Software & System Modeling (2006) 00:
DOI 10.1007/510270-006-0006-z

SPECIAL ISSUE PAPER

Zakaria Maamar - Djamal Benslimane - Michael Mrissa . Chirine Ghedira

Coo’PS — Towards a method for coordinating personalized services

Received: 27 April 2004 / Revised: 20 September 2005 / Accepted: 20 September 2005

© Springer-Verlag 2006

Abstract This paper presents CooPS, which is a method
for Coordinating Personalized Services. These services are
primarily offered to mobile users. The concept of services
is the object of intense investigations from both academia
and industry. However, very little has been accomplished so
far regarding first, personalizing services for the benefit of
mobile users, and second, providing the appropriate method-
ological support for those (i.e., designers) who will be spec-
ifying the operations of personalization. Various obstacles
still exist such as lack of techniques for modeling and spec-
ifying the integration of personalization into services, and
existing approaches for service composition typically facil-
itate orchestration only, while neglecting contexts of users
and services. CooPS consists of several steps ranging from
service definition and personalization to service deployment.
Each step has some representation techniques, which aim at
facilitating the specification and validation of the operations
of coordinating personalized services.

Keywords Service - Coordination - Personalization -
Method

1 Introduction and motivation

Nowadays, Internet technologies are supporting businesses
in the deployment of new strategies of interaction with their
peers and customers. Services, particularly Web services
are among the core components of these strategies [12].
Business-to-Customer (B2C) cases identified the first gener-
ation of Web services. More recently, businesses have started
connecting their processes with other peers through what is
commonly referred to as Business-to-Business (B2B) Web

Communicated by: Bernhard Schitz and Ingolf Kriiger

Z.. Maamar ()
Zayed University, Dubai, United Arab Emirates
E-mail: zakaria.maamar@zu.ac.ae

D. Benslimane - M. Mrissa - C. Ghedira
Claude Bernard Lyon 1 University, Lyon, France

services. The advantages of Web services highlight pri-
marily their capacity to be composed into high-level busi-
ness processes, which could span over multiple distributed
and heterogeneous applications. The widespread adoption of
Web services is due to several standards including WSDL,
UDDI, and SOAP [21].

Parallel to the new role of the Internet as a vehicle of
delivering services, a major growth in the field of wire-
less and mobile technologies is witnessed. Evidences of this
growth are multiple including surfing the Web from mobile
devices and exchanging pictures between mobile devices.
Because users are relying more and more on mobile devices
to conduct their operations, enacting services from such de-
vices, and possibly downloading these services from their
respective hosting sites to such devices for execution con-
stitute research avenues that are worthwhile pursuing [30].
M-services (M for Mobile) denote the services that are in-
tended to be deployable in a wireless environment [19].

Composing services (Web services or M-services) rather
than accessing a single service is essential and offers bet-
ter benefits to users. Composition addresses the situation
of a user’s request that cannot be satisfied by any available
component service, whereas a composite service obtained by
combining the available services (Web services, M-services,
or composite services) might be used for satisfying the re-
quest. Discovering and selecting the component services ac-
cording to the requirements of users, integrating the selected
component services into a composite service, triggering the
composite service for execution, and finally monitoring the
execution of the composite service are among the operations
that users will have to be responsible for. The aforemen-
tioned operations are so complex that is deemed appropri-
ate considering software agents to assist users in perform-
ing them [9]. A software agent is an autonomous entity that
acts on behalf of user, makes decisions, interacts with other
agents, and migrates to distant hosts if needed. Besides the
importance of assisting users, it is also deemed appropriate
supporting those (i.e., designers) who will be responsible for
designing, specifying, validating, and implementing the op-
erations related to service composition.

7. Maamar et al.

Research on services has concentrated on three aspects:
(i) service description and modeling, (ii) service discovery,
and (iii) service composition. One of the composition
operations that will definitely benefit from a methodological
support is the coordination of personalized services in an
environment of mobile users. On the one hand, coordina-
tion means the mechanisms that specify the orchestration
of the component services of a composite service. The
orchestration is about among other things the execution
chronology of the component services, the data that the
component services exchange, the states that the component
services take according to this exchange, and last but not
least the actions that the component services execute.
On the other hand, personalization means the integration
of the preferences of users into the specification of the
orchestration of the component services. In this paper
users’ preferences are of type location and time, where each
type is organized along two perspectives (i.e., execution
perspective — where and when a mobile user would like to
have services performed; delivery perspective — when and
where a user would like to have the outcome of performing
services delivered). Through appropriate mechanisms, users
will have the opportunity to adjust the specification of the
coordination of the component services according first, to
their personal preferences and second, to the features and
constraints of the environment in which they will probably
be located (e.g., is there any network coverage in this
building, is there any printer close to user?). Keeping track
of the progress of the user-adjusted specification requires
some awareness mechanisms, which detect for instance the
changes in the environment. These mechanisms are installed
on top of a structure, which we refer to as context. Context
is the information that characterizes the interaction between
users, applications, and the surrounding environment [10].
In addition, to ensure much better interactions between hu-
mans, applications, and the environment, it is recommended
to proceed with leveraging these interactions to the level of
conversations [16]. A conversation is a consistent exchange
of messages between participants who are involved in joint
operations and thus, have common interests.

Composition of services is a very active area of R&D.
However, very little has been accomplished so far regard-
ing first, personalizing services for mobile users, and sec-
ond, providing the appropriate support through methodolo-
gies for those who will undertake the specification of per-
sonalization operations. In particular, several obstacles still
exist such as (i) lack of techniques for modeling and specify-
ing the integration of personalization into services, (ii) ser-
vices are dealt with as passive components rather than active
components that can be embedded with context-awareness
mechanisms, (iii) existing approaches for service compo-
sition (e.g., WSFL and BPEL) typically facilitate orches-
tration only, while neglecting information about the con-
text of users and services, and (iv) existing coordination
approaches (e.g., WS-Coordination) are not specifically in-
tended to support the deployment of personalized services.
In this paper, CooPS, which is a method for Coordinating

‘Personalized Services in an environment of mobile users is
presented. Section 2 overviews some concepts like Web ser-
vices, software agents, and context. Section 3 illustrates the
steps that CooPS encompasses. Section 4 discusses the role
of context in CooPS. Section 5 is about related work and
Sect. 6 concludes the paper.

