
Context and Semantic Composition
of Web Services

Michael Mrissa1, Chirine Ghedira1, Djamal Benslimane1, and Zakaria Maamar2

1Claude Bernard Lyon 1 University, Lyon, France - firstname.lastname@liris.cnrs.fr
2Zayed University, Dubai, U.A.E - zakaria.maamar@zu.ac.ae

Abstract. Composition of Web services is a cornerstone step in the
development of interoperable systems. However, Web services still face
data-heterogeneity challenges, although several attempts of using seman-
tics. In addition, the context in which Web services evolve is still some-
how ”ignored”, hampering their adaptability to changes in composition
situations. In this paper, we argue how context permits to determine
the semantics of interfaces that Web services expose to third parties.
We show the need for a context- and semantic-based approach for Web
services composition.
Keywords. Web service, semantics, context, composition, mediation.

1 Introduction

Web services are now accepted as standards for bridging heterogeneous appli-
cations. Web services possess the capability of deploying high-level processes
referred to as composite Web services. Composition addresses the situation in
which a user request cannot be satisfied by a single Web service, whereas a com-
posite Web service consisting of a combination of Web services (either simple or
composite) could satisfy this request [2]. A composition is always associated with
a specification that describes amongst others the list of component Web services,
their execution chronology, and the corrective strategies in case of exceptions.

Current approaches only achieve Web services composition at the level of
message interactions [6]. The standard Web services protocol stack (SOAP,
WSDL, UDDI) was not initially built with meeting the requirements of semantic
exchange. Composition needs, too, to be conducted at the semantic level. Ignor-
ing or poorly assessing semantics are obstacles to composition since Web services
have to be initially checked whether they can effectively work together [8].

Despite multiple attempts, the smooth automation of Web services semantic
reconciliation remains a challenge. First, description techniques of the seman-
tic functionalities of Web services are still in their ”infancy” stage, despite the
tremendous growth in semantic description languages like OWL-S [7]. Second,
the context in which Web services evolve is to a certain extent ”ignored”, which
hampers their adaptability to changes in composition situations.

In this paper we aim at investigating how context drives the semantic rec-
onciliation of Web services. The rationale of this reconciliation is backed by

Maamar et al., who argue that Web services composition is subject to satisfy-
ing two conditions [5]. The first condition is that Web services must agree on
the meaning of the exchanged data. And the second condition is that semantic-
data conflicts must be automatically resolved using the information that context
caters. In this paper we focus on data heterogeneities that arise when Web ser-
vices from different origins take part in a composition. We propose a language
for enhancing Web services descriptions with data semantics. This language is
integrated into a semantic-mediation architecture that solves information het-
erogeneities using semantic values and Web services’ context.

The role of context in data conflicts of type value is not properly handled
in other semantic composition systems. Our proposed solution is built upon
Sciore et al.’s work who suggest using the concept of semantic value to solve
such conflicts [11]. A semantic value is a basic value (i.e., type instance such as
like ”5” is an ”integer” instance), which has a semantic information for facilitat-
ing its contextual understanding, e.g., ”5(currency=euro)” describes ”5” units
of currency of type euros. This semantic information will be anchored to the
semantic context of the Web service.

Section 2 overviews related work on context awareness and semantics of Web
services. Section 3 motivates the need for semantics in Web service description
and details how WSDL is extended into SVE-WSDL (standing for Semantic-
Value Enhanced-WSDL). Section 4 explains the semantic-based mediation ar-
chitecture for Web services engaged in composition. The implementation of this
architecture is also given in this section. Finally, Section 5 draws our conclusions
and overviews different aspects of future work.

2 Related work

2.1 Semantics and Web services

Semantic Web services constitute an active domain of research. There are sev-
eral ways of inserting semantics into Web Services. One way consists of using
description languages like OWL-S [7], and another way consists of extending
syntactic standards like WSDL with semantic features [10, 13].

The first way consists of developing languages to semantically describe Web
services: OWL-S and WSMO (Web Service Modeling Ontology) [1] currently are
the leading languages towards semantic description of Web services. OWL-S is
based on the OWL description language and was intended to be combined with
syntactic description languages like WSDL. WSMO uses F-Logic to describe
the features of Web services. Based on OWL-S, several research projects have
been developed for example ODESWS [3] and METEOR-S (LSDIS) [10]. In
these systems, ontologies are used to annotate Web services [12], which is useful
during discovery, selection, and composition.

Martin et al. introduced the OWL-S language to describe a Web service
along a profile, a model, and a grounding [7]. The service profile answers ”what
does the service do?”. The service model answers ”how does the service work?”.

