A Context Model for Semantic Mediation in
Web services Composition

Michael Mrissa!, Chirine Ghedira!, Djamal Benslimane', and Zakaria Maamar?
! Université Claude Bernard Lyon 1, Villeurbanne, France
firstname.lastname@liris.cnrs.fr
2 Zayed University, Dubai, United Arab Emirates
zakaria.maamar@Qzu.ac.ae

Abstract. This paper presents a context-driven approach that aims at
supporting semantic mediation between composed Web services. Despite
the widespread adoption of Web services by the IT community, innova-
tive solutions are needed in order to overcome the challenging issue that
relates to the semantic disparity of exchanged data. Indeed, there is a
lack of means for interpreting these data according to the contextual re-
quirements of each Web service. The context-driven approach suggests
two steps. The first step consists of developing a model for anchoring
context to data flowing between Web services. In the second step, we
use this model to support the semantic mediation between Web services
engaged in a composition.

1 Introduction

In the field of service-oriented computing, Web services are now widely used
to connect business processes. The suitability of Web services for composition
allows answering complex users’ needs. Composition involves interacting Web
services to provide value-added business processes. However, efficient description
and management of semantics of data are major requirements to the success of
system interoperability. Particularly, composition requires understanding the se-
mantics of the data exchanged between Web services. The Web services protocol
stack (SOAP [1], WSDL [2], and UDDI [3]) achieves application level interop-
erability, but does not satisfy the requirements of semantic exchange. Recent
initiatives propose languages and frameworks (e.g., OWL-S [4], WSMO [5], and
WSDL-S [6]) that use ontologies® for adding explicit semantic descriptions to
Web services, which are now referred to as semantic Web services.

However, these initiatives towards semantic Web services do not take into
consideration the context of exchanged data. By context, we mean the collection
of implicit assumptions that are required to obtain accurate data interpretation.
We advocate that a semantic concept should be interpreted differently, depend-
ing on the context it relates to. In the domain of Web services composition,

3 An ontology is defined as a shared description of a domain knowledge in [7].

context interpretation generally remains ignored, due to lack of explicit con-
text descriptions. As a consequence, the adaptation of Web services to context
changes is still performed manually, which reduces their availability and relia-
bility. Explicit context description and management are required to meet the
challenges of automatic semantic interpretation and data flow handling during
Web services composition.

In this paper, we aim at presenting a context-based approach for semantic
reconciliation of Web services engaged in a composition. To this end, we de-
velop a model that supports explicit description of context, before deploying
runtime mediation mechanisms between Web services, based on the contextual
annotation of WSDL input and output message parts.

This paper is organized as follows. Section 2 suggests a motivating example to
back the value-added of data context management to Web services composition.
Section 3 presents a context-based model for Web services, supported by the
definition of semantic object, prior to discussing the integration of this model
into the Web services protocol stack. Section 4 presents a context- and rule-based
mediation architecture for Web services composition. Section 5 overviews related
work on mediation and semantics for Web services and context representation.
Finally, Section 6 concludes the paper and sets guidelines for future work.

2 DMotivating Example

We demonstrate with a simple booking example how context impacts the inter-
pretation of data flow between Web services. The example concerns a trip to
Japan. A rate-based attractive hotel provides a Web service for bookings. To
judge the affordability of this hotel for an European passenger, the following
composition occurs: hotel booking WS; calculates charges based on the number
of booked nights, and banking WS, manages account payment.

From a technical perspective, WS; sends “price-yen” parameter and WS,
receives “price-euros” parameter. Both parameters are WSDL message parts.
Although different type systems can be used, we consider for illustration pur-
poses that “price-yen” and “price-euros” parameters are in XML Schema type
system [8], and are of type “double”. These details show low-level data compati-
bility between Web services. In addition, “price-yen” and “price-euros” parame-
ters both have particular semantics. WSy delivers a value in Yens, whereas WSy
expects a value in Euros, and both bind to a “price” semantic concept avail-
able in a common ontology. Existing approaches to semantic description and
mediation of Web services, to overview in Section 5, explicitly describe the cor-
respondence between parameters for conversion requirements. Such approaches
refer to shared ontologies to address structural and semantic heterogeneities.