2 Preliminaries

What is a Service? In this paper, two types of services are
considered: Web service and M-service. Benatallah et al.
provide the following properties for a Web service [6]:
independent as much as possible from specific platforms
and computing paradigms; mainly developed for inter-
organizational situations; and easily composable so that de-
veloping complex adapters for the needs of composition
is not required. With regard to M-services, Maamar and
Mansoor propose two definitions [19]. The weak definition
is to remotely trigger a service for processing from a mobile
device. In that case, the service acts as an M-service. The
strong definition is to transfer a service from its hosting site
to a mobile device where its processing occurs. In that case,
the service acts as an M-service that has the following prop-
erties: transportable through wireless networks; composable
with other M-services; adaptable according to the comput-
ing features of mobile devices; and runnable on mobile
devices.

What is a Software agent? A software agent is a piece of
software that autonomously acts to carry out tasks on users’
behalf [9]. The design of many software agents is based on
the approach that the user only has to specify a high-level
goal instead of issuing explicit instructions, leaving the how
and when decisions to the agent.

What is Context? Dey defines context as any information
that is relevant to the interactions between a user and an
environment [14]. This information can be about the cir-
cumstances, objects, or conditions by which the user is sur-
rounded. Many researchers have attempted defining context
among them Schilit et al. who propose computing, user, and
physical context [29].

What is Personalization? For Bonett, personalization in-
volves a process of gathering user-information during in-
teraction with the user, which is then used to deliver appro-
priate content and services, tailor-made to the user’s needs.
The aim is to improve the user’s experience of a service [8].
Personalization is mainly about integrating users’ prefer-
ences into the process of delivering any information-related
content or outcome of service computing.

What is Conversation? Conversations have been the object
of multiple investigations in various research fields. In this
paper we discuss conversations from a service perspective. A
conversation is a consistent exchange of messages between
participants that are engaged in joint operations and hence,
have common interests.

What is Coordination? According to Papazoglou and Geor-
gakopoulos, coordination of Web services is to “’control the

CooPS — Towards a method for coordinating personalized services

execution of the component services, and manage dataflow
among them and to the output of the component ser-
vice” [25]. In addition to the communication language com-
ponent, coordination is another core component on which
collaboration is built upon. The purpose of coordination is
to prevent conflicts on various aspects by specifying who is
in charge of doing what and when and where this is sup-
posed to be done [20]. Coordination can be either implicit or
explicit. Implicit coordination assumes that the participants
are aware of the existence of certain rules to adopt. The rules
are predefined, made available, and related to a particular
application-domain (e.g., car traffic). Explicit coordination
requires a clear specification of the responsibilities and the
mechanisms that are used for conflict resolution.

3 Presentation of CooPS
3.1 Service specification step

The first step of CooPS is to specify the component ser-
vices of a composite service. We recall that, in this paper, it
is assumed that these component services are already iden-
tified and integrated into the composite service. The ser-
vice specification step relies on the concept of service chart
diagram [17], which is a means for modeling and defin-
ing services. This diagram enhances a state chart diagram,
putting emphasis on the context surrounding the execution
of a service rather than only on the states that a service
takes (Fig. 1). To this end, the states of a service are wrapped
into five perspectives, each perspective has a set of parame-
ters. The state perspective corresponds to the state chart di-
agram of the service. The flow perspective corresponds to
the execution chronology of the composite service in which
the service participates. The business perspective identifies
the organizations that make the service available. The infor-
mation perspective identifies the data that are exchanged be-
tween the service and the rest of the services of the compos-
ite service. Finally, the performance perspective illustrates
the ways the service is invoked for execution.

A service chart diagram is primarily intended to be used
by designers who are familiar with the concepts and ap-
proaches of design and development. When it comes to ser-
vice personalization (Sect. 3.5), which is the responsibility
of users, these users have to indicate when and where they
would like to have the component services performed ac-
cording to particular periods of time and particular locations.

Service
(Previous Business Next 1
services (M/O) services (M/O)
B
State | State, [---------- State

Location | in out Time
N [

Data from) Performance N Datato _ |
\previous services type next services)

| Previous services

J/ Next services i/

Fig. 1 Service chart diagram of a component service

Users may also indicate when and where they would like to
have the outcome of performing the component services de-
livered. To meet the requirements of personalization, two ex-
tra perspectives denoted by /ocation and time are anchored
to a service chart diagram (Fig. 1).! Location means partic-
ular places such as classroom, and time means particular
moments such as in the afternoon.

Because a composite service is made up of several
component services, the process model that underlies the
composite service is specified as a state chart diagram.?
In this diagram, states are associated with the service
chart diagrams of the component services (Fig. 1), and
transitions are labelled with events, conditions, and variable
assignment operations. For illustration purposes, Fig. 2
presents travel assistant composite-service as a state chart
diagram. The composite service consists of four dependent
services, associated each with a service chart diagram:
flight booking, hotel booking, attraction search, and
car rental.

In this paper, it is assumed that all the information
needed to instantiate the perspectives’ parameters of a ser-
vice chart diagram are known in-advance to designers (in-
stantiation means assigning values to the parameters of the
perspectives). Therefore, a designer knows the pre- and post-
data that are exchanged between the component services,
the businesses that provide the component services, and the
possible ways of invoking the component services. For in-
stance, flight booking is the first service to be triggered and
is followed by hotel-booking and attraction-search services.
These services need the following inputs: departure date,
return date, and destination city. Flight booking takes stand
by and execution states. For personalization purposes, the
instantiation of the parameters of time and location perspec-
tives of flight-booking service is left for users (Sect. 3.5).

