sufficient). For-

mally, we define a community Ci with the triple Ci =<

AWSi, CWS(i,j), Mapping(AWSi, CWS(i,j)) > where
A.WSi is the abstract Web service, CWS(i,j) is the set of
concrete Web services, and Mapping(AWSi, CWS(i,j))
is the set of correspondences between the abstract Web ser-
vice and all the concrete Web services in the community Ci.

When the functionality of an abstract Web service satis-
fies a user’s needs as prescribed in the composite Web ser-
vice specification, this abstract Web service agrees first, to
bind to the composite Web service and second, to interact
with all the concrete Web services that reside in its commu-
nity. The objective of this interaction is to identify a con-
crete Web service that will handle the triggering requests
that will originate from the composite Web service. In [8],
we used the contract-net protocol [11] to identify concrete
Web services. The binding and triggering between com-
posite Web service and abstract/concrete Web service oc-
cur through a specific driver that we denote by Open Ser-
vice Connectivity (OSC). For simplicity purposes we do not
show in Fig. 2 how the designer of a composite Web service
consults the UDDI registry so that the abstract Web services
are identified. More details on the role of the OSC are given
in Section 4.

Similar to our Web services classification into abstract
and concrete, Bianchini et al. suggest a service ontology
that helps organize Web services in three abstraction lay-
ers [3]: concrete Web services, abstract Web services, and
subject categories. Concrete Web services are directly in-
vocable. Each cluster of similar concrete Web services is
associated with an abstract Web service that is not invoca-
ble. Finally, subject categories organize Web services into
standard taxonomies and provide a topic-driven access to
the underlying abstract Web services.

4. The open service connectivity driver

4.1. Role and offered functionalities

In Fig. 2, the role of the OSC is to achieve the bind-
ing of any abstract Web service to any composite Web ser-

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

Table 1. Open service connectivity’s proposed functions

Function Description
Find(functionality) Search an UDDI registry for an abstract Web service on the basis of the required functionality.
GetDetail(AWS) Request binding information on an abstract Web service using the output of Find(functionality).
Bind(AWS) Establish a transparent binding with a concrete Web service using the details returned by

GetDetail(AWS).
GetListOfCWS(AWS) Request the set of concrete Web services in the community that an abstract Web service leads

using the output of Find(functionality).
GetDetail(CWS) Request binding information on a concrete Web service from the list returned by

GetListOfCWS(AWS).
Trigger(CWS) Establish a triggering request with a concrete Web service using the details returned by

GetDetail(CWS).

vice and the triggering of any concrete Web service from
any composite Web service. This happens regardless of the
concrete Web service in a community that will perform the
functionality that the composite Web service requires. The
OSC translates composite Web services’ and abstract/con-
crete Web services’ queries into commands that both un-
derstand. Indeed both composite and abstract/concrete Web
services need to be OSC compliant, i.e., they must be capa-
ble of issuing and responding to OSC commands. These
commands are related to function calls, error codes, and
data types. Monitoring these commands turns also out to
be useful for auditing and billing purposes, as this permits
knowing which function was executed, how much time the
execution lasted, which exception was raised, etc. Table 1
lists some functions the OSC provides.

Prior to binding a composite Web service, an abstract
Web service associates a logical name with the concrete
Web service that is selected for participation in this com-
posite Web service. Participation mechanisms are outside
this paper’s scope [7]. During binding, the abstract Web
service submits two details to the composite Web service
through the OSC. The first detail is the logical name of the
concrete Web service. The use of logical names avoids re-
ferring to concrete Web service with hard-coded references
and guarantees concrete Web services’ anonymity if they
wish so. The second detail concerns the operations of the
abstract Web service, which correspond to the operations
to identify at the level of concrete Web services. This per-
mits including the invocation actions to these operations in
the specification of the composite Web service. At run time,
the concrete Web service receives commands from the com-
posite Web service through its logical name and the OSC.
These commands result in executing the operations of the
concrete Web service. However, only the operations of the
abstract Web service are reported in the specification of the
composite Web service. As a result, functions for corre-
spondences between concrete and abstract Web services are

deemed appropriate. This is shown in the next section.