Now, let us inject context into these parameters. WS; binds to “Japanese
Hotel Booking” context, in which charges have a scale factor of 1000, prices do
not include Value-Added Tax (VAT), dates for conversion rates are in Japanese
format (yyyy.mm.dd). WSy binds to “French Banking” context, where charges
have a scale factor of 1, prices include VAT, and dates for conversion rates are

in French format (dd.mm.yyyy). This shows context heterogeneity exists too,
so an agreement on the value interpretation must be reached through context
reconciliation.

Composing Web services involves dealing with many different contexts, and
enabling significant interactions requires dynamic and complex transformations
to adapt data to these contexts. In a semantic composition, context heterogene-
ity is resolved in an ad-hoc way at the receiver Web-service level, if at all. This
reduces Web services adaptability and overloads them with solving context het-
erogeneities. To conduct context-aware composition, the context of data must
be explicitly described and a mediation mechanism must handle data flow. Our
proposal is to annotate WSDL so that messages parts are propelled to the level
of semantic objects, which are described in the following.

3 A Context-based Model for Web services

As aforementioned, we propose a model that describes the underlying semantics
of data flow between Web services. This model takes advantage of the notion of
semantic object given in [9], and focuses on context description for data exchange
in Web services composition. In this section, we define the two fundamental
elements of our model: semantic object and context. Afterwards, we discuss how
semantic conversion is performed between semantic objects using conversion
functions. Finally, we define the notion of semantic and absolute comparison
between semantic objects.

3.1 Semantic Object

In the domain of semantic Web services, concern separation between data ground-
ing and data abstract-view is required. Listing 1.1 illustrates this separation with
an OWL-S Web service input description:

(<!77 Abstract description —>
<process:Input rdf:ID="InputlLanguage">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&this;#SupportedLanguage
</process:parameterType>
<rdfs:label>Input Language</rdfs:label>
</process:Input>

<!— Grounding description—:>
<grounding:WsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="#InputlLanguage"/>
<grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">
&groundingWSDL;#inputLanguage
</grounding:wsdlMessagePart>
</grounding:WsdlInputMessageMap>

Listing 1.1. OWL-S Input Description Snippet

The abstract view binds the data to a conceptual description generally using
an ontology language like OWL [10]. The grounding view describes the physical
representation of data which generally follows XML Schema [8]. This separation

allows different physical representations of the same concept, and strengthens
the role of ontologies in the abstract representation of data semantics. In the rest
of this paper, we refer to concept ¢ as an individual, or fact, defined in a domain
ontology. The notion of individual is detailed in the OWL recommendation [10].

Following a similar separation of abstract and grounding descriptions, we
define a semantic object as a data object, i.e., a value v that is an instance of
type t with “enough” meta-data for automatic interpretation. This meta-data
includes a concept ¢, which describes the real world phenomena that the data
object refers to, and a context C represented as a tree of meta-attributes. A
semantic object SemObj is a 4-tuple represented as follows:

SemObj =< ¢,v,t,C >,

where c is the concept that the semantic object SemObj adheres to, value v €
Dom(t) is the physical representation of v according to the domain of represen-
tation Dom of type t, and C specifies the context of SemObj. This context is
a tree of semantic objects called modifiers. Such representation of an initial se-
mantic object with additional semantic objects makes our context-based model
self-describing. A formal definition of a context C' is:

C={<c1,v1,t1,C1 >, ..., < CnyUn,tn,Cn >}, n €N |

where < ¢;,v;,t;,C; >,1 < i < n, are modifiers that describe different semantic
aspects of SemQObj. Modifiers may also have a context, described in Cj, so it is
possible to use recursive descriptions and to represent context in a tree.

