
Views in Composite
Web Services

IEEE INTERNET COMPUTING 1089-7801/05/$20.00 © 2005 IEEE Published by the IEEE Computer Society JULY• AUGUST 2005 79

Se
rv

ic
e-

O
ri

en
te

d
C

om
pu

ti
ng

 T
ra

ckEditors: Michael Huhns • huhns@sc .edu
Munindar P. Singh • s ingh@ncsu .edu

Zakaria Maamar
Zayed University

Djamal Benslimane,
Chirine Ghedira,
and Michael Mrissa
Claude Bernard Lyon 1 University

The authors present a view-based approach for tracking personalized Web

services. To guarantee proper handling of user preferences during Web service

execution, a view can zoom into the specification that composes the Web

services. As time advances, the location changes, or constraints on the

environment are satisfied, the deployment of a view over a specification similarly

progresses, mirroring the context’s dynamic nature.

Composite Web services — those that
describe component execution
order as well as corrective actions

to take in case of exceptions — provide
a new way to implement business
processes that could cross organization-
al boundaries.

The preferences used for personalizing
a Web service depend heavily on the
environment in which the service oper-
ates. The ability to sense, gather, and
refine an environment’s features, for
example, helps us define the service’s
context,1 which, in turn, helps us adjust
the service’s specification.

In context-aware computing, software
applications can detect and respond to
changes in their environments.2 A view is
a dynamic snapshot of the environmen-
tal changes that occur in a composite ser-
vice’s entire specification according to a
certain context. Views highlight what was
expected to happen versus what actually
is happening, and they offer some impor-
tant benefits:

• providing flexible security by hiding
everything in the specification from
the user except those parts subject to
adjustment;

• identifying component Web services
from user context; and

• facilitating multiple views of the
specification at different levels of
granularity for different users.

We propose using views as a means of
both tracking the execution of personal-
ized Web services and deploying correc-
tive measures when services don’t comply
with users’ personalization requirements.

Example Scenario
Our running scenario focuses on Melissa,
a tourist in Dubai. After checking in at
her hotel, Melissa browses some Web sites
recommended by the Dubai tourism
authorities in their brochures. The top-
ranked Web site offers different services
that can be composed according to dif-
ferent execution chronologies.

Melissa plans to visit outdoor places in the
morning and go shopping in the afternoon. The
first part of this plan depends on weather fore-
casts: hot weather often forces tour operators
and other service providers to cancel outdoor
activities. Melissa is initially prompted to select
activities based on her interests, indicate pick-
up and drop-off places and times for sightsee-
ing and shopping, and request a guide for spe-
cific visits.

The selected Web site then submits her pref-
erences to the appropriate Web services providers
for processing. The sightseeing service obtains
forecasts from the weather service; if there is no
warning of hot weather, this service prepares a
schedule for Melissa, verifying if the places she
wants to see are open to the public on her desired
days and arranging rides and a guide. The trans-
portation service identifies the type of vehicle
she’ll be using and whether she’ll have to share a
ride with other tourists. If the weather is too hot,
the sightseeing service might suggest indoor
places to visit, such as museums. Similar consid-
erations apply for shopping, which involves
checking for any promotions or sales occurring
in the malls that Melissa selected. The trans-
portation service uses the distance among desti-
nations to help coordinate the timings among all
the activities. Finally, the transportation service
conveys Melissa’s travel plan — which specifies
the duration and order of her selected activities
— to her PDA.

The day after her arrival, Melissa takes a
ride to a historical site, but because of an unex-
pected traffic jam, she’s delayed. The agent run-
ning on her PDA detects that she isn’t in the
expected location according to her travel plan,
so it informs the sightseeing and transportation
services so that they can take corrective mea-

sures — for example, informing the guide wait-
ing for her about the delay and adjusting her
shopping trip.

Specification of
Composite Web Services
A service chart diagram specifies a composite ser-
vice’s components.3 It enhances a state chart dia-
gram by emphasizing the context surrounding a
service’s execution rather than just the states dur-
ing service execution. Five perspectives enhance
a service’s states — the state itself, flow, business,
information, and performance — but for person-
alization, users indicate when and where they
want services performed and results delivered. To
incorporate these preferences, we anchor two
extra perspectives — location and time — to the
service chart diagram.4,5

Several component services can form a com-
posite service, so we specify the process model
underlying the composite service as a state chart
diagram with associated states. Figure 1 illustrates
the composite service specification for Melissa’s
scenario. The services are connected through tran-
sitions, some of which are constrained via
Boolean expressions (for example,
[confirmed(hotweather)]).

Understanding Views
Our view-based approach isn’t specific to service
chart diagrams: it’s applicable to any composition
language. We use service charts for illustration
purposes only.