And the service grounding answers ”how to access the service?”. Spencer et al.
propose a rule-based approach to semantically match outputs and inputs of Web
services [14]. An inference engine analyzes OWL-S descriptions and generates
multiple data transformation rules using a description-logic reasoning system.

The second way of inserting semantics into Web Services enriches WSDL with
the semantics of a domain expressed in an ontology The WSDL-S language [10]
from the LSDIS laboratory, extends the WSDL format by adding an ”LSDIS-
Concept” element to the ”part” tag of the WSDL input/output message. This
additional element does not itself contain the semantic information, but it rather
refers to an element described in an OWL ontology. With the help of the exten-
sibility support of WSDL, files can be extended with semantic information [13].

2.2 Context and Web services

In the area of Web services, context has been recently investigated in many
research projects. The main objective of these projects is to facilitate the devel-
opment and deployment of context-aware and adaptable Web services. Standard
Web services descriptions are augmented with context information (e.g., loca-
tion, time, user profile) and new frameworks are developed to support this.
The approach proposed in [9] is intended to provide an enhancement of WSDL
language with context aware features. The proposed Context-based Web Ser-
vice Description Language (CWSDL) adds to WSDL a new part called Context
Function which is used to select the best Web service. This function represents
the sensitivity of the Web service to the context. Another interesting approach
was proposed in [4] to deal with context in Web services. The approach consists
of two parts: a context infrastructure and a context type set. The context infras-
tructure allows context information to be transmitted as a SOAP header-block
within the SOAP messages.

3 Semantics and context for Web services composition

3.1 A motivating example

The following simple yet-realistic example discusses why semantic mediation
is a key step for Web services composition. Let us assume planning a trip to
Japan. The airport of our destination city offers free-of-charge access to the
Internet. Promotion fliers distributed to passengers contain some recommended
hotels with their HTTP addresses. A hotel, which has attractive rates, provides a
Web service interface1 for booking price estimation (implementation technology
transparent to passengers). To check if this hotel is affordable for an European
passenger, the following composition of Web services occurs: HotelBooking for
estimate charges in Yens based on a number of booking nights, and PersonalEu-
roBanking for payment management.

1 A WSDL interface is the set of functions with their input and output parameters.

This example highlights the importance of semantic reconciliation between
both Web services. The semantics of their interfaces needs to be explicitly de-
scribed for a free-of-conflict composition. Indeed each Web service manages a
different currency, so there are two heterogeneous semantic contexts in this ex-
ample: the first Web service in a ”Japanese” semantic context delivers figures in
Yens, whereas the second one in an ”European” semantic context expects figures
in Euros. The composition is not sensitive if the data from the first Web service is
directly submitted to the second one without any extra-processing. This results
in managing figures (e.g., 100 Yens, 250 Euros) without a real understanding
of their appropriateness. This calls for adapting data between services. In this
example, currency from HotelBooking service needs to be converted so that it
matches the currency used by PersonalEuroBanking service.

3.2 The core idea of the proposed approach

In a simple composition (Figure 1-(a)), Web services’ interfaces are described
using WSDL. During Web services interactions, any data conflict of type value
is resolved in ad-hoc way at the level of the receiver Web-service. For example,
upon reception of a value V in Yens from WS1, WS2 explicitly converts it into V ′

in local currency.

(a) Simple composition (b) Semantic composition

Hotel Booking
Service (WS)

Euro-Banking
Service (WS)

Inputs Inputs

Outputs Outputs

"num_days"
integer

"price_yens"
double

"available"
boolean

"price_euros"
double

Hotel Booking
Service (WS)

"num_days"
integer

"price_yens"
double

"available"
boolean

"price_euros"
double

trigger

Semantic
Mediator

Unresolvable
heterogeneity

Euro-Banking
Service (WS)

Inputs

Outputs

Inputs

Outputs

1 12 2

Fig. 1. Simple vs. semantic composition

To conduct semantic composition that includes the context of the exchanged
data (Figure 1-(b)), the context that defines these data’s role must be provided.
This context is any metadata that explicitly describes the meaning of the data
to be exchanged between Web services. When Web services’ inputs and outputs
are described using metadata, they can automatically be transformed from one
context to another one during Web services execution. By automatically, we
mean that conversion function is not embedded into the body of any Web ser-
vice. This function is loosely-attached to Web services (i.e., independent), and
becomes, thus, an active component that intervenes during Web services com-
position and execution. A possible solution to achieve a semantic composition of
Web services is built upon the semantic-value concept.