3.2 Static and Dynamic Modifiers

On the basis of the definition presented above, we introduce the notion of static
and dynamic modifiers. Values of static modifiers have to be explicitly specified,
whereas values of dynamic modifiers can be determined by a function from the
values of other (static or dynamic) modifiers. In Fig. 1, “date format” modifier is
dynamic; its value can be inferred from the value of the “country” modifier. The
relation of inference can be described as a rule, such as “If country is France, then
date format is dd.mm.yyyy”. Similar rules should be used for other countries.
Further details on how rules support the proposed mediation architecture are
given in Section 4. Formally, being given a modifier S and a context Ctxt such
that S =< ¢,v,t,C >€ Ctxt, then S is dynamic iff:

Vo €S, 3f : {Dom(t) x ... x Dom(t)} — Dom(t) AN 3{S1,...Si...,Sn},
s.t.S; =< ¢i,viy 5, Cy >E Ctat AN S; # S A f(viy.. ., 05y, 0n) = 0.

Figure 1 shows a semantic object to be forwarded to banking Web service of
Section 2. ns:price attribute refers to the concept of price described in a domain
ontology, 55.00 is the value of type zsd:double flowing between the Web services.
Contexzt attribute is a list of modifiers that permit explicit interpretation of the
inital semantic object. Here, the semantic object is in Euro, has a scale factor of 1,
and includes a VAT of 19.6%. Additional parts of the context further describe
the Currency modifier.

OWL Concept Value Type

N /

[< ns:price, 55.00, xsd:double/,q(lnte

Context

' A
E [VATIncIuded:true [Scale Factor = 1 J [Currency = EUR J

[Date = 15.05.2005 J [Country:FrarKe J

Dynamic Value [Date format = dd.mm.yyyy Static Value
Modifier Modifier

Fig. 1. Sample of a semantic object

3.3 Semantic Conversion of Semantic Objects

Adding context to data allows an explicit representation of the semantics of these
data. Therefore, different semantic objects may describe the same information
although they have different data and contexts. For example, let us have two
simple semantic objects:

S1 =< Price, 1, float, (currency = Euro) >
S2 =< Price, 6.55957, float, (currency = French Francs) >

It is straightforward to note that S; and Ss describe the same information (they
are equal), because the exchange rate from French Francs to Euros is fixed at
6.55957 Francs for 1 Euro. Thus, a conversion function is required to change Sy
into French Francs or S5 into Euros and show that S; and S5 are equals.

Conversion functions enable mediation between semantic objects. They have
several properties such as total, lossless, and order-preserving [11]. A total con-
version function converts to and from any value of its domain of definition,
e.g., distance unit conversion functions. An example of non-total conversion is
precision conversion. Indeed, a precision conversion function can convert the
value 1.25762 into a value with only one decimal of precision (1.2), but it cannot
convert this result back to a better precision. In addition, a function is loss-
less if it can be applied several times on the same object without any loss of
information. A function that compresses data files is lossless because the orig-
inal content can later be extracted. However, a function that converts a BMP
image into the JPEG format is lossy (loss due to image compression). A func-
tion is order-preserving when two semantic objects, once converted, conserve the
order they had before. Temperature conversion functions between Celsius and
Fahrenheit scales are order-preserving.

We distinguish two categories of conversion functions. Context and type con-
version functions. Context conversion functions are related to the values that

modifiers take. They change the interpretation of a semantic object and its
value as well. They are stored as rules and may involve online access to other
data sources. For example, currency rate conversion functions may call online
currency rates providers for up-to-date rates. Type conversion functions only
change the type t of semantic object (e.g., String2Float, Double2Integer). Such
functions depend on the type system that is used to physically represent the
semantic object. They can be part of a library associated with the type system,
and are not prone to frequent changes.

3.4 Semantic Comparability of Semantic Objects

Since semantic objects can be converted into particular types and contexts, we
introduce the notion of semantic comparability between semantic objects. Com-
paring semantic objects is a prerequisite to the semantic mediation to be intro-
duced in Section 4. First, we consider two semantic objects S =< ¢, v1,t1,C; >
and Sy =< ¢, vg, ta, Cy > that refer to the same concept c. Let us have a relation
¢ (such as ‘<’, *>" or ‘="), a context C (called target context), and a type ¢ (called
target type). Let us assume a conversion function cvt(value, type, context) that
consists of concatenating several conversions. This function converts v; and vs
into type t and context C, such as v] = cvt(vy,t,C) and vh = cvt(va, t,C). We
state that S; and Sy are semantically comparable with regard to type t and
context C' if v] and v} satisfy the relation v] ¢ v}. Therefore, if ¢ is the equality
relation ‘=’ we verify the equality of S7 and S5.