View Metamodel
Figure 2 shows the view metamodel for tracking per-
sonalized services. This metamodel revolves around

• context, service, and composite service, the

80 JULY• AUGUST 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 1. Composite service specification. For Melissa’s trip, the component services are sightseeing (SI), weather (WE),
shopping (SH), and transportation (TR).

SCD-TR
(TRansportation)

(SCD: Service chart diagram); y: yes; n: no

SCD-SI
SIghtseeing

t0

t1

t2

t9SCD-SH
(SHopping)t5 t6

t8

t7

[confirmed (hot weather)]
SCD-WE

(WEather)t3 t4
t11

t10

[checked (walking distance)]

y

n

y

n

building blocks of any context-aware, service-
based system,6 and

• the mechanisms of running context-based
requests over composite service specifications.

The view brings these mechanisms to life. Figure 2
uses a rounded rectangle to represent a view to dif-
ferentiate it from individual and composite service
concepts, which are represented with regular rec-
tangles.

In Figure 2, we decompose context into three
types: user-linked (U), Web-services-linked (WS),
and composite-service-linked (CS). Figure 2 uses
related-to edges to highlight the connection
between the three. U-context tracks users in
terms of current location and current activities,
WS-context refers to a Web service’s current
capabilities and ongoing participation in con-
current compositions, and CS-context oversees
the execution status of a composite service’s
components.

A composite service specification is either ini-
tial or derived. A designer creates an initial spec-
ification, which includes details such as the com-
ponent services’ chronology and the
dependencies between them. Figure 1 is an initial
composite service specification. The designer
obtains a derived specification after running a
view over a specification, which itself is initial or
derived. In Figure 2, we highlight the connection
between view and composite service specification
with two different edges: “applied over” (black)
and “allows obtaining” (red). The aggregation of
services into composite services occurs via the
“participate in” edge in the bottom left-hand sec-
tion. This participation complies with a specific

execution chronology that corresponds to the
Ordered/[Transitions] edge. [Transitions]
represents the conditions of connecting Web ser-
vices together.

The view metamodel’s dynamic aspect involves
two steps. The first consists of checking the con-
strained transitions before running a view over a
specification (for example, [checked(walk-
ingdistance)]). By checking transitions, we limit
the services included in the specification to those
subject to a view operation. Once the features in
the current context satisfy these constraints, we
move to the second step: identifying the parame-
ters included in the extraction of a view from a
composite specification. To perform this extrac-
tion, we use two parameters: execution time and
execution location.

Views Formalized
As we’ve just seen, a view depends on the user
preferences and constraints that regulate the tran-
sitions between component services. We’ve also
learned that execution time and location are
examples of preferences, and weather forecasts
and walking distance are examples of constraints.
Here, we present a formal specification of the view
concept and an application of this specification to
Melissa’s scenario.

First, we define the state chart diagram. A state
chart diagram scd for a composite service is a triple
<S, T, Tc>, where S = {s1, s2, …} is the set of tem-
poral and localized service chart diagrams for the
component services; T = {t1, t2, …} is the set of
unconstrained transitions; and Tc = {tc1, tc2, …} is
the set of constrained transitions whose constraints
are suitable Boolean expressions.

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY• AUGUST 2005 81

Composite Web Services

Figure 2. The view metamodel. The rounded rectangle in the center represents the view, and regular rectangles represent
individual and composite service concepts.

U

View
Associated with

CS

CS: Composite service

Of type

WS: Web service
U: User

Pa
rt

ic
ip

at
e

in

Initial

Derived

Web service

O
rd

er
ed

/[
Tr

an
si

tio
ns

]
CS specification

User

WSCS

Context

Related to

Related to

Applied over

Allows obtaining

Related to

Of type

Next, we define the context. A context cont
aggregates user, Web service, and composite ser-
vice contexts. This article considers only the U-
context, which involves user-specific features such
as role, location, and expertise level.

Finally, we use a derived state chart diagram
dscd to extract a view from scd according to a
given cont. Given scd = <S, T, Tc>, we can extract
a triple dscd given by View(scd, cont) = <S�, T�,
Tc�> from scd only if the following hold:

• S� � S. This means that the derived specifica-
tion can’t accept any additional services, but
can exclude existing elements such as states
and transitions. In particular, if the con-
straints on an incoming transition of scd
aren’t satisfied in cont, this service chart dia-
gram will be excluded from the derived state
chart diagram.