3.3 Semantic value concept

Sciore et al. introduce the notion of semantic value to describe a value (i.e., type
instance) with additional semantic information (its context) [11]. Formally, a
semantic value A is defined as follows: A = a(p1 = a1, ...pi = ai, ..., pn = an)

where a is a simple value, pi a property, and ai a simple or a semantic value.
While a simple value is simply defined as an instance of a type (e.g., 5 as

integer), a semantic value associates a value with a context in which its interpre-
tation happens. For example, 5(context=(currency, euro)) is a semantic value
that defines 5 as a currency in euros. Recursive descriptions is also possible
since the value of a property can also have its own context, e.g. 5(currency, euro
(context=(scalefactor,1000))) is a recursive description of the semantic value 5.

It is important to note that the values ”5” and ”50” can be considered as
different with each other if considered as simple values. However, they can be
considered as equivalent if they are interpreted as semantic values with different
contexts, e.g., 5(currency, euro) = 50(currency, yen) when 1 euro worths 10 yens.

Then, the main purpose of enabling semantic mediation between Web services
consists of associating context to web services and using conversion functions to
convert a semantic value from the context of a Web service to another. The
semantic value 5(currency, euro) can be converted into another semantic value
50(currency, yen). Depending on the conversion to adopt, a conversion function
can be lossless or lossy (like for compression/decompression), total or non-total
(for example city to country is not reversible), and order preserving or not (if a
< b then cvt(a) > cvt(b) where cvt is a function).

3.4 From WSDL to SVE-WSDL

To develop an enriched semantic description of a Web service, we investigated
how the representation of some WSDL elements could be extended. Each repre-
sentation would be associated with some specific information that depends for
example on the ontology that the Web service binds to. To add more semantics to
Web services’ descriptions, we proposed SVE-WSDL as an extension of WSDL.
This extension adds the concept of semantic value to a WSDL description.

To keep the paper self-contained, we overview the main structure of a WSDL
document: <type> element defines data types exchanged in messages. <message>
element describes the data elements of an operation. Each message consists of
one or more parts. Each part has a <name> element, a <type> element, and
may consist of additional <element> elements. These three constructs define the
names and types of the parameters that are used by the Web service in the
message. For platform independence requirement, WSDL uses XML syntax to
define data types. Some message parts may be of type complex, and may contain
a structure of several XML Schema elements. <portType> element provides an
abstract description of the Web service. It defines the operations (using one or
more <operation> elements) that can be performed over a Web service, and the
messages involved. Each operation may contain one <input>, one <output>, and
one <fault> sections. Each section contains a <message> element that specifies

what the Web service receives (input message) and sends when its execution
fails (fault message) or succeeds (output message). Finally, <binding> element
defines the message format and protocol details for each port. Several protocols
may be used such as SOAP over HTTP.

Our proposal for SVE-WSDL is to bind a semantic value description to the
inputs and outputs of a Web service. The extension of the WSDL metamodel is
partially shown in Figure 2. It is now enhanced with context meta-class associ-
ated with part meta-class. Input and output elements contain a single message,

Part
+name

+type

+element

Context
+name

+type
Value

0..*1 1..*10..*

Message
+name

Fig. 2. Proposed extension of the WSDL metamodel

that consists of one or several parts. In fact, we aim at extending each part of a
message with an additional element to be referred to as ”context”. Compared to
the concept of semantic values of Sciore et al. [11], <part> tag describes the sim-
ple value and <context> structure represents the semantics associated with this
value. As a result, we define a structure to describe the context to be associated
with the values described in <part> elements of a Web service’s messages. This
structure consists of: (i) a <name> element that labels the semantic information;
(ii) a <type> element that indicates the type of the semantic information; (iii) a
<value> element that contains the information itself; and an optional <context>
element providing additional context information to the <value> element, thus
enabling recursive descriptions. Listing 1.1 illustrates a part of a SVE-WSDL
description of a Web service.¨ ¥
<?xml version=" 1.0 " encoding=" UTF -8 "?>
<d e f i n i t i o n s name=" HotelService " tns=" http: // example . HotelService /" . . .>

<message name=" HotelServiceEndpoint - Booking ">
<part name=" Num - Days " type=" xsd:integer ">

<context name=" time " type=" xsd:string " value=" time - unit ">
<context name=" duration " type=" xsd:string " value=" day "/>