Second, we show that semantic objects that do not refer to the same concept,
can still be compared relatively to the semantic aspects they have in common.
For example, let us compare S; and S5 such as:

S1 =< ns : measurePrice, 10.00, float, (currency = euro, measureUnit = kg) >
S2 =< ns : unitaryPrice, 15.00, float, (currency = euro, scaleFactor = 1) >

The first concept is the price of a measure in kilograms. The second concept is
the unitary price that supports different scale factors. If v; and vy are compared
according to context C' = (currency = euro) and type t = float, v1 < vo
is established. This example illustrates the possibility to perform a restricted
comparison of these semantic objects although they refer to different concepts.
We conclude that the semantic comparability of two semantic objects depends
on the target context and the possibility of casting object types.

3.5 Absolute Comparability of Semantic Objects

Another aspect that turns out relevant for semantic mediation is the absolute
comparison of semantic objects. It is reached when the semantic objects always
verify a relation over a target context for all the possible values of the modifiers
of this context. Let us consider two semantic objects .S, and S;. Let be a relation
¢ (such as '<’,’>" or '="), a target context C' = {S1,...,5,} and a target type t.
Let us consider a conversion function cvt(value, type, context) that concatenates

several conversions and converts v, and v, into type ¢ and context C, such as
vy, = cvt(vg,t, C) and v; = cvt(vp, t, C). Then, we define S, and S, as absolutely
comparable relatively to ¢t and C' if v/, ¢ vj is verified, for all the possible values
that the modifiers of C' can take.

3.6 Context Integration into the Web Services Model

The context-based model described above meets the requirements for describ-
ing message parts of Web services as semantic objects. The concept of semantic
object is intensionally described in a domain ontology, while context is extension-
ally described using additional meta-attributes. In addition, this model clearly
distinguishes the data type ¢ from the conceptual reference C' of the semantic
object. Then, existing mediation approaches to discuss in Section 5 can seam-
lessly adhere to our context representation. However, this model raises several
questions about its integration into the Web services protocol stack.

Following Bornhévd’s view [9], we advocate that a context description is
always a subset of all the meaningful aspects of a concept, which are potentially
infinite. However, Web service providers should be free to decide which subset
of possible aspects is relevant to their application. Therefore, the vocabulary for
context description cannot be added into the domain ontology. In such case the
size of the latter would grow along with providers’ needs. In effect, describing
context as part of the domain ontology would require a specific subconcept for
each possible combination of modifiers of a domain concept.

To overcome this problem, context ontologies are separated from domain
ontologies so that they do not surcharge the latter. Context ontologies describe
all the modifiers that Web service providers associate to a concept. Therefore, a
context ontology is available for each concept of a domain ontology. Such context
ontology should be extended according to Web service providers’ requirements.
In the following, we assume that Web service providers refer to the same context
ontology when annotating Web services. Thus, our illustrative example relies on
a single context ontology to put forward the importance of context.

As context ontologies provide shared vocabularies to specify structural and
semantic representations of context, there is a need to extensionally specify con-
text values into the descriptions of Web services. We propose a different solution
for static and dynamic modifiers. In effect, values of static modifiers have to
be specified to clarify the meaning of data. At the contrary, values of dynamic
modifiers can be inferred from other parts of the semantic object. Therefore, we
insert the description of static modifiers into WSDL, so that our approach is
compliant with the standard Web services protocol stack. Descriptions of static
modifiers provide the means for calculation of dynamic modifiers at runtime,
using appropriate rules.