• T� = {t� | either (t� � T and InitialState(t�) � S�)
or (�tc � Tc | t� = FullInstantiation(tc, cont) and
InitialState(t�) � S�)}. The function InitialState
determines a transition’s initial state. The func-
tion FullInstantiation returns an unconstrained
transition when the constraint on this transi-
tion is satisfied in cont. Therefore, we obtain
the unconstrained transitions in T � of dscd
either from the unconstrained transitions of scd
for which the initial state chart diagram
belongs to S� or the constrained transitions of
scd satisfied in cont.

• Tc� = {tc� | (tc� � Tc and UnSatisfied(tc�, cont)
= false and InitialState(tc�) � S�)}. Here, Tc�
is the set of constrained transitions tc� that
are unknown (that is, neither satisfied nor
unsatisfied) in cont. Moreover, the initial
state of these constrained transitions is an

element of S�. The function UnSatisfied
checks whether a transition is satisfied in a
given context.

Figure 1 represents the state chart diagram
scdMelissa that implements Melissa’s scenario. The
diagram is a triple <S, T, Tc>, where S = {scd-si,
scd-we, scd-sh, scd-tr}, T = {t0, t1, t2, t11}, and Tc
= {t7, t8, t9, t10}. Let’s assume that Melissa’s con-
text returns details on weather conditions and
walking distance between malls: cont = ((con-
firmed(hotweather) = yes and checked(walkingdis-
tance) = yes). Figure 3 corresponds to dscd, extract-
ed from scdMelissa for cont; dscd is defined by a
triple <S�, T �, Tc�> where S� = {scd-si, scd-we, scd-
sh}, T � = {t0, t1, t2, t7, t10}, and Tc� = Ø.

The transitions t7 and t10 constrained in scd
turn out to be unconstrained transitions in dscd.
Their respective constraints are satisfied in the cur-
rent context — namely, cont = (confirmed
(hotweather) = yes, checked(walkingdistance) =
yes). Not satisfied in context cont are the uncon-
strained transitions t8 and t9, which aren’t includ-
ed in dscd. In general, a derived state chart dia-
gram continually evolves with the dynamic user
context. Constrained transitions, for example,
become unconstrained when more information
about the user’s context is available. In Melissa’s
case, the derived state chart diagram we ultimate-
ly get is qualified as final because all of its transi-
tions are unconstrained. By using the service chart
diagram’s time and location perspectives, the cur-
rent time and location values allow the designer to
detect the services being executing.

View Automation
Last fall in Lyon, we developed a prototype of our
view-based approach for tracking personalized
Web services. Figure 4 overviews the prototype’s
major functionalities: translating the composite
service specification into XML and checking con-
textual information.

The first step in translation is to describe the
composition itself after mapping its specification
from a state chart diagram into the Business
Process Execution Language. Because BPEL does-
n’t provide the flexibility and adaptability that
composite processes require during changes to
business rules,7 it can’t handle context changes
among component Web services. We worked
toward automating this part of the process by
extending BPEL; our extension consisted of repre-
senting the information contained in a state chart

82 JULY• AUGUST 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 3. Derived state chart diagram.The first step checks the
constrained transitions before running any view over a specification.
The second step identifies the time and location parameters used to
extract a view from the specification.

SCD-SI
SIghtseeing

t0

t1

t2

SCD-SH
(SHopping)t5 t6

t7

SCD-WE
(WEather)t3 t4

t10

diagram with a new element called <transition>,
which comprises three attributes: transition name;
condition (satisfied, unsatisfied, or unknown),
which describes when a Web service is available;
and color (red, blue, or green), which represents the
condition’s current state.

The second step of the translation process is to
describe the rules that apply to a BPEL specifica-
tion in an Extensible Stylesheet Language Trans-
formations (XSLT) template. These rules first com-
pare the values of the contextual information to
the conditions expressed in the BPEL specification
and then change the state of the Web services in
this specification accordingly.

For the checking functionality, we use an
XML schema to describe the context structure
and check that contextual information fits into
this structure. Once contextual information para-
meters are fed into the XSLT template, we first
compare the context’s effective values to the
BPEL specification’s extension elements and then
generate a derived specification (which can be
subject to additional views). This comparison
removes Web services with unsatisfied conditions
from the BPEL specification, and creates a new
view over the previous specification. Let’s
assume, for example, that a Web service has an
element <transition name = “weather”

condition = “sunny” color = “green”>. If
the weather context is assessed as “rainy,” the
Web service’s state switches to “red,” which
stands for unavailable — this discards the Web
service from the derived specification. The XSLT
template uses the XPath query engine to locate
elements of the specification that match any
contextual information it receives.