3.2 Service agentification step

The second step of CooPS consists of agentifying the par-
ticipants that are involved in coordinating personalized ser-
vices. Agentification means the identification of the relevant
types of software agent, which will be responsible for de-
ploying the specifications of composite services. A sample
of specification is given in Fig. 2. The participants are cat-
egorized into user, component service, and composite ser-
vice. The designer assigns a software agent to each cate-
gory of participant, which results in the following types of
software agent: user-agent, service-agent, and composite-
agent (Fig. 3).

' The semantics of time and location perspectives is based on in-
terval relationships [1] and qualitative spatial representations [24], re-
spectively.

2 Several languages for specifying Web services composition exist
such as Business Process Execution Language [13] and Web Services
Flow Language [15]. In our work, we adopt state chart diagrams and
the value-added of these diagrams to Web services composition is dis-
cussed in [5].

7. Maamar et al.

Travel-assistant composite service

[near(attraction,hotel)]

SCD
*—> . —®
Hotel Booking
N SCD o] SCD
Flight Booking SCD Car Rental
*~—> Attraction Search %© [not near(attraction,hotel)]

(SCD: Service Chart Diagram)

Fig. 2 Travel assistant composite-service as a state chart diagram

Designer

Specification

Personalization

¥

Legend

—/
Service chart diagram of Service)%[Service chart diagram of Servic]e)

v

e o\
@ Service-agent @ User-agent Composite-agent Service/Composite service/User context

Fig. 3 Deployment of software agents on top of service chart diagrams

From a design perspective, the development of a
composite service requires working on how to connect
the component services together (Fig. 3). In CooPS, the
connections are identified at two levels. The highest level
of connection, referred to as conversation, defines the
messages that are exchanged between the service-agents
of the component services. The messages are on various
matters including (i) what is the preparation status of the
next component services, (ii) where do the next component
services need to be executed by finding out the current
location vs. the location that the user has indicated in his
preferences, and (iii) when do the next component services
need to be executed by finding out the current time vs. the
time that the user has indicated in his preferences? Acting
as a conversation controller, the composite-agent monitors
the conversations that service-agents initiate. A composite-
agent ensures that the right component services are selected,
added, triggered, and executed with respect to the specifi-
cation of the composite service that this composite-agent
represents (Fig. 2). To this purpose, the composite-agent
takes various actions, which include for example comparing
the current execution location of a component service
to the execution location as indicated in the specifica-
tion (i.e, requested by user). Because service-agents and
composite-agents will engage in conversations, they need
to comply with multiple types of policy for regulating
the exchange of these conversations. The specification of
conversation policies is the responsibility of designers and is
carried out in the conversation specification step (Sect. 3.4).

The lowest level of connection, referred to as invoca-
tion in Fig. 3, identifies the messages that implement the
conversation level. Samples of this implementation include

data transfer, service invocation, and request submission.
Because of the technical obstacles that may face the imple-
mentation of conversations (e.g., network connection inter-
rupted), specific actions for exception handling are needed.
These actions are included in the conversation policies and
assigned to service-agents. In case of any exception occur-
rence, a service-agent has first, to notify the composite-agent
and second, make its respective component service takes an
appropriate state. In this state, the component service will
have to carry out some corrective actions. For instance, if a
component service does not acknowledge a data reception,
the sender component-service has to enter a new state so
this lack of acknowledgment is handled in proper and timely
manners. The specification of the corrective actions to take
during conversations is part of the conversation specification
step (Sect. 3.4).

The designer of a composite service can trace the de-
ployment progress of the specification he has devised using
the information that composite-agents, service-agents, and
user-agents manage on their respective components. This in-
formation is stored in a structure that is denoted by context.
The designer specializes context into C-context (context of
Composite service), S-context (context of Service), and U-
context (context of User). The specification of the internal
structure of each type of context is the responsibility of de-
signers (Sect. 3.3).

In CooPS, two features support the coordination of the
execution of a composite service’s specification. These fea-
tures are referred to as one-step ahead and backward con-
versation (Fig. 4). By one-step ahead, we mean that while
a set of component services are under execution, a moni-
toring of the specification of the next component services is

CooPS — Towards a method for coordinating personalized services

Service, Service
Execution Monitoring
of specification of specification

A Backward conversation |

Fig. 4 Concurrent processing of execution and monitoring of services

concurrently performed. The monitoring consists of check-
ing (i) when and where the next component services need to
be executed and (ii) what data need to be received from the
previous component services. In case the service-agent of a
component service to be executed detects a potential delay
in receiving data or that the appropriate location is differ-
ent from the location that the user has indicated as part of
his preferences, the service-agent initiates a backward con-
versation with the appropriate predecessor service-agents. It
should be noted that the information with whom a service-
agent converses is available in the service chart diagram of
the service that the service-agent represents (Fig. 1). The
objective of the backward conversation is to make aware
the predecessor service-agents of the possibility of violat-
ing the specification of the composite service, which means
the obligation of taking corrective actions. A note about the
backward conversation is also sent to the composite-agent
for notification and context update.

3.3 Context specification step

The third step of CooPS consists of specifying the contexts
of the multiple participants (user, component service, com-
posite service) that were considered in the service agentifi-
cation step (Sect. 3.2). In this third step, specification means
the definition of the parameters that constitute the internal
structure of a context.