The use of context ontologies and WSDL annotations helps providers make
explicit the context of data. It provides a scalable solution to integrate context
into the Web service model. Also, it enables semantic mediation of data during
the execution of a composition. In the next section, we present our solution for
annotating descriptions of composed Web services, in order to make contextual

g
-

part
*

Part

nessage
0.~ |Message ISt o1 +nane
+name output 0.1
fault 0..1 +el enent
[+type
1
ort Type oper ation .
.—'JI—OY':L PortType ‘-PT Operation
- T T ey YRppp—
- ' context !
Definition +name +name H 0.+]!
+par anmet er Or der !
thane - ¢‘ type [ContextAttribute H
+t ar get NameSpace f«@— |_bi ndin . H
9 P 21 Binding i|+context: QName []]:
0.. '
binding v
+namre |&—- —— | N
service N o port
o] Service vg - Port v
name nane Extensible Element

Fig. 2. Context in WSDL metamodel

information available at the execution stage of composition, before describing a
service- and rule-based solution for context mediation.

4 Context management for Web Services

4.1 Annotating WSDL with Context

The use of the model described previously requires enriching the description of
Web services with context, by annotating WSDL message parts, so that they
can be described as semantic objects.

In WSDL descriptions, <message> elements describe data exchanged for an
operation. Each message consists of one or more <part> elements. We also refer
to <part> elements as “parameters” in the rest of this paper. Each parameter has
<name> and <type> attributes, and allows additional attributes. Our annotation
takes advantage of such extension proposed in the WSDL specification [2], so
that annotated WSDL operates seamlessly with classical and annotation-aware
clients. To keep the paper self-contained, we overview a simplified structure of
the WSDL metamodel including the annotation in Fig. 2.

We annotate <part> elements with a context attribute that describes the
names and values of static modifiers using a list of qualified names. The first qual-
ified name of the list specifies the ontology concept of the value (¢). Additional
elements refer to instances of static modifiers described in a context ontology.
Listing 1.2 shows the proposed extension and corresponding namespaces in a
WSDL file.

Relying on this annotation, a value v and its data type ¢ described in WSDL
are enhanced with the concept ¢ and the modifiers necessary to define the context
C, thus forming a semantic object < ¢,v,t,C >. To complete the context C,
rules help infer the values of dynamic modifiers at runtime. This offers several
advantages: rules are easily modifiable, making this solution adaptable to changes

in the underlying semantics. Also, often-changing values of modifiers could not be
statically stored, so using rules simplifies the annotation to WSDL. Furthermore,
rules separate application logic from the rest of the system, so updating rules does
not require rewriting application code. In the following, we detail our context
mediation architecture, that integrates into composition as a Web service, and
show its interactions with a rule-based inference engine.

-
<?xml version="1.0" encoding="UTF-8"7>
<wsdl:definitions targetNamespace="http://localhost.../EuroBanking. jws"
xmlns:ctxt="http://www710.univ-1lyonl.fr/ " mmrissa/context/context.xsd"
xmlns:ctxtl="http://domain.ontology.org/Price.owl"
xmlns:ctxt2="http://context.ontology.org/context/PriceContext.owl\#">
<wsdl:message name="checkPriceReq">
<wsdl:part name="price" type="xsd:double"
ctxt:context="ctxtl:Price ctxt2:France
ctxt2:VATIncluded ctxt2:ScaleFactorQOne" />
</wsdl:message>
<wsdl:portType name="EuroBanking">
<wsdl:operation name="checkPrice" parameterOrder="price">
<wsdl:input name="checkPriceReq" message="impl:checkPriceReq" />
<wsdl:output name="checkPriceResp" message="impl:checkPriceResp" />
</wsdl:operation>
</wsdl:portType>
</wsdl:definitions>
-

Listing 1.2. Annotated WSDL Snippet

4.2 Context Integration and Mediation

Regarding the integration of context management capabilities into composition,
we adopt a decoupled approach and deploy the context mediation functionality as
a Web service. This solution presents three main advantages. First, the mediator
Web service can be triggered via its WSDL interface by any remote composition,
so it remains independent from composition languages and engines. Second, from
composition point of view, it is straightforward to handle context. Composition
designers invoke the mediation Web service between every two composed Web
services. Third, data mediation is performed at runtime, so the operation of
conversion is not statically stored. Instead, conversion rules dynamically infer the
conversion between contexts. However, the scope of the mediator Web service
is limited to data types specified in its WSDL description. To work out this
problem, we generate at design time adapted WSDL description for accessing
the mediator Web service.