Melissa’s scenario hints at some of the chal-
lenges involved in tracking personalized Web

services, but bigger obstacles include the fact
that current services often can’t be embedded
with context-aware mechanisms, existing
approaches facilitate choreography but neglect
the impact of context, and guidelines for track-
ing personalized Web services are practically
nonexistent. The scenario also raises interesting
questions: How do designers detect a problem
during specification execution? Which services
must be checked out in case of problems? Is the
context sufficient for detecting potential prob-
lems? These questions highlight the importance
of making Web services aware of their surround-

ing environments prior to any engagement in
composition.

The capacity to reuse derived specifications to
be subject to views is an argument in favor of
adopting views as a mechanism for tracking Web
services. If the environment changes (in terms of
context content/time period/location) after gen-
erating a derived state chart diagram, this diagram
must be reviewed before it can be subject to
another view operation. This could result in
adding or discarding transitions and states to or
from this diagram, which means we need to gen-
erate a new diagram.

References

1. P. Brézillon, “Focusing on Context in Human-Centered

Computing,” IEEE Intelligent Systems, vol. 18, no. 3, 2003,

pp. 62–66.

2. G.C. Roman, C. Julien, and A.L. Murphy, “A Declarative

Approach to Agent-Centered Context-Aware Computing in

Ad Hoc Wireless Environments,” Proc. 2nd Int’l Workshop

Software Eng. for Large-Scale Multi-Agent Systems (SEL-

MAS), Springer, 2002, pp. 94–109.

3. Z. Maamar, B. Benatallah, and W. Mansoor, “Service Chart

Diagrams: Description and Application,” Proc. Alternate

Tracks 12th Int’l World Wide Web Conf. (WWW), ACM

Press, 2003; http://www2003.org/cdrom/papers/alternate/

P043/p43-maamar.pdf .

4. J.F. Allen, “Maintaining Knowledge about Temporal

Intervals,” Comm. ACM, vol. 26, no. 11, 1983, pp.

832–843.

5. D. Papadis and T. Sellis, “On the Qualitative Representation

of Spatial Knowledge in 2D Space,” Very Large Databases

J., vol. 3, no. 4, 1994, pp. 479–516.

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY• AUGUST 2005 83

Composite Web Services

Figure 4. View prototype. It requires two steps: composite service
specification translation into XML and contextual information
verification.

XSLT
template

CS specification
in XML

4. XPath

5. Output

Context structure
(XML schema)

2. Checking

Context information
in XML

Composite service
specification

1. Translation
into XML

Subject also
to view

3. Submitted
to XSLT

View derivation in XML

6. Z. Maamar, D. Benslimane, and N.C. Narendra, “What Can

Context Do for Web Services?,” to be published in Comm.

ACM, 2005.

7. F. Rosenberg and S. Dustdar, “Business Rules Integration

in BPEL: A Service-Oriented Approach,” Proc. 7th Int’l

IEEE Conf. E-Commerce Technology (CES), IEEE Press,

2005, pp. 476–479.

Zakaria Maamar is an associate professor of computer science

at Zayed University, Dubai, United Arab Emirates. His

research interests include Web services, software agents,

and context-aware computing. Maamar has a PhD in com-

puter science from Laval University. Contact him at

zakaria.maamar@zu.ac.ae.

Djamal Benslimane is a full professor of computer science at

Claude Bernard Lyon 1 University and a member of the

Laboratoire d’Informatique en Images et Systèmes d’Infor-

mation, Central National de la Recherche Scientifique

(LIRIS-CNRS), both in Lyon, France. His research interests

include interoperability, Web services, and ontologies.

Benslimane has a PhD in computer science from Blaise Pas-

cal University. Contact him at djamal.benslimane@

liris.cnrs.fr.

Chirine Ghedira is an associate professor of computer science

at Claude Bernard Lyon 1 University and a member of

LIRIS-CNRS, both in Lyon, France. Her research interests

include Web services and context-aware computing. Ghedi-

ra has a PhD in computer science from the National Insti-

tute for Applied Sciences (INSA). Contact her at

chirine.ghedira@liris.cnrs.fr.

Michael Mrissa is a PhD candidate in computer science at

Claude Bernard Lyon 1 University and a member of LIRIS-

CNRS, both in Lyon, France. His research interests include

Web services and peer-to-peer networks. Contact him at

michael.mrissa@liris.cnrs.fr.

Service-Oriented Computing Track

84 JULY• AUGUST 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r.zwick@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org
Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org
Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Southeast (product)
Bill Holland
Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@yahoo.com

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: jm.ieeemedia@ieee.org

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

A D V E R T I S E R / P R O D U C T I N D E X J U L Y / A U G U S T 2 0 0 5

Charles River Media 7

CTIA Wireless 2005 Cover 4

MIT Press 11

Boldface denotes advertisements in this issue.

Advertising PersonnelAdvertiser Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org
Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