</ context>
</ part>

</message>
<message name=" HotelServiceEndpoint - BookingResponse ">

<part name=" price " type=" xsd:int ">
<context name=" currency " type=" xsd:string " value=" yen "/>
<context name=" scalefactor " type=" xsd:string " value="1"/>

</ part>
</message>
<portType name=" HotelServiceEndpoint ">

<operat ion name=" Booking " parameterOrder=" Num - Days ">
<input message=" tns:HotelServiceEndpoint - Booking "/>
<output message=" tns:HotelServiceEndpoint - BookingResponse "/>

</ operat ion>
</portType>

. . .
</ d e f i n i t i o n s>§ ¦

Listing 1.1. SVE-WSDL description of a Web service

4 Semantic-based mediation for Web services

4.1 Components of the architecture

Figure 3 presents the architecture for context- and semantic-based mediation of
Web services composition. It consists of six components:

WSSVE-WSDL WS SVE-WSDL

Conversion
libraries

Conversion rules
repository

Shared
Ontology

Semantic
mediator

Composition Specification
trigger

Provider level

Composition level

Mediation level

1 2

Fig. 3. SVE-WSDL mediation architecture

SVE-WSDL annotations. They extend WSDL descriptions of Web services
by using semantics. Web services can now ”understand” the values they ex-
change. Interesting to note that Web services still exchange simple values during
the execution, so that the interactions with Web services during invocation re-
main unchanged. These values are more understandable since their semantics in
terms of meta-data can be extracted from SVE-WSDL descriptions. The Web
service’s provider does not have to undertake any changes, except of adhering
their WSDL description to the SVE-WSDL format.

Value triggers. The data flow during composition needs to be intercepted at
some points between component Web services. To keep Figure 3 clear, triggers
are not represented. A trigger intervenes between Web services, extracts data
from SOAP messages, and sends a conversion request to the semantic mediator.
Then the trigger waits for an answer from the mediator and, depending on the
answer it receives (or a timeout), either forwards converted data to the next
Web service(s), or throws an exception. Still remains the question about where
to physically place the triggers. For scalability reasons, we recommended that
triggers should be along with the specification execution program, most of the
times on the client side. An example of implementation is to use the BPELJ
language for specifying the composition, and to integrate the triggers under the
form of code snippets that are located between composed Web services. Indeed,

as shown (Figure 1-(b)), the trigger intercepts the values exchanged during com-
position and passes them on to the mediator where data heterogeneities remain
unresolved in a simple composition. Thus, triggers do not have to know that
they are part of an architecture that deals with semantic values. This separation
between the actual mediation process and the composition specification allows
a better scalability and adaptability of the architecture to future modifications.

Semantic mediator. It works in close collaboration with the triggers by re-
ceiving their outputs. The semantic mediator is a service (either local service or
Web service). It acts as a listener that gets a semantic value from a source con-
text and returns, if possible, the conversion of this value to a target context. To
this end, the semantic mediator is supported in its work with a conversion rules
repository while searching for the appropriate conversion functions. The media-
tor delivers the resulting basic value to the trigger that sent out the request, or
returns an exception in case of non semantic comparability (i.e. the conversion is
not meaningful). The semantic comparability of two semantic values is detailed
in Sciore’s work [11].

Conversion rules repository. It contains the mappings between terms used in
various semantic contexts and lists as well the conversion opportunities between
these terms. It is expected that the repository can refer to several conversion
libraries including remote ones. New conversion libraries can be added upon
request, i.e., each time a composition requires new conversion functions for a
new application domain.

Conversion libraries. Conversion functions are stored in libraries and permit
converting semantic values from one context into another.

Application domain ontologies. The mediator refers back to these ontolo-
gies to check whether or not it is possible to clearly identify a semantic value.
We do not discuss here the mechanisms that could help the mediator identify
a term in an ontology, as we focus on the enhancement of the process of medi-
ation with semantic values. This point is to be considered in future work. For
the moment, let us consider that the identification of the terms is performed by
a simple pattern-matching technique. For instance, in the domain of currencies,
providers may differently name the same concept (devise, currency, moneyU-
nit, etc.) and its instances (USD, Dollar, USDollars, etc.). The ontologies help
the mediator find out what similarities and inconsistencies are between semantic
value descriptions.

4.2 Architecture operation through the prototype

A prototype that supports the proposed architecture is fully operational. We
use JavaTM NetBeans environment. Figure 4 is the GUI to read/write context
annotations from/to WSDL files.