The role of the mediator Web service is to convert data from the context of
the Web service it originates (called source context) into the context of the Web
service it is being sent to (called target context). With each exchanged message
part, the mediator Web service carries out the following operations:

1. builds and populates source and target contexts using annotated data, on-
tologies and rules in order to determine context modifiers and their values;

2. examines heterogeneities between these contexts and establishes how data
are converted using rules;

3. converts data to target context, or generates an error message if the conver-
sion is not possible, and sends results to the appropriate target.

The mediator Web service includes five internal components. The context
reader extracts context extensibility attributes from WSDL descriptions. Two
repositories for context and domain ontologies respectively identify context struc-
tures and domain concepts. The rule engine infers the values of dynamic mod-
ifiers and performs data conversion. It communicates with the rule repository
that stores the rules for inferring the operations of data conversion and the values
of dynamic modifiers.

Output . Input
Composition process
"price" "price”
float float
Hotel Booking Mediation Euro-Banking
Web Service LY Webservice €. Web Service

P ~ v
Context 1 | _ o NG D\ Context 2
—_—} e N e

| Web Service interface |

Context reader @ Mediation core @ Rule-based
from WSDL N component N engine

Context Rules
ontologies Repository

Fig. 3. Detailed View of the Mediator Web service

Figure 3 shows how the mediator Web service performs in the composition of
Sect. 2. The numbers in this figure illustrate the chronology of operations that
goes along the following description:

1. The mediator Web service generates an in-memory model of both WSDL de-
scriptions and extracts context annotation for each message part concerned
with the mediation process, in order to build contexts of parameters.

2. It identifies the first qualified name of each annotation as the concept of
the parameter. Then, it checks that the concepts of both parameters match,
i.e., that they verify a subsumption or equivalence relation. This is a simple
approach to semantic matching but additional capacities can be integrated
into the mediator. For a good survey on semantic integration techniques, see
Noy’s work [12].

3. It accesses the context ontology related to the domain concept matched,
and gathers all its relative properties, as well as all its sub properties (i.e.

properties of its sub concepts in the context ontology) into a list of modifiers.
With the following WSDL annotation attributes, the mediator affects values
to static modifiers. Then, the values of dynamic modifiers are inferred by
the rule engine, to build the context description.

4. First, the mediator determines the target context. It corresponds to the
context of the banking Web service W S5 in the example of Sect 2. For each
modifier of the target context, the rule engine applies appropriate conversion
to the data transmitted, so that the value of the source modifier matches the
target context. If the value of the modifier is not convertible to the target
context, an exception is thrown, and the mediator Web service returns a
fault message. If the value of a modifier is missing, a general rule may affect
a default value to this modifier. For example, a rule could set a default scale
factor of 1 for prices. If such a rule is absent too, an exception is thrown, and
the mediator Web service returns a fault message. If the mediation process
is correctly performed, the data is converted into the target context and
transmitted to the next Web service.

To operate properly, the rule engine connects to a rule repository. We assume
that conversion rules are appropriately maintained, to benefit from advantages
of decoupling business logic from the application?. For instance, considering our
example in Section 2, being given V' the values of parameters and SF’ their scale
factors, the rule for managing scale factor modifiers should be stored in the rule
repository as follows:

Viource*SFsource

Vtarget = SErarget

So, at execution time, the rule engine receives as input: “scalefactor”, 1000,
1 and the value v to convert, and performs the conversion to get the appropriate
scale factor.

4.3 Implementation

A prototype has been developed as a proof-of-concept of the feasibility of this
architecture under the Java’™ NetBeans environment. Figure 4 shows a snap-
shot of our graphical user interface to read/write context annotations from/to
WSDL files. This tool enables providers or advanced users to annotate WSDL
files with context, so it is possible to compose them with context-aware mediator
Web services. We also developed a mediator Web service, that reads context an-
notation from WSDL files and converts data received from its source context to
a target context. Our implementation performs at-runtime context mediation,
enabling meaningful execution of composition. In the example of this paper, not
only the “price” concepts match, but data is transformed at-runtime, to comply
with the different scale factors, heterogeneous date formats (that allow getting
up-to-date conversion rates between currencies), and different VAT rates (that
also are not always included in the price), described in the context ontology.