In Fig. 3, C-context, S-context, and {/-context are high-
lighted. U/-context is fed by data from two independent
sources: user’s mobile device for time-related matter and
user (i.e., himself) for location-related matter.> S-context is
fed by data from U/-context and the perspectives of a ser-
vice chart diagram. A service-agent continuously checks the
S-context so it takes actions and engages in conversations
with a composite-agent and other service-agents. Finally,
C-context is fed by data from S-contexts and /-context.
A composite-agent continuously checks the C-context so
it takes actions and engage in conversations with service-
agents. CooPS adopts Tuple Spaces [11] for implementing
the update operations between contexts. However, to keep
the paper self-contained tuple spaces are not discussed.

The S-context of a component service consists of the
following parameters (Table 1): label, service-agent label,
status, previous component services, next component ser-
vices, regular actions, start time (requested and effective),

3 Automatic detection of user’s location can be used [26]. In this
paper, a manual detection of the user’s current location is promoted
and argued as follows. This type of detection allows a better handling
of the privacy issue as users only reveal the locations that they wish to
be revealed to external systems.

location (requested and effective), reasons of failure, correc-
tive actions, and date. It should be noted that time-effective
and location-effective parameters are execution-dependent
(i.e., when and where the execution has effectively hap-
pened), whereas time-requested and location-requested pa-
rameters are user-dependent. Concepts presenting some sim-
ilarities to effective and requested parameters are discussed
in Sect. 5.

To ensure that the preferences of a user are considered
during the deployment of the specification of a component
service (Fig. 2), the values of time-requested and location-
requested parameters should respectively be equal to the
values of time-effective and location-effective parameters (a
minimal difference is also accepted between requested and
effective parameters). Any discrepancy between the param-
eters of type requested and the parameters of type effective
indicates that the user’s adjustment with regard to execution
location or execution time of a component service has not
been properly handled (e.g., due to some unforeseen obsta-
cles, the effective-execution location of a service is location;.
However, the execution location that the user has requested
is locationy).

The C-context of a composite service is built upon the S-
contexts of its respective component services and consists of
the following parameters (Table 2): label, composite-agent
label, previous component services, current component
services, next component services, status per component
service, time, and date. It should be noted that status per
component service parameter is service-dependent since
this parameter’s value is obtained from status parameter of
S-context (Table 1).

The U-context of user consists of the following parame-
ters (Table 3): user-agent label, previous locations per com-
ponent services, current location per component services,
next locations per component services, previous periods of
time/component services, current period of time per compo-
nent services, next periods of time per component services,
and date.

3.4 Conversation specification step

The fourth step of CooPS consists of specifying the conver-
sations that occur, first, between the component services of a
composite service, and, second, between the component ser-
vices and a composite service (Fig. 3). Specification means
the definition of the communication protocols and policies
that regulate the exchange of conversation messages.

In Fig. 3, the conversations have the following partici-
pants: component services and composite services. CooPS
does not recommend leveraging the interactions between
users and services to the level of conversations. In fact,
these interactions are simply limited to a single round
of exchange (e.g., question/answer interaction pattern).
Conversations are complex because several rounds of
interaction are required (e.g., propose / counter-propose /
accept@rejectdcounter-propose/- - -) before the outcome

7. Maamar et al.

Table 1 Description of S-context parameters

Parameter & Description

Label: corresponds to the identifier of the component service.

Service-agent label: corresponds to the identifier of the service-agent of the component service.

Status: informs about the current status of the component service (in-progress, suspended, aborted, or terminated).

Previous component services: indicates if there are component services before the component service (null if there are no
predecessors).

Next component services: indicates if there are component services after the component service (null if there are no successors).

Regular actions: illustrates the actions that the component service normally performs; these actions are described in the state
perspective of the service chart diagram of the component service (Fig. 1).

Start time (requested and effective): informs when the execution of the component service should start (i.e., user-dependent) and
has started (i.e., execution-dependent).

Location (requested and effective): informs where the execution of the component service should happen (i.e., user-dependent)
and has happened (i.e., execution-dependent).

Reasons of failure: informs about the reasons that are behind the failure of the execution of the component service.

Corrective actions: illustrates the actions that the component service has to perform in case the execution fails; these actions are
described in the state perspective of the service chart diagram of the component service (Fig. 1).

Date: identifies the time of updating the parameters above.

Table 2 Description of C-context parameters

Parameter & Description

Label: corresponds to the identifier of the composite service.

Composite-agent label: corresponds to the identifier of the composite-agent of the composite service.

Previous component services: indicates which component services of the composite service have been executed with regard to the
current component services (null if there are no predecessors).

Current component services: indicates which component services of the composite service are now under execution.

Next component services: indicates which component services of the composite service will be called for execution with regard to
the current component services (null if there are no successors).

Status per component service: returns the status of each component service of the composite service that has been executed and
under execution as well.

Time: informs when the execution of the composite service has started.

Date: identifies the time of updating the parameters above.

Table 3 Description of I/-context parameters

Parameter & Description

User-agent label: corresponds to the identifier of the user-agent.

Previous locations per component services: keeps track of all the locations, as requested by the user, that have featured the
execution of component services (null if there are no previous locations).

Current location per component services: indicates the current location, as requested by the user, that should feature now the
execution of component services.

Next locations per component services: indicates all the locations, as requested by the user, that will feature the execution of
component services (null if there are no next locations).

Previous periods of time per component services: keeps track of all the periods of time, as requested by the user, that have featured
the execution of component services (null if there are no successor periods of time).

Current period of time per component services: indicates the current time, as requested by the user, that should feature now the
execution of component services.

Next periods of time per component services: keeps track of all the periods of time, as requested by the user, that will feature the
execution of component services (null if there are no next periods of time).

Date: identifies the time of updating the parameters above.

expected out of these rounds of interaction is obtained.
In addition, during conversations participants have to
adjust their behavior with regard to the messages that
participants receive and submit. This is not the case with
the participants that decide adopting a question/answer
interaction pattern. Backing the importance of integrating
conversations into service composition as CooPS promotes,
Ardissono et al. observe that current Web services standards

such as WSDL are integrated into systems featured by
simple interactions [2]. This is not enough as there are Web
services-based situations where it is required to express
complex interactions by using conversations. The same
comment is made by Benatallah et al. in [4], who noticed
that despite the growing interest in Web services, several
issues remain to be addressed to provide Web services with
benefits similar to traditional integration middleware. One

CooPS — Towards a method for coordinating personalized services

/Activation
condition

do/
Actions
*Timeout

Conversation Object

@ do/.