Fig. 4. Screenshot of the WSDL extension editor

As part of our implementation efforts, we developed the context-aware medi-
ation architecture for Web services. This consists of reading context annotation
from WSDL files and converting data received from a source context to a target
context. This mediation is part of the example given in Section 3.1. We deployed
the ”HotelBooking”, ”Mediation” and ”PersonalEuroBanking” Web services on
an Apache Axis server and composed them using BPEL. The implementation
shows that dynamic and accurate interpretation of context enable a meaningful
composition to be performed. With the context-aware mediation Web service
and annotated WSDL files, not only the ”price” semantic types match, but data
is transformed at the execution stage, to comply with the different scale factors,
heterogeneous date formats (that allow getting up-to-date conversion rates be-
tween currencies), and different VAT rates (that also are not always included in
the price) that form the context of data.

5 Conclusion

In this paper we presented an approach that supports semantic interoperability
among individual Web services engaged in composition. To this end we enhanced
WSDL descriptions of Web services with semantic metadata for capturing con-
textual information. We also proposed an architecture that exploits these onto-
logical annotations for adapting data on the fly when they are transferred from
Web service to another constitutive one. The heart of our architecture is the
context mediator; which adapts exchanged data so as to be compliant with the
receiver’s requirements.

Our future work revolves around different aspects. First, the use of context
should be considered, so that applications can become aware of their environ-
ment. Second, different local ontologies can be used when providers develop Web
services, so there is a need to generate contextual mappings between ontologies
in an automatic way.

References

1. S. Arroyo and M. Stollberg. WSMO Primer. WSMO Deliverable
D3.1, DERI Working DRAFT. Technical report, WSMO, 2004.
http://www.wsmo.org/2004/d3/d3.1/.

2. J. Bézivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying MDA Approach for
Web Service Platform. In Proceedings of The IEEE Enterprise Distributed Object
Computing Conference (EDOC’2004), Monterey, California, 2004.

3. Ó. Corcho, A. Gómez-Pérez, M. Fernández-López, and M. Lama. ODE-SWS:
A Semantic Web Service Development Environment. In Proceedings of The first
International Workshop on Semantic Web and Databases (SWDB’2003), Berlin,
Germany, 2003.

4. M. Keidl and A. Kemper. A framework for context-aware adaptable web services.
In Proceedings of The 9th International Conference on Extending Database Tech-
nology (EDBT’2004), Heraklion, Greece, 2004.

5. Z. Maamar, D. Benslimane, and N. C. Narendra. What Can Context do for Web
Services? Communications of the ACM, 2006 (forthcoming).

6. Z. Maamar, N. C. Narendra, and S. Sattanathan. Towards an Ontology-based
Approach for Specifying and Securing Web Services. Journal of Information &
Software Technology, Elsevier Science Publisher, 2006 (forthcoming).

7. D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. V. McDermott,
D. L. McGuinness, B. Parsia, T. R. Payne, M. abou, M. Solanki, N. Srinivasan,
and K. P. Sycara. Bringing Semantics to Web Services: The OWL-S Approach. In
Proceedings of The First International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC’2004), San Diego, California, USA, 2004.

8. B. Medjahed, A. Rezgui, A. Bouguettaya, and M. Ouzzani. Infrastructure for
E-Government Web Services. IEEE Internet Computing, 7(1), 2003.

9. Soraya Kouadri Mostéfaoui and Béat Hirsbrunner. Towards a context-based service
composition framework. In Liang-Jie Zhang, editor, ICWS, pages 42–45, Las Vegas,
Nevada, USA, 2003.

10. P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. Enhancing Web Ser-
vices Description and Discovery to Facilitate Composition. In Proceedings of The
First International Workshop on Semantic Web Services and Web Process Com-
position (SWSWPC’2004), San Diego, California, USA, 2004.

11. E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate in-
teroperability among heterogeneous information systems. ACM Transactions on
Database Systems, 19(2), 1994.

12. A. P. Sheth and C. Ramakrishnan. Semantic (Web) Technology In Action: Ontol-
ogy Driven Information Systems for Search, Integration and Analysis. IEEE Data
Engineering Bulletin, 26(4), 2003.

13. K. Sivashanmugam, K. Verma, A. P. Sheth, and J. A. Miller. Adding Semantics to
Web Services Standards. In Proceedings of The International Conference on Web
Services (ICWS’2003), Las Vegas, Nevada, USA, 2003.

14. B. Spencer and S. Liu. Inferring Data Transformation Rules to Integrate Se-
mantic Web Services. In Proceedings of The International Semantic Web Confer-
ence (ISWC’2004), Hiroshima, Japan, 2004.