* Sample rules available at http://www710.univ-lyon1.fr/~mmrissa/conversion.drl.

=] Wsdl Annotation Editor] 5
Eile Help
Location of the description file Get input
|[hnme]mmr\ssa]dew’ﬂ\es[HmeIBnnkng wsdl ‘
Service Port Operation Part
[rowmatingsersice [+] [roetioning || [sumaterrice =] feomree <]
Bdension Semantic Context
Context |v‘ |(hup'f[www damain orgiprice {http: f fwaaew context nrg}VAT\nc\uded\ ‘
| Change | | Save file | ‘ Quit |

Fig. 4. Screenshot of the WSDL extension editor

Our current composition example is hosted in an Apache Tomcat container
(http://tomcat.apache.org/). We also use Jena 2 (http://jena.sourceforge.net/)
API and a Drools (http://www.drools.org/) rule engine, to access and ma-
nipulate OWL ontologies, infer modifier values and perform data conversion.
Our prototype includes domain and context ontologies designed with Protégé
(http://protege.stanford.edu/) for describing the “price” concept and context®.

5 Related Work

This section presents different initiatives that relate to the semantic and me-
diation aspects of Web services, and to previous work on context description.
These related works helped us build ideas, and backed our approach as they are
important references of the domain.

Firstly, Semantic Web services constitute an active domain of research. Most
approaches rely on ontologies to express the semantics of a domain, however,
inserting semantics into Web Services involves using description languages like
OWL-S [4], or extending syntactic standards with semantic features (WSDL-
S) [6]. OWL-S is a subset of the OWL (ex-DAML) ontology language. It is a
general ontology for building semantic Web services, and it was designed to be
coupled with standard description formats like WSDL. Inspired from OWL-S,
several research projects have been developed, such as ODESWS [13] that mod-
els Web services using problem-solving methods. From the DERI laboratory,
WSMO [5] is a formal language and ontology that describes varied aspects of
semantic Web services. It supports the development and description of seman-
tic Web services and enables mediation as a service, so that it allows maximal
decoupling between component Web services. With WSDL-S, Miller et al. anno-
tate WSDL with several extensions related to operations and messages [6]. These
extensions refer to concepts of domain models to specify semantics of messages,
but also preconditions and effects of operations.

® Available at http://www710.univ-lyon1.fr/~mmrissa/price.owl and
http://www710.univ-lyonl.fr/~mmrissa/PriceContext.owl.

Secondly, mediation between Web services is a hot topic and receives a lot
of attention from the research community. Many mediation approaches rely on
the concept of mediator for solving data heterogeneities between participants
of an interaction. Cabral and Domingue [14] provide a broker-based mediation
framework for composing semantic Web services. Their approach follows WSMO
conceptual framework [5] that recommends strongly decoupled, service-based
mediation. Williams et al. [15] use agents to perform semantic mediation between
input and output parameters of Web services by encapsulating the composition
into an agent, that controls the developpement of the operation. Spencer et
al. [16] present a rule-based approach to semantically match outputs and inputs
of Web services. An inference engine analyzes OWL-S descriptions and generates
multiple data transformation rules using a description-logic reasoning system.

Thirdly, the use of context has been studied in several domains, in order
to improve the adaptability of software applications to different views on infor-
mation [17]. Some approaches provides formalisms for context representation.
In the domain of database interoperability, the Context Interchange approach,
firstly introduced by Sciore et al. [11], is based on the notion of semantic value.
It has proved to be a highly scalable, extensible and adaptable approach to se-
mantic reconciliation of data. Goh [18] and Firat [19] presented implementations
and extensions to this approach. Then, Bornhévd [9] adapted this model to the
description of semi-structured data.

‘While mediation and semantic description of Web services in a composition
are very active research fields, to the best of our knowledge, none of these works
actually consider the use of explicit context description to solve semantic het-
erogeneities of data in Web services composition.

6 Conclusion

In this paper, we presented an approach to support the semantic mediation of
data exchanged between Web services engaged in a composition. To this end,
we first developed a model that leverages data to the level of semantic object,
then annotated WSDL descriptions with semantic metadata for capturing con-
textual information, and finally proposed a context- and rule-based mediation
mechanism for Web services composition.