Actions

Conversation session

do/
Actions

/Activation
condition

Fig. 5 Extended state diagram for specifying conversation sessions

@ /Message not validated or not understood
S: Preparation e T—— R: Reception =
Service |, : Transmission Service, 2
IS
do/ Z 9
do/ /Message devised ; /Message submitted do/ 5z
devise m transmit message parse m é =
Execution (S.R) Execution check message S
status \ / status nalyze content
[
SCD SCD 285
Service ,,, Service 3=
R: Reception e T—— S: Preparation -
Service,,, : Transmission Service | %

—
do/ /Message submitted do/ ; /Message devised do/ g %
parse message transmit message devise message z—
check message Update on (S,R) Update on S

nalyze content ction, N4 ction NG
/Message not validated or not understood @

Fig. 6 Extended state diagram of execution and monitoring conversation session

of Benatallah et al.’s suggestions to enhance Web services
is the development of a conversational metamodel.

The conversation specification step of CooPS relies on
the concept of extended state chart diagram (Fig. 5), which
is thoroughly discussed in [16]. This diagram is a means for
modeling and defining conversations.

In the coordination of personalized services, two types of
conversation session are identified: invitation of services to
participate in a composition, and execution and monitoring
of component services. In the following, we illustrate how
a designer specifies the second conversation session. This
session is primarily selected since it refines the description
that is associated with Fig. 4. In the execution and monitor-
ing conversation-session, the objective is to establish a back-
ward conversation from the component services that are due
for execution to the component services that are currently
under execution. In Fig. 6, two types of layer exist. The
first type of layer, called conversation, corresponds to the
states that the conversation takes in this session. The second
type of layer, called service, corresponds to the states that
the services participating in this session take. We recall that
the specification of services is based on service chart dia-
grams (Fig. 1).

Because services are associated with S-contexts, their
respective service-agents compare the current content of the
S-contexts (Table 1) to the designer’s specification (Fig. 2).
In case a service (i.e., through its respective service-agent)
detects a discrepancy such as wrong location with regard
to the user’s preference, the service immediately alerts the
previous service and the composite service about this dis-
crepancy. As a first step, the service initializes a conversation
message through the state (S:preparation — service;). Once
the message is devised, it is sent to the previous service as
the state (R:reception — service;) illustrates. Before that, the
conversation takes the state (:transmission), which consists
of transferring the message from the sender (i.e., service;)
to the receiver (i.e., service;). Once the message is received,
the receiver service parses and analyzes the content of
the message. The message is returned to the sender in
case it is not valid. Otherwise the content of the message
(i.e., conversation object) makes the receiver service takes
the appropriate actions such as identifying the right execu-
tion location of the service. Afterwards, the receiver service,
which acts now as a sender, returns information to the
sender service on the actions that the receiver service has
taken because of the discrepancy that the sender service has

7. Maamar et al.

reported. This feedback is also conducted through conversa-
tion as the following states depict (S:preparation — service;),
(:transmission), and (R:reception - service; 1 1).

3.5 Service personalization step

The fifth step of CooPS consists of personalizing the com-
ponent services that constitute a composite service. In this
step, personalization means the instantiation of the parame-
ters of time and location perspectives while considering the
fact that users are mobile.

Personalization from a mobile perspective is complex
since many issues are to be addressed. Some of the issues
as reported in [23] include (i) what content to present to
user, (ii) how to show the content to user, (iii) how to ensure
user’s privacy, and (iv) how to create a global personalization
scheme? While these issues are coupled to a Web-content
provisioning perspective, CooPS considers additional issues
since personalization is coupled to a Web-service provision-
ing perspective. These issues are (i) at what level can a ser-
vice be personalized, (ii) does service personalization occur
before or after composition, (iii) to what extent can a user
personalize a service, and (iv) does service personalization
have to comply with specific policies?

Once the parameters of the perspectives of a service
chart diagram (excluding location and time perspectives) are
instantiated (Sect. 3.1) and the relevant types of agents are
identified (Sect. 3.2), the designer notifies potential users
about the availability of a new composite service (e.g., us-
ing SMS). If a user has interest in the composite service,
he requests from the designer to send him the light version
of the specification of this composite service. By light, we
mean the following details on the specification: (i) list of
component services (e.g., hotel booking, attraction search),
(ii) execution chronology of the component service (e.g., ho-
tel booking then attraction search), and (iii) non-instantiated
location and time parameters of the component services.
Upon reception, the specification is stored in the user’s mo-
bile device. Afterwards, the user selects the component ser-
vices that he wishes adjusting their location and time of ex-
ecution parameters. For instance, the user can indicate that
hotel-booking service of travel assistant composite-service
will be executed after 9 am once he is at work.

When the user returns back the specification of the com-
posite service, which includes now his preferences, the de-
signer carries out a consistency check of this specification. In
case of any inconsistency, the designer invites the user either
to review his adjustments or to relax some of the temporal
or location constraints. The exchange between the designer
and user keeps going until the specification of the compos-
ite service after adjustment is declared free of conflicts. The
following is an example of conflict.

Designer specification ~ Service; :data > Service;

User adjustment (-, Service;, ?location, time;),
(---, Servicej, ?location, time;),
before (timej, time;)

In this example, Service; will be executed before Service;
due to the data dependency that is indicated in the
designer’s specification (Service; :data w Service;).
However, the user suggests a temporal order for these two
services where the execution time of Service; (i.e., time;)
is before the execution time of Service; (i.e., time;), which
violates the designer specification. As a result, the temporal
relationship before (time;, time;) needs to be relaxed.