4.2. Abstract-Concrete correspondences

The abstract-concrete correspondence process supports
the execution of commands that a composite Web service
submits, through the OSC, to a specific concrete Web ser-
vice. However all these commands are expressed accord-
ing to the definition of an abstract Web service that repre-
sents the community. Thus, correspondence functions are
required between the abstract and concrete Web services.
These functions initially focus on the operations that im-
plement the functionality of a Web service whether abstract
or concrete. Let us assume two abstract and concrete Web
services with different operation names. Once the oper-
ation’s name difference is resolved, additional differences
could arise and concern operations’ input and output ar-
guments in terms of number, name, type, structure, data
unit, and constraints. Correspondences between abstract
and concrete Web services are handled with mapping rules.

To illustrate the use of mapping rules, we assume the fol-
lowing fictive example. FirstUrgentHelp community
gathers Web services dealing with emergency transportation
functionality. This community has FirstUrgentHelp
abstract Web service that offers PickUpPatient() ab-
stract operation. This operation requires patient’s first and
last names, gender, and local address as input parameters.
As output message, it returns a cost in Euros for transport-
ing a patient. Signing FirstCare concrete Web service
up in FirstUrgentHelp community requires defining
mapping rules between its SendUrgentVehicle()
operation and PickUpPatient() operation of
FirstUrgentHelp. Some details on both opera-
tions are given in Fig. 3-(A/B).

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

Abstract Web service Interface

Operation:

PickUpPatient

Input Message:

 Fname: String

 Lname: String

 Sex: String

 Address: String

Ouput Message:

 EuroCost: float

Concrete Web service Interface

Operation:
SendUrgentVehicle

Input Message:

 Name: String

 Gender: Integer

 Street: String

 City: String

Ouput Message
:

 DollarCost: float

(A)
 (
B
)

Mapping rules

Abstract to Concrete

Rule
1
: Name =
AdaptName(Fname,LName)

Rule
2
: Gender =
AdaptGender(Sex)

Rule
3
: Street =
AdaptStreet(Address)

Rule
4
: City =
AdaptCity(Address)

Concrete To Abstract

Rule
5
: EuroCost =
AdaptCost(DollarCost)

(
C
)

Figure 3. Abstract/Concrete Web services mappings

5. Implementation

In the following we discuss the implementation of each
layer of the proposed approach for Web services composi-
tion. We selected bicycle competition as a running case.
Each participant has a watch bracelet that submits various
details to the control center including location, heartbeat
pulse, blood pressure, etc. The bracelet has mainly two
roles: warn the control center in case of health problems,
and submit the geographic coordinates of the participant’s
location. Upon receiving a warning signal, the control cen-
ter dispatches an ambulance to the scene after mapping the
coordinates to a specific address that is known to drivers.
To achieve its mission with success, the control center
runs Competition composite Web service that uses
two Web services along with their respective operations:
FirstCare with SendUrgentVehicle() operation,
and FirstAmbulance with SendAmbulance() op-
eration. We recall that FirstCare Web service runs in
FirstUrgentHelp community. Same comment is made
on FirstAmbulance Web service, which is part of an-
other community.

For the component layer, we implemented the differ-
ent Web services using Java and Axis Java2WSDL util-
ity to automatically generate WSDL descriptions from
Java files. These descriptions are afterwards posted on
an UDDI registry, which is deployed using jUDDI Registry
Framework. Requests to Web services are directed using
Apache SOAP (2.3). Here are details on each Web service:

• FirstCare Web service:

– Operation: SendUrgentVehicle()

– Inputs: Name, Gender, Street, City

– Output: DollarCost

• FirstAmbulance Web service

– Operation: SendAmbulance()

– Inputs: PatientName, Gender, Location

– Output: EuroCost

For the community layer, we developed
FirstUrgentHelp community as reported earlier.
It has an abstract WSDL-file and an XML description-file.
The abstract WSDL-file describes a community’s oper-
ations and input/output parameters and is either posted
on an UDDI registry or manually downloaded. This file
contains a binding section that points towards the XML
description-file. This latter contains identifiers, access
endpoint URLs, and non-functional characteristics of the
provided Web services. This is illustrated in Listing 1. We
also illustrate in Fig. 3-C some of the mapping rules we
developed due to the heterogeneities between abstract and
concrete Web services’ operation and inputs/ouptputs.

� �

<CommunityXMLFile>
<ConcreteWS>

<ID>SC1</ ID>

<QoSModel>
<P r i c e>P1</ P r i c e>
<R e p u t a t i o n>R1</ R e p u t a t i o n>
<a v a i l a b i l i t y>A1</ a v a i l a b i l i t y>

</ QoSModel>
<URLadapter>URLAdapter1</ URLAdapter>

</ ConcreteWS>
. . .