Our future work revolves around different aspects. We envision to automat-
ically integrate mediator Web services into the composition at-runtime, to alle-
viate the task of composition designers. Also, further study of ontology-based
solutions for describing multiples context representations is required. Lastly, we
plan to consider the possibility for successful context-based mediation as a cri-
teria of the selection step to improve the selection of Web services.

References

1. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., Winer, D.: Simple object access protocol (SOAP) 1.1. Technical report,
The World Wide Web Consortium (W3C) (2000)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1, W3C Note. Technical report, The World Wide
Web Consortium (W3C) (2001)

UDDI: Universal Description, Discovery, and Integration of Business for the Web.
(2001) URL: http://www.uddi.org.

Martin, D.L., Paolucci, M., Mcllraith, S.A., Burstein, M.H., McDermott, D.V.,
McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan,
N., Sycara, K.P.: Bringing Semantics to Web Services: The OWL-S Approach.
In Cardoso, J., Sheth, A.P., eds.. SWSWPC. Volume 3387 of Lecture Notes in
Computer Science., Springer (2004) 26—42

Arroyo, S., Stollberg, M.: WSMO Primer. WSMO Deliverable D3.1, DERI Working
Draft. Technical report, WSMO (2004) http://www.wsmo.org/2004/d3/d3.1/.
Miller, J., Verma, K., Rajasekaran, P., Sheth, A., Aggarwal, R., Sivashan-
mugam, K.: WSDL-S: Adding Semantics to WSDL - White Pa-
per. Technical report, Large Scale Distributed Information Systems (2004)
http://lsdis.cs.uga.edu/library /download /wsdl-s.pdf.

Gruber, T.: What is an ontology? http://www-ksl.stanford.edu/kst/what-is-an-
ontology.html (2000)

W3C: XML Schema Part 2: Datatypes Second Edition. Technical report, W3C
(2004) http://www.w3.org/TR/xmlschema-2/.

Bornhévd, C.: Semantic metadata for the integration of web-based data for elec-
tronic commerce. In: Int’l Workshop on E-Commerce and Web-based Information
Systems (WECWIS), Santa Clara, CA. (1999) 137-145

Schreiber, G., Dean, M.: Owl web ontology language reference.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/ (2004)

Sciore, E., Siegel, M., Rosenthal, A.: Using semantic values to facilitate interop-
erability among heterogeneous information systems. ACM Trans. Database Syst.
19(2) (1994) 254-290

Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD
Rec. 33(4) (2004) 65-70

Corcho, O., Gémez-Pérez, A., Fernandez-Lépez, M., Lama, M.: ODE-SWS: A
Semantic Web Service Development Environment. In Cruz, I.LF., Kashyap, V.,
Decker, S., Eckstein, R., eds.: SWDB. (2003) 203-216

Cabral, L., Domingue, J.: Mediation of Semantic Web Services in IRS-III. In:
First International Workshop on Mediation in Semantic Web Services (MEDIATE
2005), Amsterdam, The Netherlands. (December 12th 2005)

Williams, A.B., Padmanabhan, A., Blake, M.B.: Experimentation with local con-
sensus ontologies with implications for automated service composition. IEEE
Trans. Knowl. Data Eng. 17(7) (2005) 969-981

Spencer, B., Liu, S.: Inferring data transformation rules to integrate semantic web
services. In Mcllraith, S.A., Plexousakis, D., van Harmelen, F., eds.: International
Semantic Web Conference. Volume 3298 of Lecture Notes in Computer Science.,
Springer (2004) 456-470

Kwan, M.M., Balasubramanian, P.: Knowledgescope: managing knowledge in con-
text. Decis. Support Syst. 35(4) (2003) 467-486

Goh, C.H., Bressan, S., Madnick, S.E., Siegel, M.: Context interchange: New fea-
tures and formalisms for the intelligent integration of information. ACM Trans.
Inf. Syst. 17(3) (1999) 270-293

Firat, A.: Information Integration Using Contextual Knowledge and Ontology
Merging. PhD thesis, Massachusetts Institute of Technology, Sloan School of Man-
agement (2003)