3.6 Service deployment step

The sixth and final step of CooPS consists of deploying the
component services of a personalized composite service. In
this step, deployment means the execution of the specifica-
tion of the composite service as obtained in Sect. 3.1 and
personalized in Sect. 3.5. The different agents that were set
up in Sect. 3.2 are responsible for the execution

The execution order of the component services depends
on two factors: (i) execution chronology as defined by de-
signers, and (ii) time and location values as defined by users.
Besides the three factors, information that C-context, S-
context, and {/-context contain is used. Indeed, the current
location of a user is obtained from {/-context. The current
state of a service is obtained from S-context. Last but not
least, the list of component services that have (i) completed
their execution, (ii) are under execution, and (iii) will be
called for execution are obtained from the C-context.

Because time and location parameters are user-
dependent, a tracking of both user’s current location and
current time needs to be performed. When the designer
declares the consistency of the specification of a person-
alized composite service (Sect. 3.5), the light version of
this specification is kept stored in the user’s mobile device.
The user-agent, which also resides in the user’s mobile
device, compares on a regular basis the time and location
parameters as indicated in the specification to the current
time and current location of the user. If there is a match, the
user-agent wirelessly notifies the composite-agent about the
matching (Fig. 6). Once it gets notified, the composite-agent
refers to the copy of the specification of the composite
service it has so that it can start now executing actions
among them sending invitations of participation to new
component services and initiating the execution of certain
component services. Details on mechanisms for inviting
services are given in [18].

4 Context in CooPS

Section 3.3 has pointed out the kind of collaboration that
occurs between the three types of context. For instance, S-
context submits some context details to C-context. When a
user personalizes a composite service, time-requested and
location-requested parameters of the S-context of some (or
all) of the component services are instantiated (Table 1).
Because the user-agent continuously monitors the light ver-
sion of the specification of a composite service (Sect. 3.6),

CooPS — Towards a method for coordinating personalized services

the user-agent identifies the component services that are due
for execution with regard to a specific location or a specific
time. In case the user-agent identifies candidate component
services for execution, it notifies then the composite-agent,
which proceeds with contacting the respective service-
agents of these component services for the needs of execu-
tion. If there are no obstacles preventing the execution of the
component services, location-effective or time-effective pa-
rameters receive the values of their counter-part parameters
namely location-requested and time-requested. This means
that the user’s preferences are properly handled. Otherwise
(i.e., existence of obstacles such as component service over-
loaded or lack of input data for a component service), the
execution of the component services is postponed until these
obstacles are dealt with. This means that location-effective
or time-effective parameters will have values that differ from
the values of their counter-part parameters namely location-
requested and time-requested.

Roman and Campbell observe in [28] that a user-centric
context promotes applications that (i) move with users,
(i) adapt to the changes in the available resources, and
(iii) provide configuration mechanisms based on users’ pref-
erences. Parallel to the user-centric context, CooPS adopts
a service-centric context in order to promote applications
that (i) permit service adaptability, (ii) track service exe-
cution, and (iii) support on-the-fly service composition. A
user-centric context is associated with I/-context, whereas
a service-centric context is associated with S-context and C-
context. Because services are the core components of a com-
position process, CooPS organizes S-context along three
perspectives: participation, execution, and location/time.

1. Participation perspective: ensures that the component
services of a composite service are properly specified
and got ready for composition and execution.

2. Execution perspective: ensures that the requirements in
terms of computing resources of the component services
are met and that the tracking of the execution of these
component services is happening.

3. Location/Time perspective: ensures that location- and
time-related preferences are integrated into the specifi-
cation of a composite service and properly considered
during deployment.

Three connections exist between participation, execu-
tion, and location/time perspectives. First, deployment de-
notes the connection between participation and execution
perspectives and reflects the component services that are got
ready for execution. Second, tracking denotes the connec-
tion between execution and location/time perspectives and
reflects the monitoring of the component services that occurs
according to specific locations and specific times. Finally,
configuration denotes the connection between location/time
and participation perspectives and reflects the component
services that could be subject to adjustment at the levels of
location and time.

5 Related work

Composition of services is a very active area of R&D. How-
ever, to our knowledge few projects have aimed at personal-
izing services for the benefit of mobile users and at the same,
providing the appropriate support through methodologies to
those who will be carrying out the specification of person-
alization. We present in the following some of the works
that have backed shaping CooPS and its respective steps and
representation formalisms.

The Web Services Conversation Language (WSCL) is an
initiative on the integration of conversations into Web ser-
vices. The WSCL describes the structure of documents that
a Web service is supposed to receive and produce, as well as
the order in which the exchange of these documents is sup-
posed to occur. In fact, the conversation component of a Web
service is a means for describing the operations that a Web
service supports (e.g., clients have to log in first, before they
can check the catalog). While the WSCL focusses on speci-
fying the operations that Web services support, our study of
conversations focusses on the mechanisms of devising com-
posite services. Indeed, we classify these mechanisms into
four categories: domain-dependent, domain-independent,
composition-driven, and execution-driven. Domain-
dependent conversation mechanisms deal with the features
of the application domain when it comes for example to
structuring the format and content of the conversation mes-
sages to exchange. Indeed, conversations for car rental are
different from those for hotel booking. The opposite occurs
for domain-independent conversation mechanisms when it
comes for example to triggering a service for execution. The
domain does not affect the way a service is triggered. In-
stead, the implementation technology on which the services
are running affects the type of triggering. With regard to
composition-driven conversations, they represent the con-
versations that are needed to devise a composite service such
as how to look for the services and how to exchange agree-
ments between these services. Execution-driven conversa-
tion mechanisms represent the messages that are needed to
deploy a composite service. Therefore, the chronology of
conversations starts with composition-driven conversations
and proceeds with execution-driven conversations.