</ CommunityXMLFile>
� �

Listing 1. Community XML description file

For the composition layer, we developed the OSC driver
as a JavaTM library that includes functions for selecting ab-
stract and concrete Web services. A client for communities
was also developed, which triggers the various functions of
the OSC driver. In the current implementation, the client
can perform the following operations: select an abstract
Web service, list currently available concrete Web services,
manually or automatically select a concrete Web service us-
ing some criteria, and invoke the selected Web service. The
matchmaking of operations from abstract to concrete for-
mat is performed via auxiliary adapters, implemented as
Web services, thus enabling the OSC driver to seamlessly
communicate with concrete Web serviced via adapters’ end-
points.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

6. Conclusion

In this paper we presented a multi-layer and multi per-
spective approach for Web Services composition. This ap-
proach is built upon component, community, and composite
layers. Each layer has a role in framing the progress of a
composition scenario. This role is assessed from organiza-
tion and management perspectives. Besides the approach,
the paper highlighted the value-added of building Web ser-
vices communities to composition. A community consists
of an abstract Web service and a set of concrete Web ser-
vices. To support composite Web services and component
Web services interactions, we discussed the open service
connectivity driver, which aims at making the process of
binding Web services flexible at runtime.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business Process Execution Lan-
guage for Web Services, Version 1.1. Standards proposal by
BEA Systems, IBM Corporation and Microsoft Corporation,
2003.

[2] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv
Environment for Web Services Composition. IEEE Internet
Computing, 7(1), January/February 2003.

[3] D. Bianchini, V. De Antonellis, and M. Melchiori. Capa-
bility Matching and Similarity Reasoning in Service Discov-
ery. In Proceedings of The Open Interop Workshop on Enter-
prise Modelling and Ontologies for Interoperability (EMOI-
INTEROP’2005) held in conjunction with CAiSE’2005 con-
ference, Porto, Portugal, 2005.

[4] C. Bussler, D. Fensel, and A. Maedche. A Conceptual Archi-
tecture for Semantic Web Enabled Web Services. SIGMOD
Record, 31(4), 2002.

[5] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity Search for Web Services. In Proceedings of
The 30th International Conference on Very Large Data
Bases (VLDB’2004), Toronto, Canada, 2004.

[6] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. La-
fon, and C. Barreto. Web Services Choreography Descrip-
tion Language, Version 1.0. W3 Candidate Recommenda-
tion, 2005.

[7] Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui. To-
wards an Agent-based and Context-oriented Approach for
Web Services Composition. IEEE Transactions on Knowl-
edge and Data Engineering, 17(5), May 2005.

[8] Z. Maamar, M. Lahkim, D. Benslimane, and Ph. Thiran. To-
wards An Approach for Specifying and Managing Commu-
nities of Web Services. Technical report, Zayed University,
King Saud University, Claude Bernard Lyon 1 University,
and Namur University, January 2006.

[9] B. Medjahed and A. Bouguettaya. A Dynamic Foundational
Architecture for Semantic Web Services. Distributed and
Parallel Databases, Kluwer Academic Publishers, 17(2),
March 2005.

[10] Q. Z. Sheng, B. Benatallah, Z. Maamar, M. Dumas, and
A. H. H. Ngu. Enabling Personalized Composition and
Adaptive Provisioning of Web Services. In Proceedings of
The 16th International Conference on Advanced Information
Systems (CAiSE’2004), Riga, Latvia, 2004.

[11] R. Smith. The contract Net Protocol: High Level Commu-
nication and Control in Distributed Problem Solver. IEEE
Transactions on Computers, 29, 1980.

[12] Y. Taher, D. Benslimane, M.-C. Fauvet, and Z. Maamar. To-
wards an Approach for Web Services Substitution. In Pro-
ceedings of The 10th International Database Engineering &
Applications Symposium (IDEAS’2006), Delhi, India, 2006.

[13] Y. Wang and E. Stroulia. Semantic Structure Matching for
Assessing Web-Service Similarity. In Proceedings of The
1st International Conference on Service-Oriented Comput-
ing (ICSOC’2003), Trento, Italy, 2003.

21st International Conference on Advanced Networking and Applications(AINA'07)
0-7695-2846-5/07 $20.00 © 2007