A conversation usually consists of a static and dynamic
part. The static part is about the parameters that constitute
the structure of a conversation message. The dynamic part is
about the progress of a conversation according to a specific
chronology. This chronology is specified with policies that
specify for example how to react in a response of receiving
a message, when to submit a message, and what to expect
from an exchange. One of the initiatives dealing with poli-
cies is referred to as Conversation-Policy XML (cpXML).
In cpXML, a conversation policy is a set of constraints
on schemas of messages that may be sent, and on the se-
quencing of messages, in a conversation between two or
more applications. CooPS uses extended state chart dia-
grams to specify the policies that regulate the conversation
exchange (Sect. 3.4).

7. Maamar et al.

Barkhuus and Dey have identified three levels of interac-
tivity for context-aware applications [3]: personalization, ac-
tive context-awareness, and passive context-awareness. Ac-
cording to both authors, personalization, also referred to as
customization and tailoring, is motivated by the diversity
and dynamics featuring nowadays applications. For active
context-awareness, it concerns applications that, on the ba-
sis of sensor data, change their content autonomously. In
passive context-awareness applications merely present the
updated context to the user and let the user specify how the
application should change. CooPS adopts a passive context-
awareness style with the manual feeding of the user’s cur-
rent location. While we mentioned that this type of feed-
ing presents some limitations vs. an automatic feeding, it
enables however an efficient handling of the privacy con-
cern of users. According to Bisdikian et al. in [7], there are
several challenges that hinder the deployment of location-
based applications. From a user perspective, many people
consider location monitoring as intrusive and thus, privacy-
related questions arise. In CooPS, a manual detection of
the location parameter is considered. This gives users more
confidence in releasing information on their location as
the decision to inform about their location goes now back
to users. Finally and from a personalization perspective,
Reiff-Marganiec and Turner have both suggested policies as
a means for managing the customization process that users
carry out over telecommunication systems [27].

In Table 1, parameters of type requested and parameters
of type effective have a major overlapping with the QoS of
type advertised (or “promised”) and QoS of type delivered.
Ouzzani and Bouguettaya report that a key feature in dis-
tinguishing between competing Web services is their QoS,
which encompasses several qualitative and quantitative pa-
rameters that measure how well the Web service delivers its
functionalities [22]. A Web service may not always fulfill its
advertised QoS parameters, due to various fluctuations re-
lated for example to the network status or resource availabil-
ity. Therefore, some differences between QoS advertised and
QoS delivered values occur. However, large differences in-
dicate that the Web service is suffering a performance degra-
dation in delivering its functionalities. The same comment is
made on parameters of type requested vs. parameters of type
effective when it comes to service personalization (Table 1).
A major difference between the values of these parameters
indicates the lack of considering a user’s personal prefer-
ences in terms of execution time or execution location.

6 Conclusion

In this paper, we presented CooPS, which is a method for
Coordinating Personalized Services in an environment of
mobile users. Personalization aims at integrating users’
preferences into the specification of the component ser-
vices of composite services. Composition addresses the
situation of a user’s request that cannot be satisfied by any
available service, whereas a composite service obtained by

combining a set of available services might be used. The
core concepts of CooPS are software agent, service chart
diagram, state chart diagram, context, and last but not least
conversation.

A case-tool that supports CooPS-based development
life-cycle is under construction using Java NetBeans
3. 6. This case-tool has three modules: service, agent,
and context. The service module allows designers the se-
lection and composition of services. For instance, the mod-
ule includes tools for describing and managing component
services and composite services, and for monitoring their ex-
ecution. The agent module is responsible for the creation of
agents and support of their conversations. Finally, the con-
text module defines and stores the structure of each context
type as defined in Sect. 3.3. This module uses control tuples
to manage the interactions between contexts.

CooPS is one step towards supporting those who will be
responsible for personalizing the specification of composite
services. CooPS consists of six steps namely service spec-
ification, service agentification, context specification, con-
versation specification, service personalization, and service
deployment. Our future work examines the support for ex-
ception handling during the execution of personalized ser-
vices. It might happen that a preference change affects the
execution of the whole composite service.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals.
Communica tions of the ACM 26(11) (1983)

2. Ardissono, L., Goy, A., Petrone, G.: Enabling conversations with
Web Services. In: Proceedings of The Second International Joint
Conference on Autonomous Agents and Multi-Agent Systems,
(AAMAS’2003). Melbourne, Australia (2003)

3. Barkhuus, L., Dey, A.: Is context-aware computing taking control
away from the user? Three levels of Interactivity examined. In:
Proceedings of The Fifth International Conference on Ubiquitous
Computing (UbiComp’2003), Seattle, Washington, USA (2003)

4. Benatallah, B., Casati, F., Toumani, F.: Web Service Conversation
Modeling, a cornerstone for e-business automation. IEEE Internet
Computing 8(1) (2004)

5. Benatallah, B., Dumas, M., Sheng, Q. Z., Ngu. A.: Declarative
composition and peer-to-peer provisioning of dynamic Web ser-
vices. In: Proceedings of The 18th International Conference on
Data Engineering (ICDE’2002). San Jose, CA, USA (2002)

6. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv Environ
ment for Web services composition. IEEE Internet Computing
7(1) (2003)

7. Bisdikian, C., Christensen, J., Davis, J., Ebling, M.E., Hunt, G.,
Jerome, W., Lei, H., Maes, S., Sow, D.: Enabling Location-
based Applications. In: Proceedings of The 1st ACM International
Workshop on Mobile Commerce (WMC’2001) held in conjunc-
tion with The Seventh Annual Interna tional Conference on Mo-
bile Computing and Networking(MobiCom’2001). Rome, Italy
(2001)

8. Bonett, M.: Personalization of Web Services:
nities and Challenges. ARIADNE, (2001).
ariadne.ac.uk/, ISSN: 1361-3200.

9. Boudriga, N., Obaidat, M.S.: Intelligent Agents on the web: A
Review. Computing in Science Engineering 6(4) (2004)

10. Brezillon B.: Focusing on context in human-centered computing.
IEEE Intelligent Systems 18(3) (2003)

Opportu-
http://www.

CooPS — Towards a method for coordinating personalized services

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

23.

24.

25.

26.

217.

28.

29.

30.

Cabri, G., Leonardi, L., Zambonelli, F.: Reactive tuple spaces
for mobile agent coordination. In: Proceedings of The 2nd In-
ternational Workshop on Mobile Agents (MA’1998), Stuttgart,
Germany (1998)

Chung, J.Y., Lin, K.J., Mathieu, R.G.: Web services comput-
ing: advancing Software interoperability. IEEE Computer 36(10)
(2003)

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The
next step in web services. Communications of the ACM 46(10)
(2003)

Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware ap-
plica tions. Human-Computer Interaction Journal, Special Issue
on Context-Aware Computing 16(1) (2001)

Leymann, F.: Web Services Flow Language (WSFL 1.0). Techni-
cal report, IBM Corporation (2001)

Maamar, Z., Kouadri Mostefaoui, S., Benslimane, D.: Conversa-
tions for web services composition. In: Proceedings of The 7th
Asia Pacific Web Conference (APWeB’2005). Shanghai, China
(2005)

Maamar, Z., Benatallah, B., Mansoor, W.: Service chart diagrams
— description and application. In: Proceedings of The Alternate
Tracks of The 12th International World Wide Web Conference
(WWW’2003). Budapest, Hungary (2003)

Maamar, Z., Kouadri Mostefaoui, S., Yahyaoui, H.: Towards an
Agent- based and context-oriented approach for Web Services
Composition. IEEE Transactions on Knowledge and Data Engi-
neering 17(5) (2005)

Maamar, Z., Mansoor, W.: Design and development of a software
agent-based and mobile service-oriented environment. e-Service
Journal, Indiana University Press 2(3) (2003)

Malone, T., Crowston, K.: The interdisciplinary study of coordi-
nation. ACM Computing Surveys 26(1) (1994)

Milanovic, N., Malek, M.: Current solutions for web service com-
position. IEEE Internet Computing 8(6) (2004)

Ouzzani, M., Bouguettaya, A.: Efficient access to web services.
IEEE Internet Computing 8(2) (2004)

Panayiotou, C., Samaras, G.: mPERSONA: Personalized Portals
for the wireless user: an agent approach. Journal of ACM/Baltzer
Mobile Net working and Applications, Special Issue on Mobile
Commerce (forthcoming) (2003)

Papadis, D., Sellis, T.: On the qualitative representation of spa-
tial knowledge in 2D space. The Very Large Data Bases Journal,
Springer Verlag 3(4) (1994)

Papazoglou, M., Georgakopoulos, D.: Introduction to the spe-
cial issue on service-oriented computing . Communications of the
ACM 46(10) (2003)

Ratsimor, O., Korolev, V., Joshi, A., Finin, T.: Agents2Go: an
infras tructure for location-dependent service discovery in the
mobile electronic commerce environment. In: Proceedings of
The 1st ACM International Work shop on Mobile Commerce
(WMC’2001) Held in Conjunction with The Sev enth Annual
International Conference on Mobile Computing and Network-
ing(MobiCom’2001). Rome, Italy (2001)

Reiff-Marganiec, S., Turner, K..: Feature Interactions in
Telecommunications and software systems VII, chapter a policy
architecture for enhancing and controlling features. Amyot D. and
Logrippo L., IOS Press (Amsterdam) (2003)

R.oman, M., Campbell, R.H.: A user-centric, resource-aware,
context- sensitive, multi-device application framework for ubiq-
uitous computing environments. Technical report, UIUCDCS-
R-2002-2282 UILU-ENG-2002-1728, Departement of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, IL,
USA (2002)

Schilit, B., Adams, N., Want, R.: Context-aware computing appli-
cations. In: Proceedings of The IEEE Workshop on Mobile Com-
puting Systems and Applications. Santa Cruz, California, USA
(1994)

Yunos, H.M., Gao, J.Z., Shim, S.: Wireless advertising’s chal-
lenges and opportunities. IEEE Computer 26(5) (2003)

Zakaria Maamar is an associate
professor in computer sciences at
Zayed University, Dubai, United
Arab Emirates. His research inter-
ests include Web services, software
agents, and context-aware comput-
ing. Maamar has a PhD in computer
sciences from Laval University.

Djamal Benslimane is a full pro-
fessor in computer sciences at
Claude Bernard Lyon 1 Univer-
sity and a member of the Labo-
ratoire d’InfoRmatique en Images
et Systemes d’information- Cen-
tre National De la Recherche Sci-
entifique (LIRIS-CNRS), both in
Lyon, France. His research interests
include interoperability, Web ser-
vices, and ontologies. Benslimane
has a PhD in computer sciences
from Blaise Pascal University.

Michael Mrissa is a Ph.D. can-
didate in computer sciences at
Claude Bernard Lyon 1 Univer-
sity and a member of the Labo-
ratoire d’InfoRmatique en Images
et Systémes d’information - Cen-
tre National De la Recherche Sci-
entifique (LIRIS-CNRS), both in
Lyon, France. His research interests
include semantic Web services, in-
teroperability and peer-to-peer net-
works.

Chirine Ghedira is an associate
professor in computer sciences at
Claude Bernard Lyon 1 Univer-
sity and a member of the Labo-
ratoire d’InfoRmatique en Images
et Systemes d’information- Cen-
tre National De la Recherche Sci-
entifique (LIRIS-CNRS), both in
Lyon, France. Her research interests
include Web services and context-
aware computing. Ghedira has a
PhD in computer sciences from the
National Institute for Applied Sci-
ences (INSA).

